
embOS
Real-Time Operating System

CPU & Compiler specifics for
RISC-V using Embedded Studio

Document: UM01069
Software Version: 5.12.0.0

Revision: 0
Date: February 8, 2021

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2017-2021 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: February 8, 2021

Software Revision Date By Description

5.12.0.0 0 210208 MM Added information about thread-local storage.

5.8.2.0 0 200311 MM Added information about the ECLIC interrupt controller.
Added information to the stack chapter.

4.38 0 171205 MC Initial version.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

4

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

6

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..9

1.1 Installation .. 10
1.2 First Steps .. 11
1.3 The example application OS_StartLEDBlink.c ... 12
1.4 Stepping through the sample application ...13

2 Build your own application ..16

2.1 Introduction ...17
2.2 Required files for an embOS ..17
2.3 Change library mode .. 17
2.4 Select another CPU .. 17

3 Libraries ...18

3.1 Naming conventions for prebuilt libraries .. 19

4 CPU and compiler specifics ..20

4.1 Standard system libraries ..21
4.2 Thread-Local Storage TLS ... 21

4.2.1 OS_TLS_SetTaskContextExtension() ...21

5 Stacks ... 23

5.1 Task stack for RISC-V ...24
5.2 System stack for RISC-V .. 24
5.3 Interrupt stack .. 24

6 Interrupts ... 25

6.1 CLINT and PLIC ... 26
6.1.1 What happens when an interrupt occurs? ...26
6.1.2 RISC-V interrupt sources ... 26
6.1.3 Defining interrupt handlers in C .. 26
6.1.4 Interrupt priorities ...27
6.1.5 Interrupt handling ... 28

6.2 Enhanced CLIC (ECLIC) .. 44
6.2.1 What happens when an interrupt occurs? ...44
6.2.2 RISC-V interrupt sources ... 44
6.2.3 Interrupt level and priority ... 44
6.2.4 Interrupt handling ... 45

6.3 Interrupt-stack switching .. 49

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

8

6.4 Zero latency interrupts ... 49

7 RTT and SystemView ...50

7.1 SEGGER Real Time Transfer .. 51
7.2 SEGGER SystemView ..52

8 embOS Thread Script ...53

8.1 Introduction ...54
8.2 How to use it .. 54

9 Technical data ...59

9.1 Memory requirements ...60

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to start with embOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

17 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

19 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows: libos_rv<Arch>_<LibMode>.a

Parameter Meaning Values

Arch Specifies the RISC-V ISA 32imac: RV32I with ’M’, ’A’ and ’C’ extensions

LibMode Specifies the library mode

xr: Extreme Release
r: Release
s: Stack check
sp: Stack check + profiling
d: Debug
dp: Debug + profiling
dt: Debug + profiling + trace

Example

libos_rv32imac_dp.a is the library for a project using an RV32IMAC core with debug and
profiling support.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

21 CHAPTER 4 Standard system libraries

4.1 Standard system libraries
embOS for RISC-V and Embedded Studio may be used with Embedded Studio’s standard
libraries.

embOS delivers the file OS_ThreadSafe.c which includes hook functions to make standard
library calls (e.g. the heap management functions) thread safe.

4.2 Thread-Local Storage TLS
The Embedded Studio standard library supports the usage of thread-local storage. Several
library objects and functions need local variables which have to be unique to a thread.
Thread-local storage will be required when these functions are called from multiple threads.

embOS for Embedded Studio is prepared to support the tread-local storage, but does not
use it per default. This has the advantage of no additional overhead as long as thread-
local storage is not needed by the application. The embOS implementation of thread-local
storage allows activation of TLS separately for every task. Only tasks that call functions
using TLS need to activate the TLS by calling an initialization function when the task is
started.

Library objects that need thread-local storage when used in multiple tasks are e.g.:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

Note

The usage of thread-local storage will prevent the SEGGER Linker from applying ad-
ditional optimizations.

4.2.1 OS_TLS_SetTaskContextExtension()

Description

OS_TLS_SetTaskContextExtension() may be called from a task to initialize and use
thread-local storage.

Prototype

void OS_TLS_SetTaskContextExtension(void);

Additional information

OS_TLS_SetTaskContextExtension() shall be the first function called from a task when
TLS should be used in the specific task. The function must not be called multiple times from
one task. The thread-local storage is allocated on the heap. To ensure thread-safe heap
management when using TLS, make sure to include the OS_ThreadSafe.c.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

22 CHAPTER 4 Thread-Local Storage TLS

static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

24 CHAPTER 5 Task stack for RISC-V

5.1 Task stack for RISC-V
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For RISC-V CPUs, this minimum basic task stack size is about 160 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 80 bytes
onto the current stack, the task stack size has to be large enough to handle one exception,
too. We recommend at least 512 bytes stack as a start.

Note

Stacks for RV32I devices need to be 16-byte aligned. embOS ensures that task stacks
are properly aligned. However, since this can result in unused bytes, the application
should ensure that task stacks are properly aligned. This can be achieved by defin-
ing an array using the compilers “__attribute__” keyword with the “aligned(16)”
attribute.

5.2 System stack for RISC-V
The minimum system stack size required by embOS is about 192 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings. We recom-
mend a minimum stack size of 768 bytes for the system stack.

5.3 Interrupt stack
RISC-V does not support a hardware interrupt stack. All interrupts primarily run on the
current stack. This means that an interrupt might use any task stack or the system stack.
Therefore, each task stack needs to be big enough to handle interrupts. Because giving
each task additional memory for handling interrupts consumes much memory, it is possible
to switch to the system stack instead.

Switching to the system stack can be done by calling OS_INT_EnterIntStack() and OS_IN-
T_LeaveIntStack(). Fore more information, please refer to their function description in
the generic embOS manual.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

26 CHAPTER 6 CLINT and PLIC

6.1 CLINT and PLIC
This part describes interrupts and interrupt handling for RISC-V devices using a CLINT and
PLIC as interrupt controller.

6.1.1 What happens when an interrupt occurs?
• A hart (hardware thread) receives an interrupt request.
• As soon as interrupts are globally enabled in mstatus.MIE and the specific interrupt

source is enabled in mie.MxIE, the interrupt is accepted and executed.
• The value of mstatus.MIE is copied into mstatus.MPIE, then mstatus.MIE is cleared,

effectively disabling interrupts.
• The current pc is copied into the mepc register, and then pc is set to the value of mtvec.

In case vectored interrupts are enabled, pc is set to mtvec.BASE + 4 * exception code.
• The privilege mode prior to the interrupt is encoded in mstatus.MPP.
• At this point, control is handed over to software in the interrupt handler with interrupts

disabled.
Interrupts can be re-enabled by explicitly setting mstatus.MIE (or by executing an MRET
instruction to exit the handler).

• The low-level interrupt handler, trap_entry() in direct mode or the appropriate vector
in vectored mode, saves the caller-save register on stack.

• The high-level interrupt handler, OS_TrapHandler() which is implemented in ’C’, is
called and serves the interrupt before returning to the low-level interrupt handler.

• The low-interrupt handler restores the caller-save registers from stack.
• The low-interrupt handler ends by executing an MRET instruction.
• The privilege mode is set to the value encoded in mstatus.MPP.
• The value of mstatus.MPIE is copied into mstatus.MIE.
• The pc is set to the value of mepc, continuing the interrupted function.

6.1.2 RISC-V interrupt sources
RISC-V harts can have both local and external interrupt sources:

Local interrupt sources are those that do not pass through the Platform-Level Interrupt
Controller (PLIC). These include the standard software and timer interrupts for each privi-
lege level, and an optional number of further machine local interrupts.

External interrupt sources, on the other hand, are prioritized and distributed by the plat-
form-specific PLIC implementation.

Local ISR handling may be performed in direct mode, in which all traps are distributed
through OS_TrapHandler(). Alternatively, local ISR handling may also be performed in
vectored mode. In this case, a ROM vector table is used to distribute traps.

6.1.3 Defining interrupt handlers in C
Interrupt handlers for RISC-V cores are written as normal C-functions which do not take
parameters and do not return any value. Interrupt handler which call an embOS function
need a prologue and epilogue function as described in the generic manual and in the ex-
amples below.

Example

Simple interrupt routine:

static void _Systick(void) {
 OS_INT_EnterNestable(); // Inform embOS that interrupt code is running
 OS_HandleTick(); // May be interrupted
 OS_INT_LeaveNestable(); // Inform embOS that interrupt handler is left
}

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

27 CHAPTER 6 CLINT and PLIC

6.1.4 Interrupt priorities
Interrupts are prioritized as follows, in decreasing order of priority:

Trap name

Machine external interrupts (with configurable external priority)
Machine software interrupts
Machine timer interrupts
Synchronous trap

Machine external interrupts are furthermore distributed by the PLIC according to an ad-
ditional priority, with a platform-specific maximum number of supported priority levels:
Generically, the priority value ’0’ is reserved, and further interrupt priorities increase with
increasing values.

Each external interrupt source has an interrupt priority held in a platform-specific mem-
ory-mapped register. Each interrupt target has an associated priority threshold, held in
a platform-specific memory-mapped register. Only active interrupts that have a priority
strictly greater than the threshold will cause a interrupt notification to be sent to the target.

Further (optional) machine local interrupts run at a platform-dependant priority level. For
example, with RISC-V Coreplex IP, machine local interrupts take precendence over any
other interrupt source, and are themselves prioritized by their ID. A comprehensive priority
table for local interrupts on one platform, in decreasing order of priority, could therefore
read as follows:

Trap name

Machine local interrupt 15
Machine local interrupt 14
…
Machine local interrupt 1
Machine local interrupt 0
Machine external interrupts (with configurable external priority)
Machine software interrupts
Machine timer interrupts
Synchronous trap

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

28 CHAPTER 6 CLINT and PLIC

6.1.5 Interrupt handling

6.1.5.1 Local Interrupt handling
To handle local interrupts, embOS offers the following functions:

Function Description

OS_RISCV_ISR_Disable() Disables the specified local interrupt source
OS_RISCV_ISR_Enable() Enables the specified local interrupt source

OS_RISCV_ISR_Init()
Configures RAM vector table address (used in
direct mode only)

OS_RISCV_ISR_InstallHandler()
Installs a local interrupt handler (used in direct
mode only)

Local interrupt sources should be specified using the following enumeration:

Local IRQ type Numeric value

IRQ_M_SOFTWARE 3
IRQ_M_TIMER 7
IRQ_M_EXTERNAL 11
IRQ_LOCAL0 16
IRQ_LOCAL1 17
IRQ_LOCAL2 18
IRQ_LOCAL3 19
IRQ_LOCAL4 20
IRQ_LOCAL5 21
IRQ_LOCAL6 22
IRQ_LOCAL7 23
IRQ_LOCAL8 24
IRQ_LOCAL9 25
IRQ_LOCAL10 26
IRQ_LOCAL11 27
IRQ_LOCAL12 28
IRQ_LOCAL13 29
IRQ_LOCAL14 30
IRQ_LOCAL15 31

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

29 CHAPTER 6 CLINT and PLIC

6.1.5.1.1 OS_RISCV_ISR_Disable()

Description

OS_RISCV_ISR_Disable() is used to disable the specified local interrupt source.

Prototype

void OS_RISCV_ISR_Disable (RISCV_IRQ ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

30 CHAPTER 6 CLINT and PLIC

6.1.5.1.2 OS_RISCV_ISR_Enable()

Description

OS_RISCV_ISR_Enable() is used to enable the specified local interrupt source.

Prototype

void OS_RISCV_ISR_Enable (RISCV_IRQ ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

Additional information

OS_RISCV_CLINT_DisableISR() is not implemented as a function, but as a macro.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

31 CHAPTER 6 CLINT and PLIC

6.1.5.1.3 OS_RISCV_ISR_Init()

Description

OS_RISCV_ISR_Init() is used to configure the RAM vector table address for local interrupts.
Since a RAM vector table is used in direct mode only, this function mustn’t be called when
using vectored mode.

Prototype

void OS_RISCV_ISR_Init (OS_U8 NumInterrupts,
 OS_ISR_HANDLER* TableBaseAddr[]);

Parameters

Parameter Description

NumInterrupts Number of supported interrupt sources
TableBaseAddr RAM vector table base address

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

32 CHAPTER 6 CLINT and PLIC

6.1.5.1.4 OS_RISCV_ISR_InstallHandler()

Description

OS_RISCV_ISR_InstallHandler() is used to install the specified local interrupt handler in
the RAM vector table. Since a RAM vector table is used in direct mode only, this function
mustn’t be called when using vectored mode.

Prototype

OS_ISR_HANDLER* OS_RISCV_ISR_InstallHandler (RISCV_IRQ ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex Interrupt index
pISRHandler Address of interrupt handler

Return value

OS_ISR_HANDLER*: Address of the previously installed interrupt handler, or NULL if not
applicable.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

33 CHAPTER 6 CLINT and PLIC

6.1.5.2 External Interrupt handling
To handle external interrupts (on the Coreplex IP implementation of the Platform-Level
Interrupt Controller), embOS offers the following functions:

Function Description

OS_RISCV_COREPLEX_ISR_Claim()
Retrieves the ID of highest-priority
pending external interrupt and clears
pending condition

OS_RISCV_COREPLEX_ISR_Complete() Notifies PLIC of ISR completion

OS_RISCV_COREPLEX_ISR_Disable()
Disables the specified external inter-
rupt source

OS_RISCV_COREPLEX_ISR_Enable()
Enables the specified external inter-
rupt source

OS_RISCV_COREPLEX_ISR_GetPriority()
Returns the current interrupt priority
for the specified interrupt source

OS_RISCV_COREPLEX_ISR_GetThreshold()
Returns the current interrupt priority
threshold

OS_RISCV_COREPLEX_ISR_Init()
Configures PLIC base address and
RAM vector table address

OS_RISCV_COREPLEX_ISR_InstallHandler() Installs an external interrupt handler

OS_RISCV_COREPLEX_ISR_SetPriority()
Sets the priority of the specified exter-
nal interrupt

OS_RISCV_COREPLEX_ISR_SetThreshold()
Configures the IRQ threshold, mask-
ing lower-priority external interrupts

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

34 CHAPTER 6 CLINT and PLIC

6.1.5.2.1 OS_RISCV_COREPLEX_ISR_Claim()

Description

OS_RISCV_COREPLEX_ISR_Claim() is used to retrieve the ID of the highest-priority pending
external interrupt. Clears the corresponding source’s pending bit.

Prototype

OS_U32 OS_RISCV_COREPLEX_ISR_Claim (void);

Return value

OS_U32: Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

35 CHAPTER 6 CLINT and PLIC

6.1.5.2.2 OS_RISCV_COREPLEX_ISR_Complete()

Description

OS_RISCV_COREPLEX_ISR_Complete() is used to signal ISR completion to the PLIC.

Prototype

void OS_RISCV_COREPLEX_ISR_Complete (OS_U32 ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

36 CHAPTER 6 CLINT and PLIC

6.1.5.2.3 OS_RISCV_COREPLEX_ISR_Disable()

Description

OS_RISCV_COREPLEX_ISR_Disable() is used to disable the specified external interrupt.

Prototype

void OS_RISCV_COREPLEX_ISR_Disable (OS_U32 ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

37 CHAPTER 6 CLINT and PLIC

6.1.5.2.4 OS_RISCV_COREPLEX_ISR_Enable()

Description

OS_RISCV_COREPLEX_ISR_Enable() is used to enable the specified external interrupt.

Prototype

void OS_RISCV_COREPLEX_ISR_Enable (OS_U32 ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

38 CHAPTER 6 CLINT and PLIC

6.1.5.2.5 OS_RISCV_COREPLEX_ISR_GetPriority()

Description

OS_RISCV_COREPLEX_ISR_GetPriority() retrieves the current interrupt priority for the
specified interrupt source.

Prototype

OS_U32 OS_RISCV_COREPLEX_ISR_GetPriority (OS_U32 ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index

Return value

OS_U32: Current interrupt priority of the specified interrupt source

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

39 CHAPTER 6 CLINT and PLIC

6.1.5.2.6 OS_RISCV_COREPLEX_ISR_GetThreshold()

Description

OS_RISCV_COREPLEX_ISR_GetThreshold() retrieves the current interrupt priority thresh-
old.

Prototype

OS_U32 OS_RISCV_COREPLEX_ISR_GetThreshold (void);

Return value

OS_U32: Current interrupt priority threshold

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

40 CHAPTER 6 CLINT and PLIC

6.1.5.2.7 OS_RISCV_COREPLEX_ISR_Init()

Description

OS_RISCV_COREPLEX_ISR_Init() is used to configure the RAM vector table base address
for external interrupts.

Prototype

void OS_RISCV_COREPLEX_ISR_Init(OS_U32 BaseAddr,
 OS_U16 NumInterrupts,
 OS_U32 NumPriorities,
 OS_ISR_HANDLER* TableBaseAddr[]);

Parameters

Parameter Description

BaseAddr Coreplex PLIC base address
NumInterrupts Number of supported external interrupt sources
NumPriorities Number of supported external interrupt priorities
TableBaseAddr RAM vector table base address

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

41 CHAPTER 6 CLINT and PLIC

6.1.5.2.8 OS_RISCV_COREPLEX_ISR_InstallHandler()

Description

OS_RISCV_COREPLEX_ISR_InstallHandler() is used to install the specified external inter-
rupt handler in the RAM vector table.

Prototype

OS_ISR_HANDLER* OS_RISCV_COREPLEX_ISR_InstallHandler(OS_U32 ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex Interrupt index
pISRHandler Address of interrupt handler

Return value

OS_ISR_HANDLER*: Address of the previously installed interrupt handler, or NULL if not
applicable.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

42 CHAPTER 6 CLINT and PLIC

6.1.5.2.9 OS_RISCV_COREPLEX_ISR_SetPriority()

Description

OS_RISCV_COREPLEX_ISR_SetPriority() is used to configure the interrupt priority for the
specified external interrupt.

Prototype

OS_U32 OS_RISCV_COREPLEX_ISR_SetPriority (OS_U32 ISRIndex,
 OS_U32 Prio);

Parameters

Parameter Description

ISRIndex Interrupt index
Prio Interrupt priority

Return value

OS_U32: Previous priority which was assigned before

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

43 CHAPTER 6 CLINT and PLIC

6.1.5.2.10 OS_RISCV_COREPLEX_ISR_SetThreshold()

Description

OS_RISCV_COREPLEX_ISR_SetThreshold() is used to configure the interrupt priority
threshold. All priorities less than or equal to Threshold will be masked.

Prototype

void OS_RISCV_COREPLEX_ISR_SetThreshold (OS_U32 Threshold);

Parameters

Parameter Description

Threshold Desired interrupt priority threshold

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

44 CHAPTER 6 Enhanced CLIC (ECLIC)

6.2 Enhanced CLIC (ECLIC)
This part describes interrupts and interrupt handling for RISC-V devices using an Enhanced
CLIC interrupt controller. The ECLIC is an improved version of the CLIC and adds additional
functionality.

6.2.1 What happens when an interrupt occurs?
• As soon as interrupts are globally enabled in mstatus.MIE and the interrupt source

is enabled, the hart’s (hardware thread) privilege mode is set to machine mode and
following CSRs and registers are updated automatically by the hardware within one
cycle:
 • mepc is set to the current pc.
 • mstatus.MPIE is set to mstatus.MIE.
 • mstatus.MIE is set to zero, disabling interrupts.
 • mstatus.MPP is updated with the previous privilege mode.
 • msubm.PTYP is stores the interrupt handling mode contained in msubm.TYP.
 • msubm.TYP is set to the new interrupt handling mode.
 • mcause.EXCODE is updated with the interrupt Id.
 • mcause.MPIL is updated with the interrupt level stored in mintstatus.MIL.
 • The pc is set to mtvt2.

• The processor continues execution at the updated pc address which points to the low-
level interrupt handler.

• The low-level interrupt handler saves the caller-save registers as well as mepc, msubm
and mcause on the stack, as those are overwritten and would be lost if a nested interrupt
occurs.

• The low-level interrupt handler fetches the vector address of the next pending non-
vector interrupt with highest interrupt level and highest priority in the same privilege
mode, loads the handler’s address from fetched vector table address and jumps into
the interrupt specific high-level handler.

• After the high-level interrupt handler returns, the low-interrupt handler restores the
caller-save registers and CSRs from the stack.

• The low-level interrupt handler ends by executing an mret instruction, causing following
CSRs to be updated:
 • mintstatus.MIL is updated with the interrupt level stored in mcause.MPIL.
 • msubm.TYP is set to the mode encoded in msubm.PTYP.
  •   The privilege mode is set to the value encoded in mstatus.MPP.
 • mstatus.MIE is set to the value of mstatus.MPIE.
 • The pc is set to the value of mepc, continuing the interrupted function.

6.2.2 RISC-V interrupt sources
RISC-V harts can have local and external interrupt sources. However, both interrupt types
are handled by the ECLIC and behave the same. That is, all interrupts are controlled via
the memory mapped interrupt configuration SFRs and the mie and mip CSRs are disabled
in ECLIC mode.

6.2.3 Interrupt level and priority
For CLIC interrupt controllers, each interrupt has an 8-bit control register which is used
to specify the interrupt level and priority. Depending on how many of the control bits are
implemented on the device, there can be a maximum of 256 different combinations of
interrupt level and priority for an interrupt. The level is stored on the MSB side of the control
register, while the remaining bits are used for the priority. How many of the available control
bits are used for the interrupt level can be specified. By default, all control bits are used
for the interrupt level. That is, the number of level bits is set to 8.

Interrupt level

Interrupts with higher interrupt level can interrupt interrupts with lower interrupt level,
leading to interrupt nesting. Furthermore, interrupts can be nested by synchronous excep-

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

45 CHAPTER 6 Enhanced CLIC (ECLIC)

tions. The synchronous exception is always taken with the current interrupt level. That
means that interrupts and exceptions with greater interrupt level are able to interrupt an
exception with lower interrupt level.

Interrupt priority

Interrupts with higher priority won’t interrupt interrupts with same interrupt level even
if the current active interrupt has a lower priority. The interrupt priority is used only for
interrupt arbitration if there are two interrupts with the same interrupt level pending.

6.2.4 Interrupt handling
To handle ECLIC interrupts, embOS offers the following functions:

Function Description

OS_RISCV_ECLIC_ISR_Disable() Disables the specified interrupt source.
OS_RISCV_ECLIC_ISR_Enable() Enables the specified interrupt source.

OS_RISCV_ECLIC_ISR_GetNumLevelBits()
Returns how many bits of the interrupt
control register are used for the interrupt
level.

OS_RISCV_ECLIC_ISR_GetPriority()
Returns the interrupt control value of the
specified interrupt.

OS_RISCV_ECLIC_ISR_GetThreshold()
Returns the current interrupt level thresh-
old.

OS_RISCV_ECLIC_ISR_Init() Initializes the ECLIC interrupt controller.

OS_RISCV_ECLIC_ISR_SetNumLevelBits()
Specifies how many bits of the interrupt
control register shall be used for the inter-
rupt level.

OS_RISCV_ECLIC_ISR_SetPriority()
Sets the interrupt control value of the
specified interrupt.

OS_RISCV_ECLIC_ISR_SetThreshold()
Configures the IRQ threshold, masking
lower-level interrupts.

6.2.4.1 OS_RISCV_ECLIC_ISR_Disable()

Description

OS_RISCV_ECLIC_ISR_Disable() disables the specified interrupt.

Prototype

void OS_RISCV_ECLIC_ISR_Disable(OS_UINT ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

46 CHAPTER 6 Enhanced CLIC (ECLIC)

6.2.4.2 OS_RISCV_ECLIC_ISR_Enable()

Description

OS_RISCV_ECLIC_ISR_Enable() enables the specified interrupt.

Prototype

void OS_RISCV_ECLIC_ISR_Enable(OS_UINT ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index.

6.2.4.3 OS_RISCV_ECLIC_ISR_GetNumLevelBits()

Description

OS_RISCV_ECLIC_ISR_GetNumLevelBits() returns how many bits of the interrupt control
register are used for the interrupt level.

Prototype

OS_U8 OS_RISCV_ECLIC_ISR_GetNumLevelBits(void);

Return value

The number of level bits.

6.2.4.4 OS_RISCV_ECLIC_ISR_GetPriority()

Description

OS_RISCV_ECLIC_ISR_GetPriority() returns the interrupt control value of the specified
interrupt.

Prototype

OS_U8 OS_RISCV_ECLIC_ISR_GetPriority(OS_UINT ISRIndex);

Parameters

Parameter Description

ISRIndex Interrupt index.

Return value

The interrupt control value containing the interrupt level and priority.

6.2.4.5 OS_RISCV_ECLIC_ISR_GetThreshold()

Description

OS_RISCV_ECLIC_ISR_GetThreshold() returns the current interrupt level threshold.

Prototype

OS_U8 OS_RISCV_ECLIC_ISR_GetThreshold(void);

Return value

The current interrupt level threshold.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

47 CHAPTER 6 Enhanced CLIC (ECLIC)

6.2.4.6 OS_RISCV_ECLIC_ISR_Init()

Description

OS_RISCV_ECLIC_ISR_Init() initializes the ECLIC interrupt controller.

Prototype

void OS_RISCV_ECLIC_ISR_Init(void* pBaseAddr,
 void* pVectorTable,
 void* pTrapHandler);

Parameters

Parameter Description

pBaseAddr Base address of the memory mapped ECLIC SFRs.

pVectorTableAddress

Address of the vector table containing the ISR handler
addresses. Needs to be at least 64-bit aligned. Align-
ment increases with size of the vector table (See addi-
tional information).

pTrapHandlerAddress
Address of the synchronous trap handler. Needs to be
64-bit aligned.

Additional information

The vector table address is constrained to be at least 64-byte aligned. This alignment should
be considered when linking the application.

 0 to 16 max. interrupts => 64-byte aligned
 17 to 32 max. interrupts => 128-byte aligned
 33 to 64 max. interrupts => 256-byte aligned
 65 to 128 max. interrupts => 512-byte aligned
 129 to 256 max. interrupts => 1024-byte aligned
 257 to 512 max. interrupts => 2048-byte aligned
 513 to 1024 max. interrupts => 4096-byte aligned
1025 to 2048 max. interrupts => 8192-byte aligned
2045 to 4096 max. interrupts => 16384-byte aligned

6.2.4.7 OS_RISCV_ECLIC_ISR_SetNumLevelBits()

Description

OS_RISCV_ECLIC_ISR_SetNumLevelBits() Specifies how many bits of the interrupt control
register shall be used for the interrupt level.

Prototype

void OS_RISCV_ECLIC_ISR_SetNumLevelBits(OS_U8 NumLevelBits);

Parameters

Parameter Description

NumLevelBits Number of level bits that shall be used. Valid value are 0-8.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

48 CHAPTER 6 Enhanced CLIC (ECLIC)

6.2.4.8 OS_RISCV_ECLIC_ISR_SetPriority()

Description

OS_RISCV_ECLIC_ISR_SetPriority() sets the interrupt control bits of the specified inter-
rupt. The interrupt control register consists of two parts: the interrupt level and the inter-
rupt priority, depending on the number of level bits used. The interrupt level bits are on the
MSB side, while priority bits are on the LSB side. The number of level bits used is by default
set to 8, but can be changed by a call to OS_RISCV_ECLIC_ISR_SetNumLevelBits().

Prototype

void OS_RISCV_ECLIC_ISR_SetPriority(OS_UINT ISRIndex,
 OS_U8 InterruptPriority);

Parameters

Parameter Description

ISRIndex Interrupt index.
InterruptPri-
ority

Interrupt level and priority.

6.2.4.9 OS_RISCV_ECLIC_ISR_SetThreshold()

Description

OS_RISCV_ECLIC_ISR_SetThreshold() configures the IRQ threshold, masking lower-level
interrupts.

Prototype

void OS_RISCV_ECLIC_ISR_SetThreshold(OS_U8 Threshold);

Parameters

Parameter Description

Threshold Desired interrupt priority threshold.

Example

For a device with 5 implemented control bits it is possible to use 25=32 different values for
interrupt priority arbitration. If the number of level bits is set to 3, 8 levels and 4 priorities
can be used. In order to set an interrupt to level 7 and priority 2, the value ((7 << (5 -
3)) | 2) = 30 has to be passed as interrupt priority.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

49 CHAPTER 6 Interrupt-stack switching

6.3 Interrupt-stack switching
RISC-V does not support a hardware Interrupt stack. All interrupts primarily run on the cur-
rent stack. This means, that an interrupt might use any task stack or the system stack, and
thus each task stack needs to be big enough to handle interrupts. As this would consume
much memory, it is possible to switch to the system stack on interrupt entry if desired, so
that it has to be ensured that the system-stack is big enough for handling interrupt.

Switching to the system stack can be done by calling OS_INT_EnterIntStack() and OS_IN-
T_LeaveIntStack(). Fore more information, please refer to their function description in
the generic embOS manual.

6.4 Zero latency interrupts
Zero latency interrupts are currently not supported.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 7

RTT and SystemView

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

51 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer
SEGGER’s Real Time Transfer (RTT) is the new technology for interactive user I/O in em-
bedded applications. RTT can be used with any J-Link model and any supported target
processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application?s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.1.1 Shipped files related to SEGGER RTT
All files related to SEGGER RTT are shipped inside the respective start project’s Setup folder:

File Description

SEGGER_RTT.c Generic implementation of SEGGER RTT.
SEGGER_RTT.html Generic implementation header file.
SEGGER_RTT_Conf.h Generic RTT configuration file.

SEGGER_RTT_printf.c
Generic printf() replacement to write formatted data via
RTT.

SEGGER_RTT_Syscalls_*.c

Compiler-specific low-level functions for using printf() via
RTT. If this file is included in a project, RTT is used for
debug output. To use the standard out of your IDE, ex-
clude this file from build.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt

52 CHAPTER 7 SEGGER SystemView

7.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemViewer, is not shipped with embOS. Instead, the most recent version of that appli-
cation is available for download from our website.

For more information on SEGGER SystemView, including the SystemViewer download, refer
to segger.com/systemview.

7.2.1 Shipped files related to SEGGER SystemView
All files related to SEGGER SystemView are shipped inside the respective start project’s
Setup folder:

File Description

Global.h
Global type definitios required by SEGGER Sys-
temView.

SEGGER.h Generic types and utility function header.
SEGGER_SYSVIEW.c Generic implementation of SEGGER RTT.
SEGGER_SYSVIEW.h Generic implementation include file.
SEGGER_SYSVIEW_Conf.h Generic configuration file.
SEGGER_SYSVIEW_ConfDefaults.h Generic default configuration file.

SEGGER_SYSVIEW_Config_embOS.c
Target-specific configuration of SystemView
with embOS.

SEGGER_SYSVIEW_embOS.c
Generic interface implementation for Sys-
temView with embOS.

SEGGER_SYSVIEW_embOS.h
Generic interface implementation header file
for SystemView with embOS.

SEGGER_SYSVIEW_Int.h Generic internal header file.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

https://www.segger.com/systemview

Chapter 8

embOS Thread Script

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

54 CHAPTER 8 Introduction

8.1 Introduction
A thread script is included with every board support package shipped with embOS. This
script may be used to display various information about the system, the tasks and created
embOS objects like timers, mailboxes, queues, semaphores, memory pools, events and
watchdogs.

When creating a custom project, the thread script may be added to the respective project’s
options (“Debug” -> “Debugger” -> “Threads Script File”).

8.2 How to use it
To enable the threads window, click on View in the menu bar and choose the option Threads
in the sub-menu More Debug Windows. Alternatively, the threads window may also be
enabled by pressing [Ctrl + Alt + H]. The object lists and system information within
the threads window can be enabled or disabled via the Show Lists dropdown menu. The
threads window gets updated every time the application is halted. It should closely resemble
the screenshot below:

Some of this information is available in debug builds of embOS only. Using other builds,
the respective entries will show “n.a.” to indicate this.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

55 CHAPTER 8 How to use it

8.2.1 Task List

The task list displays various information about the running tasks:

Column Description

Priority This is the priority of the task
Id The address of a tasks task control block
Name The name of the task
Status The current status of the task
Timeout Time in ms till the task gets called again

Stack Info Shows the maximum usage (left) of the total stack for this task
(right) in Bytes

Run Count Shows how many times the task has been started since the last
reset

Time Slice Show the number of remaining and maximum time slices if round
robin scheduling is available

Task Events Show the event mask of a task

Note

By default the thread script is limited to display a total of 25 tasks only. This limit
may be changed inside the respective project’s options (“Debug” -> “Debugger” -
> “Thread Maximum”).

8.2.2 Timers

The timers list displays various information about active timers:

Column Description

Id(Timers) The timer’s address
Name If available, the respective object identifier is shown here
Hook The function address that is called after the timeout

Timeout The time delay and the point in time, when the timer finishes
waiting

Period The time period the timer runs

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

56 CHAPTER 8 How to use it

8.2.3 Mailboxes

The mailboxes list displays various information about used mailboxes:

Column Description

Id(Mailboxes) The mailbox’s address
Name If available, the respective object identifier is shown here

Messages The number of messages in a mailbox and the maximum number
of messages the mailbox can hold

Message Size The size of an individual message in bytes
Buffer Address The message buffer address

Waiting Tasks The list of tasks that are waiting for the mailbox (address and, if
available, name)

8.2.4 Queues

The queues list displays various information about used queues:

Column Description

Id(Queues) The queue’s address
Name If available, the respective object identifier is shown here
Messages The number of messages in a queue
Buffer Address The message buffer address
Buffer Size The size of the message buffer in bytes

Waiting Tasks The list of tasks that are waiting for the queue (address and, if
available, name)

8.2.5 Mutexes

The mutexes list displays various information about used mutexes:

Column Description

Id(Mutexes) The mutexes’ address
Name If available, the respective object identifier is shown here
Owner The address and name of the owner task
Use Counter Counts the number of times the mutex was claimed

Waiting Tasks The list of tasks that are waiting for the mutex (address and, if
available, name)

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

57 CHAPTER 8 How to use it

8.2.6 Semaphores

The semaphores list displays various information about used semaphores:

Column Description

Id(Semaphores) The semaphores’ address
Name If available, the respective object identifier is shown here
Count Counts how often this semaphore can be claimed

Waiting Tasks The list of tasks that are waiting for the semaphore (address and,
if available, name)

8.2.7 Memory Pools

The memory pools list displays various information about used memory pools:

Column Description

Id(Memory Pools) The memory pool’s address
Name If available, the respective object identifier is shown here
Total Blocks Shows the available blocks and the maximal number of blocks
Block Size Shows the size of a single memory block

Max. Usage Shows the maximal count of blocks which were simultaneously
allocated

Buffer Address The address of the memory pool buffer

Waiting Tasks The list of tasks that are waiting for free memory blocks (address
and, if available, name)

8.2.8 Event Objects

The event objects list displays various information about used event objects:

Column Description

Id(Event Objects) The event object’s address
Name If available, the respective object identifier is shown here

Signaled The hexadecimal value of the bit mask containing the signaled
event bits

Reset Mode The event object’s reset mode

Mask Mode The current mask mode indicating whether OR or AND logic is
used to check if a task shall resume

Waiting Tasks The list of tasks that are waiting for the event object (address
and, if available, name)

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

58 CHAPTER 8 How to use it

8.2.9 Watchdogs

The watchdogs list displays various information about used watchdogs:

Column Description

Id(Watchdogs) The watchdog’s address
Name If available, the respective object identifier is shown here

Timeout The remaining time (and the system time in parentheses) until
the watchdog has to be fed

Period The period in which the watchdog has to be fed

8.2.10 System Information
The system information list displays various information about embOS.

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

Chapter 9

Technical data

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

60 CHAPTER 9 Memory requirements

9.1 Memory requirements
This chapter lists technical data of embOS used with RISC-V CPUs. These values are neither
precise nor guaranteed, but they give you a good idea of the memory requirements. They
vary depending on the current version of embOS. The minimum ROM requirement for the
kernel itself is about 2.000 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 36
Software timer 20
Mutex 16
Semaphore 8
Mailbox 24
Queue 32
Task event 0
Event object 12

embOS for RISC-V and Embedded Studio © 2017-2021 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Standard system libraries
	Thread-Local Storage TLS
	OS_TLS_SetTaskContextExtension()

	Stacks
	Task stack for RISC-V
	System stack for RISC-V
	Interrupt stack

	Interrupts
	CLINT and PLIC
	What happens when an interrupt occurs?
	RISC-V interrupt sources
	Defining interrupt handlers in C
	Interrupt priorities
	Interrupt handling
	Local Interrupt handling
	OS_RISCV_ISR_Disable()
	OS_RISCV_ISR_Enable()
	OS_RISCV_ISR_Init()
	OS_RISCV_ISR_InstallHandler()

	External Interrupt handling
	OS_RISCV_COREPLEX_ISR_Claim()
	OS_RISCV_COREPLEX_ISR_Complete()
	OS_RISCV_COREPLEX_ISR_Disable()
	OS_RISCV_COREPLEX_ISR_Enable()
	OS_RISCV_COREPLEX_ISR_GetPriority()
	OS_RISCV_COREPLEX_ISR_GetThreshold()
	OS_RISCV_COREPLEX_ISR_Init()
	OS_RISCV_COREPLEX_ISR_InstallHandler()
	OS_RISCV_COREPLEX_ISR_SetPriority()
	OS_RISCV_COREPLEX_ISR_SetThreshold()

	Enhanced CLIC (ECLIC)
	What happens when an interrupt occurs?
	RISC-V interrupt sources
	Interrupt level and priority
	Interrupt handling
	OS_RISCV_ECLIC_ISR_Disable()
	OS_RISCV_ECLIC_ISR_Enable()
	OS_RISCV_ECLIC_ISR_GetNumLevelBits()
	OS_RISCV_ECLIC_ISR_GetPriority()
	OS_RISCV_ECLIC_ISR_GetThreshold()
	OS_RISCV_ECLIC_ISR_Init()
	OS_RISCV_ECLIC_ISR_SetNumLevelBits()
	OS_RISCV_ECLIC_ISR_SetPriority()
	OS_RISCV_ECLIC_ISR_SetThreshold()

	Interrupt-stack switching
	Zero latency interrupts

	RTT and SystemView
	SEGGER Real Time Transfer
	Shipped files related to SEGGER RTT

	SEGGER SystemView
	Shipped files related to SEGGER SystemView

	embOS Thread Script
	Introduction
	How to use it
	Task List
	Timers
	Mailboxes
	Queues
	Mutexes
	Semaphores
	Memory Pools
	Event Objects
	Watchdogs
	System Information

	Technical data
	Memory requirements

