embOS

Real-Time Operating System
User Guide & Reference Manual

Document: UM01001
Software Version: 5.16.1
Revision: 0
Date: January 12, 2022

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://segger.com/embOS
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 1995-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: January 12, 2022

Software | Revision | Date By Description

Update to latest software version.

5.16.1 0 220112 TS Minor spelling & wording corrections.

Update to latest software version.

New API functions OS_TI ME_Convert Cycl es2ns(), OS_TI ME_Convert m
5.16.0 0 211201 TS s2Cycl es() and OS_MAI LBOX_I sl nUse() added.

Chapter “Performance and Resource Usage” updated.

Minor spelling & wording corrections.

Update to latest software version.

New API function OS_| NT_Pr eser veAndDi sabl e() in chapter “Inter-
5.14.0 0 210504 TS rupts” added.

Chapter “Readers-Writer Lock” added.

Minor spelling & wording corrections.

Update to latest software version.
5.12.0 0 200929 TS New function OS_EVENT_Reset Mask() in chapter “Event Objects” added.
Minor spelling & wording corrections.

5.10.2 0 200706 TS Update to latest software version.

Update to latest software version.

5.10.1 0 200617 MM Tickless support chapter updated.

Update to latest software version.
5.10.0 0 200519 TS Additional software examples added.
Minor spelling & wording corrections.

5.8.2 1 200203 TS Minor spelling & wording corrections.
5.8.2 0 191217 MC Update to latest software version.
5.8.1 0 191111 TS Event object description improved.

Description of new API functions GS_TI ME_Convert ns2Ti cks() and

5.8.0 0 191028 TS OS_TI ME_Convert Ti cks2ns() added.
5.06 2 190619 TS Minor spelling & wording corrections.
5.06 1 190401 TS Minor spelling & wording corrections.
New API functions added.
5.06 0 190219 TS Minor spelling & wording corrections.
New API function OS_MJTEX | sMut ex() .
5.04 0 180913 TS Minor spelling & wording corrections.
New API function OS_STAT_AddLoadMeasur enent Ex() .
5.02 0 180626 TS Minor spelling & wording corrections.
5.00 1 180524 TS OS_TASK Del ay() parameter description corrected.

Timeout parameter description added where necessary.

New API names.
5.00 0 180508 TS Chapter “Debugging” updated.
Minor spelling & wording corrections.

Introductory description in chapter “Software timers” expanded.
Description of limitations in chapter “Mailboxes” corrected.
Description of limitations in chapter “"Queues” added.

4.40 0 171220 MC Description of embOS trial edition in chapter “Shipment” updated.
Decription of 8 WD _Confi g() updated for change in parameters.
List of error codes in chapter “Debugging” updated.

Minor spelling & wording corrections.

4.38 1 170928 MC Minor spelling & wording corrections.

First version generated with emDoc.

New function in chapter “Tasks” added:
e OS_Set Def aul t TaskSt art Hook()

New functions in chapter “Debugging” added:
e OS_Set Obj Nane()
e OS_Get Obj Nane()

4.38 0 170919 TS

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

Minor corrections/updates.

4.36

170711

TS

New library mode OS_LI BMODE_SAFE added in chapter “Basic Concepts”.
New functions in chapter “Stacks” added:
e OS_Get StackCheckLimt()
e OS_Set St ackCheckLimt()
New functions in chapter *“MPU” added:
e OS_MPU_AddSani t yCheckBuf f er ()
e OS_MPU_Sani t yCheck()
Chapter “Source Code” updated.
New functions in chapter “Task Routines” added:
e OS_Config_Stop()
* OS_Stop()
Minor corrections/updates

4.34

170308

TS

New functions in chapter “Event Objects” added:
e OS_EVENT_Get MaskMbde()
e OS_EVENT_Set MaskMode()

4.32

170105

RH/TS

Chapter “Watchdog” added.
New functions in chapter “Event Objects” added:
e OS_EVENT_Get Mask()
e OS_EVENT_Set Mask()
e OS_EVENT_Wai t Mask()
e OS_EVENT_Wai t MaskTi med()
New functions in chapter “Mailboxes” added:
e OS_Put Mai | Ti med()
e OS_Put Mai | Ti med1()

4.30

161130

MC/TS

Chapter “"Basic Concepts”, “Time Measurement”, *"MPU", “Profiling” and
“Updates” updated.

Chapters, “System Tick”, “Low Power Support”, “Configuration (BSP)”
updated and re-structured.

Chapter “"Resource Semaphores” updated.

4.26

160907

RH

Chapter "embOSView”, “Interrupts” and “MPU” updated.
Minor corrections/updates.

4.24

160628

MC

Chapter “Multi-core Support” added.
Chapter “Debugging” updated.

4.22

160525

MC

New functions in chapter "Queues” added:
e OS_Q Put Ex()
e OS_Q Put Bl ockedEx()
e OS_Q Put Ti nedEx()

4.20

160421

TS

Chapter *"MPU - Memory Protection” added.
OS_AddExt endTaskCont ext () added.

4.16

160210

TS

Minor corrections/updates

4.14a

160115

TS

Minor corrections/updates

151029

TS

Chapter “Interrupts” updated.
Description of new API function OS_Set Def aul t TaskCont ext Ext en-
si on() added.
Chapter “System Variables”: embOS info routines added.
Chapter “Shipment” updated.
Chapter “Low Power Support” updated.
Chapter “Interrupts”: Description of
e OS_| NT_PRI O PRESERVE() and
e OS_ | NT_PRI O RESTORE() added.
Chapter “Software Timerss”: Description of
e OS TriggerTimer() and
e OS_TriggerTi mer Ex() added.

4.12b

150922

TS

Update to latest software version.

4.12a

150916

TS

Description of API function OS_I nl nt errupt () added.

150715

TS

New funtions in chapter “Mailboxes” added:
e OS Mail_GetPtr()
e OS_Mail _get PtrCond()
e OS_Mai |l _Purge()
Chapter “Debugging” with new error codes updated.

4.10b

150703

MC

Minor spelling and wording corrections.

4.10b

UMO01001 User Guide & Reference Manual for embOS

150527

TS

Minor spelling and wording corrections.
Chapter “Source Code of Kernel and Library” updated.

© 1995-2022 SEGGER Microcontroller GmbH

Software | Revision | Date By Description
New chapter "embOS Shipment”.
New chapter “Update”.
New chapter “Low Power Support”.
Minow spelling and wording corrections.
4.10a 0 150519 MC Chapter "embOSView”: added JTAG Chain configuration.
4.10 0 150430 TS Chapter "embOSView"” updated.
4.06b 0 150324 MC Minow spelling and wording corrections.
4.06a 0 150318 MC Minow spelling and wording corrections.
4.06 0 150312 TS Updated to latest software version.
4.04a 0 141201 TS Updated to latest software version.
Chapter “Tasks”
e Task priority description updated.
4.04 0 141112 TS Chapter “Debugging”
e New error number
Update to latest software version.
4.02a 0 140918 TS Minor corrections.
New functions in chapter “Time Measurement” added:
e OS_Config_SysTimer()
4.02 0 140818 TS o OS_Get Ti ne_us()
e OS_Get Ti me_us64()
New functions added in chapter “System Tick”:
e OS_St opTi ckl esMbde()
New functions added in chapter “Profiling”:
4.00a 0 140723 TS e OS_STAT Start()
e OS_STAT_St op()
e OS_STAT_Get TaskExecTi me()
4.00 0 140606 TS Tickless support added.
3.90a 0 140410 AW Software-Update, OS_Ter ni nat eTask() modified / corrected.
3.90 1 140312 SC Added cross-references to the API-lists.
New functions to globally enable / disable Interrupts:
e OS_| NTERRUPT_Maskd obal ()
e OS_| NTERRUPT_Unmaskd obal ()
3.90 0 140303 AW e OS_| NTERRUPT_Pr eser ved obal ()
e OS_| NTERRUPT_Rest or ed obal ()
e OS_| NTERRUPT_Pr eser veAndMask@ obal ()
New functions added, chapter “System Tick”:
e OS_Get Numi dl eTi cks()
3.88h 0 131220 AW e OS_Adj ust Ti me()
Chapter “System Variables”: Description of internal variable OS_d ob-
al . Ti meDex corrected.
3.88¢g 1 131104 TS Corrections.
3.88g 0 131030 TS Update to latest software version.
3.88f 0 130922 TS Update to latest software version.
3.88e 0 130906 TS Update to latest software version.
3.88d 0 130904 AW Update to latest software version.
3.88c 0 130808 TS Update to latest software version.
3.88b 0 130528 TS Update to latest software version.
Software update.
Event handling modified, the reset behaviour of events can be con-
trolled.
New functions added, chapter “Events”:
3.88a 0 130503 AW « OS_EVENT_Cr eat eEx()
e OS_EVENT_Set Reset Mbde()
e OS_EVENT_GCet Reset Mode()
Mailboxes message size limits enlarged.
3.88 0 130219 TS Minor corrections.
3.86n 0 121210 | AW/TS | Update to latest software version.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

Software | Revision | Date By Description

Software update.
3.86l 0 121122 AW OS_AddTi ckHook() function corrected.
Several functions modified to allow most of MISRA rule checks.

Chapter “Queue”:

3.86k 0 121004 TS e OS_Q Get MessageSi ze() and
e OS_Q PeekPtr () added.
3.86i 0 120926 TS Update to latest software version.
3.86h 0 120906 AW Software update, OS_EVENT handling with timeout corrected.

Software update, OS_Retri gger Ti mer () corrected.
3.86g 0 120806 AW Task events explained more in detail.
Additional software examples in the manual.

Task event modified, default set to 32 bit on 32-bit CPUs.
Chapter 4:
3.86f 0 120723 AW e New API function OS_AddOnTer ni nat eHook ()
e OS_ERR TI MESLI CE removed. A time slice value of zero is legal
when creating tasks.

Update to latest software version with corrected functions:
e OS_Get SysSt ackBase()
e OS_Get SysSt ackSi ze()
e OS_Get SysSt ackSpace()
e OS_Get SysStackUsed()
e OS_Getlnt StackBase()
3.86e 0 120529 AW e OS_Get I nt St ackSi ze()
e OS_Getlnt StackSpace()
e OS _GetlntStackUsed()
could not be used in release builds of embOS.
Manual corrections:
e Several index entries corrected.
e OS_Ent er Regi on() described more in detail.

3.86d 0 120510 TS Update to latest software version.

3.86¢ 0 120508 TS Update to latest software version.

Chapter “Mailbox”
e OS_PeekMai | () added.
3.86b 0 120502 TS Chapter “Support” added.
Chapter “Debugging”:
¢ Application defined error codes added.

Timeout handling for waitable objects modified. A timeout will be re-
turned from the waiting function, when the object was not available
during the timeout time. Previous implementation of timeout functions
might have returned a signaled state when the object was signaled af-
ter the timeout when the calling task was blocked for a longer period by
higher priorized tasks
Modified functions:

e OS_UseTi med()

e OS_ Wit CSemaTi med()

e OS_Get Mai | Ti med()

e OS_ Wit Mai | Ti ned()

e OS_Q Get PtrTimed()

e OS_EVENT Wi t Ti med()

3.86 0 120323 AW « OS_MEME_Al | ocTi med()
New chapter “Extending the Task Context” added.
New functions added and described in the manual:
e OS_Cet TaskNane()
e OS GetTimeSliceRem()
Handling of queues described more in detail:
e 0S_Q GetPtr()
e OS_Q Cet PtrCond()
e OS Q GetPtrTined()
e OS_Q Purge()
Chapter “Priority Inversion / Inheritance” updated.
Function names OS_Timing_Start() and OS_Ti m ng_End() corrected in
the API table.
Since version 3.822 of embOS, all pointer parameter pointing to objects
which were not modified by the function were declared as const, but the
3.84c 1 120130 | AW/TS | manual was not updated accordingly.
The prototype descriptions of the following API functions are corrected
now:

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

e OS_Get Ti mer Val ue()

e OS GetTinmerStatus()

e OS_Get Ti mer Peri od()

e OS_Get SemaVal ue()

e OS_CGet Resour ceOmner ()

e 0OS Q IslnUse()

e OS_Q Get MessageCnt ()

® OS_ | sTask()

e OS_Get Event sCccured()

e OS_Get CSemaVal ue()

e OS_TI CK_RenpveHook()

e OS_MEMF_I sl nPool ()

e OS_MEMF_Get MaxUsed()

e OS_MEMF_Get NunBl ocks()

e OS_MEMF_Get Bl ockSi ze()

e OS_Get SuspendCnt ()

e OS_GetPriority()

e OS_EVENT_Get ()

e OS_Timng_Cetus()
Chapter “Preface”:

e Segger Logo replaced
Chapter “Mailbox":

e OS_CREATEMB() changed to OS_Cr eat eMB()
Chapter “Queues”:

e Typos corrected

3.84c

120104

TS

Chapter “Events”:
e Return value of OS_EVENT_Wii t Ti ned() explained in more detail

3.84b

111221

TS

Chapter “"Queues”:
e OS_Q Put Bl ocked() added

3.84a

111207

TS

General updates and corrections.

3.84

110927

TS

Chapter “Stacks”:
e OS_Get SysSt ackBase() added
e OS_Get SysSt ackSi ze() added
e OS_Get SysSt ackUsed() added
e OS_Get SysSt ackSpace() added
e OS_Get I nt St ackBase() added
e OS_Get I nt St ackSi ze() added
e OS_Get I nt StackUsed() added
e OS_Get I nt St ackSpace() added

3.82x

110829

TS

Chapter “Debugging”:
e New error code “"OS_ERR_REGQ ONCNT” added

3.82w

110812

TS

New embOS generic sources.
Chapter “Debugging” updated.

3.82v

110715

AW

OS_Termi nat e() renamed to OS_Ter mi nat eTask() .

3.82u

110630

TS

New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

3.82t

110503

TS

New embOS generic sources.
Trial time limitation increased.

3.82s

110318

AW

Chapter “Timer” API functions table corrected.

All functions can be called from main(), task, ISR or Timer.
Chapter 6: 0OS_UseTi ned() added.

Chapter 9: 0S_Q I sl nUse() added.

3.82p

110112

AW

Chapter “Mailboxes”:
e OS_Put Mai | ()
e OS_Put Mai | Cond()
e OS_Put Mai | Front ()
e OS_Put Mai | Front Cond()
parameter decklaration changed.
Chapter 4.3 API functions table corrected.
0S_Suspend() cannot be called from ISR or Timer.

3.820

110104

AW

Chapter “Mailboxes”:
e OS_Wi t Mai | Ti ned() added

3.82n

UMO01001 User Guide & Reference Manual for embOS

101206

AW

Chapter “Taskroutines”:
e OS_ResuneAl | SuspendedTasks() added
e OS_Setlnitial SuspendCnt () added
e OS_SuspendAl | Tasks() added

© 1995-2022 SEGGER Microcontroller GmbH

Software | Revision | Date By Description

Chapter “Time Measurement”:

e Description of OS_Get Ti me32() corrected
Chapter “List of Error Codes”:

¢ New error codes added

Chapter “Taskroutines”:

3.82k 0 100927 TS e OS_Del ayus() added
e OS_Q Del ete() added
3.82i 0 100917 TS General updates and corrections

Chapter “Event Objects”:
e Samples added
Chapter “Configuration of Target System”:
¢ Detailed description of OS_| dl e() added

3.82h 0 100621 AW

Chapter “Profiling” added
3.82f 1 100505 TS Chapter “System Tick":
e OS_Ti ckHandl eNoHook() added

Chapter “Tasks”:
3.82f 0 100419 AW e OS_| sRunni ng() added
¢ Description of OS_Start () added

Chapter “Working with embOS - Recommendations” added.
Chapter “Basics”:
e Priority inversion image added
Chapter “Interrupt”:
e subchapter “Using OS functions from high priority interrupts” added
Added text at chapter 22 “Performance and resource usage”

3.82e 0 100309 TS

API function overview now contains information about allowed context of
3.82 0 090922 TS cuntion usage (main, task, ISR or timer)
TOC format corrected

3.80 0 090612 AW Scheduler optimized for higher task switching speed.

Chapter structure updated.
Chapter “Interrupts”:
e OS_LeaveNest abl el nt errupt NoSwi t ch() removed

3.62¢ 0 080903 SK e OS_Leavel nterrupt NoSwi t ch() removed
Chapter “System Tick":
e OS_TI CK _Config() added
3.60 2 080722 SK Contact address updated.

General updates.
3.60 1 080617 SK Chapter “Mailboxes”:
e OS_Get Mai | Cond() / OS_Get Mai | Cond1() corrected

General updates.

3.60 0 080117 0o Chapter “System Tick” added.
Chapter “Task Routines”:
3.52 1 071026 AW e OS_Set TaskNane() added
Chapter “Task Routines”:
e OS_Ext endTaskCont ext () added
Chapter “Interrupts”:
3.52 0 070824 00 « Updated
e OS Cal | I SR() added
e OS_Cal | Nest abl el SR() added
3.50c 0 070814 AW Chapter “List of Libraries” updated, XR library type added.
3.40c 3 070716 00 Chapter “Performance and Resource Usage” updated.

Chapter “Debugging”, error codes updated:
e OS_ERR | SR | NDEX added
e OS_ERR | SR _VECTOR added
e OS_ERR _RESOURCE_OWNER added
e OS_ERR CSEMA OVERFLOWadded
3.40c 2 070625 SK Chapter “Task Routines”:
* OS_Yiel d() added
Chapter “Counting Semaphores” updated
e OS_Si gnal CSemn() , additional information adjusted
Chapter “Performance and Resource Usage” updated:
e Minor changes in wording.

Chapter “Counting Semaphores” updated:

3.40a 1 070608 SK e OS_Set CSenaVal ue() added

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

e OS_Creat eCSenu() : Data type of parameter InitValue changed from
unsigned char to unsigned int

e OS_Si gnal CSemaMax() : Data type of parameter MaxValue changed
from unsigned char to unsigned int

e OS_Si gnal CSera() : Additional information updated

3.40

070516

SK

Chapter “Performance and Resource Usage” added.

Chapter “Configuration of your Target System (RTOSInit.c)” renamed to
“Configuration of your Target System”.

Chapter "STOP/WAIT/IDLE modes” moved into chapter “Configuration of
your Target System”.

Chapter “Time-related Routines” renames to “Time Measurement”.

3.320

070422

SK

Chapter 4: OS_CREATETI MER_EX() , additional information corrected.

3.32m

070402

AW

Chapter 4: Extended timer added.
Chapter 8: API overview corrected, OS_Q Get MessageCount ()

3.32j

070216

AW

Chapter 6: OS_CSemaRequest () function added.

3.32e

061220

SK

About: Company description added.
Some minor formatting changes.

3.32e

061107

AW

Chapter 7: OS_Get MessageCnt () return value corrected to unsigned int.

3.32d

061106

AW

Chapter 8: 0S_Q Get Pt r Ti med() function added.

3.32a

061012

AW

Chapter 3: OS_Creat eTaskEx() function, description of parameter pCon-
t ext corrected.

Chapter 3: OS_Creat eTaskEx() function, type of parameter TimeSlice
corrected.

Chapter 3: OS_Creat eTask() function, type of parameter TimeSlice cor-
rected.

Chapter 9: OS_Get Event Cccur ed() renamed to OS_Get Event sCc-
cured().

Chapter 10: OS_EVENT_Wai t Ti ned() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_Cr eat eTaskEx() function added.

3.32

060717

00

Event objects introduced. Chapter 10 inserted which describes event ob-
jects.
Previous chapter “Events” renamed to “Task Events”.

3.30

060519

(0]0)

New software version.

3.28

060223

(0]0)

All chapters: Added API tables.
Some minor changes.

3.28

051109

AW

Chapter 7: OS_Si gnal CSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low priorities
added.

3.28

050926

AW

Chapter 6: OS_Del et eRSema() function added.

3.28

050707

AW

Chapter 4: OS_Get SuspendCnt () function added.

3.28

050425

AW

Version number changed to 3.28 to fit to current embOS version.
Chapter 18.1.2: Type return value of OS_Get Ti ne32() corrected.

3.26

050209

AW

Chapter 4: OS_Ter mi nat e() modified due to new features of version
2.26.

Chapter 24: Source code version: additional compile time switches and
build process of libraries explained more in detail.

3.24

011115

AW

Chapter 6: Some prototype declarations showed in OS_SEMA instead of
OS_RSEMA. Corrected.

3.22

040816

AW

Chapter 8: New Mailbox functions added
e OS_Put Mai | Front ()
e OS_Put Mai | Front 1()
e OS_Put Mai | Front Cond()
e OS_Put Mai | Front Cond1()

3.20

040621

RS/AW

Software timers: Maximum timeout values and CS_TI MER_MAX_TI ME de-
scribed.

Chapter 14: Description of rules for interrupt handlers revised.
OS_LeaveNest abl el nt errupt NoSwi t ch() added which was not de-
scribed before.

3.20

UMO01001 User Guide & Reference Manual for embOS

040329

AW

OS_Creat eCSema() prototype declaration corrected. Return type is void.
OS_Q Get MessageCnt () prototype declaration corrected.

© 1995-2022 SEGGER Microcontroller GmbH

10

Software

Revision

Date

By

Description

OS_Q d ear () function description added.
OS_MEMF_FreeBl ock() prototype declaration corrected.

3.20

031128

AW

OS_CREATEMB() Range for parameter MaxnofMsg corrected. Upper limit
is 65535, but was declared 65536 in previous manuals.

3.20

040831

AW

Code samples modified: Task stacks defined as array of int, because
most CPUs require alignment of stakc on integer aligned addresses.

3.20

031016

AW

Chapter 4: Type of task priority parameter corrected to unsigned char.
Chapter 4: OS_Del ayunti | () : Sample program modified.

Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resune() added.

Chapter 5: OS_Get Ti ner Val ue() : Range of return value corrected.
Chapter 6: Sample program for usage of resource semaphores modified.
Chapter 6: OS_Get Resour ceOaner () : Type of return value corrected.
Chapter 8: OS_CREATEMB() : Types and valid range of parameter correct-
ed.

Chapter 8: OS_Wii t Mai | () added

Chapter 10: OS_Wii t Event Ti med() : Range of timeout value specified.

021015

AW

Chapter 8: OS_Get Mai | Ti med() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related Routines).
Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multitasking,
nested interrupts, low-res nad hi-res measurement.

Section 1.3 (Typographic conventions) changed to table.

Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains control).
Chapter 4 (Configuration for your target system) moved to after Chapter
15 (System variables)

Chapter 16 (Time-related routines) added.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

11

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

12

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

13

Table of contents

Introduction and BasiC CONCEPLSceevvuuiiiiiiiiiiii e e e e e e e e e e eeane 17
1.1 What IS @mMBDO S ? i 18
B < T] o1 @ T oY = S 19
G T - 1= <P 21
1.4 Single-task systems (SUPEHOOP) .iiiriiiiiiiiii i i i e 22
1.5 MUIitasKing SYStEMIS ittt i e e e 24
3 T Yo o T=Ta U] 7.0 T P 26
1.7 Polling vs. Event based programmingc.oioeiiiiiiiiiiii i i 28
1.8 Synchronization and communication primitivesccooiiiiiiiiiiiiiii 29
1.9 How task sWIitChing WOIKSiuiiiiiiiiiii i e 30
1.10 Change of task Status ...c.ciiiiiiiiiiii i e 32
1.11 How the OS gains CONIOl ...uiiiiiiiiii i e e aaeas 33
1.12 Different builds of @mbOS ... e 34
1.13 Valid context for @mbOS API ... e 36
1.14 Blocking and Non blocking embOS API ... e 37
3 T Y o A U Tt oY = 38
L1251 TSP 45
2.1 INErOdUCHION i e 46
2.2 Cooperative vs. preemptive task switchesccciiiiiiiiii i 47
2.3 Extending the task context ... s 48
A S N = I W o Vo o o e 50
SOMWAIE TIMEIS .t e et e e e ettt e e e e e et e e e e eera e e 87
G708 AR o o [T o o 1 PP 88
3.2 AP fUNCHIONS ettt e 91
TASK EVENLS ...t e et e e e e e e e e e e et e e e e e et e e aeaane 115
T 1 0o oY [T o o 116
N N = N 01 T o 1= 117
EVENE ODJECLS ..o e e e aaan 126
508 A o o [T o o o I P 127
A A o I £ U Tt oo o =P 130
=S 151
(2 A o/ Yo 11 T o o) o T 152
(ST N = N 1 o Tt of [0 o 1= 154

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

14

UMO01001 User Guide & Reference Manual for embOS

10

11

12

13

14

15

16

17

18

Y= 4 F= T 0] 1] SO UURRPPUPPURPPPRR 166
2% NN 1 1 g'o Ta [T u o 1 167
/2872 - = R 1 U Tt o oY o =P 169
ReEAAEIS-WILEI LOCKcieiii et e e e e e e e e e e e e e eeeeaenannnes 179
S 7 A 1 o' Yo 11 [o e) o P 180
8.2 AP fUNCHIONS 1ttt i e ettt e e 181
MAIIDOXES ... aaaaa 192
178 SN 1 o1 f o' Yo 8T o o PP 193
1S TR A AN = R 1 T o o 1= 196

L L1 U 227
L0 T R 1 o o Yo [ot o] o I 228
10.2 AP fUNCHIONS .ttt i e e e e e e e e et e 230

LAY (] o (o o RSP 249
3 0 T o o [T o] PP 250
3 A A o A 4 U Tt oo = PP 251

YT RToT o] =TS U o] o o o AU 257
3072 R 1 o oo Yo [F ot o] o I 258
12.2 AP fUNCHIONS .ttt e e e e e e e e 260

L1 (=T A LU o] £ TP RPPPPT 267
13,1 What @re INEeITUPES ? oottt ettt a e aa e e eaes 268
13.2 INEermUPL JatENCY ittt 269
13.3 Rules for interrupt handlers ... e 273
13.4 Interrupl CONTIOl i e 285

(O g1 ior=1 I == To o] o USRS 300
12 R I o o Yo [ot o] I 301
10 3 A A o I (U Tt o [0 o [PP 302
14.3 Disabling context tranSitionsccoiiiiiiiii 305

TIME MEASUIEIMENT ...oeuiii i e e et e e e et e e e e e e e e e e e e eesaaeeeeeeesans 307
38500 N o |l o Yo 18 L o] PP 308
15.2 Low-resolution measur€mMentciiiii i i 310
15.3 High-resolution measuremMent ... e 316

LOW POWET SUPPOIT ..ttt e et e et e et eeeaa e e e eaaeeees 334
LG T R 1 o o Yo 1 ot o] o I 335
16.2 Starting power save modes in OS_Idle() .cuvviiiiiiiiiiiiiiiiii e 335
16.3 TiCKIESS SUPPOIT ittt 336
16.4 Peripheral power CONIOl ... e e 348

Heap Type Memory ManagemeNntoooeuiiiiiniei et e e eeaes 354
3 728 SN o |l o Yo 18 L o] PP 355
0 A A o R £ U Tt oo = PP 356

Fixed Block Size MemOry POOIcooiiiiiiii s 360
RS T S 1 o o Yo [F ot o] o I 361
18.2 AP fUNCHIONS .ttt e e e e e 363

© 1995-2022 SEGGER Microcontroller GmbH

15

UMO01001 User Guide & Reference Manual for embOS

19

20

21

22

23

24

25

26

27

YY1 (= 0 I I SRR 376
LS 0 N |l o Yo [L o] PP 377
19.1.1 Hooking into the system tickcooiiiiiiiiiii 377

19.2 AP fUNCHIONS 1ttt e s e e e s et e e e s e e n e an e r e e r e a e ennanes 378
91T o 10 T T 11 o 385
20.1 Runtime application @rrorsSo.ciiiiiiiiiii i s 386
20.2 Human readable object identifierscccviiiiiii 393
20.3 €MDOS API trACE ottt it i e e 397
g (0] 11T Vo PR 400
B R R = 1= <=l U | o o PP 401
725 A A Y o o o o 401

21.2 Task specific CPU load measurement ...ooiiiiiiiiiiiii i 404
725 N2 R Y o o o o o = 406

D2 NG B O o U [0 Y- T Bl o g 1<t F=1 8| '=T 0 1= o | o 412
725 NG 20 R Y o o o o o 413
(<2001 010 1S V1 SRS 418
7225 RN 1 0 o Yo 11 [uf] o 1 419
22.2 Setup embOSView for communiCationccooeiiiiiiiiiii e 421
22.3 Setup target for communiCationcciiiiii i 425
22.4 Sharing the SIO for terminal I/O ..o e 432
22.5 eMDOSVIEW AP frACE tiiiiiiiiiii it i it e 435
MPU - MemOry ProteCLONccoiiiiii it e e e e e 455
72 T SN 1 o) o o/ Yo ¥ ot f [0 o PP 456
23.2 Memory ACCESS PEIMMNISSIONS .uuiiiiiirietiiiiestiinneestaiseestarntestanntessrnreessannresesnnnes 459
23.3 ROM placement of @mMbOS ...t 460
23.4 Allowed embOS API in unprivileged tasksccooiiiiiiiiiiiiii 461
B2 T T B LAV ol T [Y= ol PP 462
22 T S T AN = A 1§ o U T o 1= PP 464
SHACKS .o aaaaaae e e et ————— 482
72 30 NN 1 oY o Yo 1 [u] o 483
B N = O 0T T uf o T 485
Board SUPPOIt PACKAGESoiiiiiiieieiiiiieeie et e e e 500
72553 AN 1 o) o o' Yo 1 ot f [0 o P 501
25.2 How to create a new board support packageccccooiiiiiiiiiiiiini 501
25, 3 EXAMIPIE ciiii i e 502
25.4 Mandatory FOULINES ...uiiiiii i e e e e 503
25.5 OPptioNal FOULINES .ottt i e e 507
A T S T Y =1 w o | o = 510
SYStem VariabIEscoooviiii e 511
7<% RN 1 0}/ o Yo 1 [u] o 1 512
26.2 OS _GlODal it e 513
26.3 OS information rOULINES ..oiiiiiiii i i i e e 514
7 <TG T R Y = A W o o f o o = 514
SOUICE COUB ..oiiiiii ittt e e e e e e e e e et e e e e e e et e e e e e eeranaaeaaeens 521
727 4% SN 1 o) o o/ Yo 1 ot [0 o P 522
27.2 Building €mbOS [IDraries ...cviireiiiiiii i arrae e 523
27.3 Compile time SWItChESiiiiiii e e 524
27.4 SOUIrCE COAE PrOJECE vttt i i e e e e e 526

© 1995-2022 SEGGER Microcontroller GmbH

16

27.4.1 Compiler OPtiONS .viiiiiiii i 526

P2 < T 110 2 =T o1 PO 527
28.1 INtrOdUCHION o e e 528
28.2 Object code PacKageoiviiiiiiiiii i e 529
28.3 SOUICe COOE PACKAGE ...ttt e e s e st aa s s e s e e n e aneannaes 530

29 UPOALE .. e et r ittt e e e e e e e e e e e e e e e e e e e 532
72> T SN I o) o oo Yo [U ot oo o T P 533
29.2 How to update an existing projectccoiiriiiiii i 534
29.3 embOS API migration guUIdeccoioiiiiiii i 535

1 {0 T o L | S U P 541
G0 I R (o] o) =T o =1 5] o] Yo] o P 542
30.1.1 Where can I find the license NUMDbEr?c.ooiiiiiiiiiiiiiic e 542

31 Performance and RESOUICE USAQEcoooeiiiiiiiiiiiiiiiiiiiiiiie et a e e e e e e e 543
.2 s N I o) o o Yo [T oo o P 544
31.2 RESOUICE USAGE .uiiuiitiiiiti ittt ittt rasst sttt sas s st se st s ane s aaaeseannans 544

G2 I T =T o o] g =1 o ol PP 545

32 Supported Development TOOISccooiviiiiieece e 552
37 R © 17T Y = 553

33 GlOSSANY ..ttt et e e e e e e e e e e e e a e 554

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 1

Introduction and Basic
Concepts

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

18 CHAPTER 1 What is embOS?

1.1 What is embQOS?

embQOS is a priority-controlled multitasking system, designed to be used as an embedded
operating system for the development of real-time applications for a variety of microcon-
trollers.

embOS is a high-performance tool that has been optimized for minimal memory consump-
tion in both RAM and ROM, as well as high speed and versatility. Throughout the develop-
ment process of embOS, the limited resources of microcontrollers have always been kept
in mind. The internal structure of the real-time operating system (RTOS) has been opti-
mized in a variety of applications with different customers, to fit the needs of industry.
Fully source-compatible implementations of embOS are available for a variety of micro-
controllers, making it well worth the time and effort to learn how to structure real-time
programs with real-time operating systems.

embQOS is highly modular. This means that only those functions that are required are linked
into an application, keeping the ROM size very small. A couple of files are supplied in source
code to make sure that you do not loose any flexibility by using embOS libraries and that
you can customize the system to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a number
of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:

e Time resolution can be freely selected (default is 1 millisecond).

e Easily accessible time variable.

e Preemptive scheduling:

Guarantees that of all tasks in READY state the one with the highest priority executes,
except for situations in which priority inheritance applies.

Round-robin scheduling for tasks with identical priorities.

Preemptions can be disabled for entire tasks or for sections of a program.

e Upto4,294,967,296 priorities. Every task can have an individual priority, which means
that the response of tasks can be precisely defined according to the requirements of
the application.

e Unlimited number of tasks, software timers and all other synchronization and

communication primitives like event objects, semaphores, mutexes, mailboxes and

queues. (limited only by the amount of available memory).

Size and number of messages can be freely defined when initializing mailboxes.

Up to 32-bit events for every task.

Power management.

Calculation time in which embQS is idle can automatically be spent in power save mode.

Power-consumption is minimized.

e Full interrupt support:

Interrupts may call any function except those that require waiting for data, as well
as create, delete or change the priority of a task. Interrupts can wake up or suspend
tasks and directly communicate with tasks using all available communication methods
(mailboxes, semaphores, events).

e Disabling interrupts for very short periods allows minimal interrupt latency.

e Nested interrupts are permitted.

e embOS has its own, optional interrupt stack.

e Application samples for an easy start.

e Debug build performs runtime checks that catch common programming errors early on.

e Profiling and stack-check may be implemented by choosing specified libraries.

e Monitoring during runtime is available using embOSView via UART, Debug
Communications Channel (DCC) and memory read/write, or else via Ethernet.

e \Very fast and efficient, yet small code.

e Minimal RAM usage.

e API can be called from assembly, C or C++ code.

e Board support packages (BSP) as source code available.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

19 CHAPTER 1 embQOS ports

1.2 embOS ports

embQOS is available for many core and compiler combinations. The embOS sources are
written in C but a small part is written in assembler and therefore core and compiler specific.
Hence, an embOQOS port is always technically limited to one core or core family and one
compiler. An embOS port includes several board support packages for different devices and
evaluation boards. Each board support package includes a project for a specific IDE. In
most embOS ports the same IDE is used for all board support packages.

1.2.1 Additional documentation

Some embOS aspects are core and compiler specific and explained in a separate embOS
manual which is shipped in the according embOS port shipment.

Example Cover of embOS Cortex-M ES Manual

embOS

Real-Time Operating System

CPU & Compiler specifics for
Cortex-M using Embedded Studio

Document: UM01061
Software Version: 5.10.1.0
Revision: 0
Date: July 22, 2020

\
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

1.2.2 Naming convention

All embQOS ports use the same naming convention: enhOS_<core>_<compiler>. For exam-
ple: enbQS_Cort exM ES, embOS for Cortex-M and Embedded Studio

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

20

CHAPTER 1 embQOS ports

1.2.3 Version number convention

SEGGER releases new embQOS versions with new features and bug fixes. As soon as a new
embQOS version is released embQOS ports are updated to this version.

Generic embOS

Each release of the generic embOS sources has a unique version number:
V<Maj or >. <M nor >. <Pat ch>
For example:

V5.10.1

Major: 5
Minor: 10
Patch: 1

Major and minor values are used for new features. The patch value is used for bug fixes only.

embOS Ports

An updated embOS port has the same version humber as the used generic embOS sources,
plus an additional revision for the port. This is because an embOS port may be updated
for changes in the CPU/compiler specific part, while still using the same generic embOS
sources. The complete version number for a specific embOS port is defined as:

V<Maj or >. <M nor >. <Pat ch>. <Revi si on>
For example:
V5.10.1.0

Major: 5
Minor: 10
Patch: 1
Revision: 0

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

21 CHAPTER 1 Tasks

1.3 Tasks

In this context, a task is a program running on the CPU core of a microcontroller. Without
a multitasking kernel (an RTOS), only one task can be executed by the CPU. This is called a
single-task system. A real-time operating system, on the other hand, allows the execution
of multiple tasks on a single CPU. All tasks execute as if they completely “owned” the
entire CPU. The tasks are scheduled for execution, meaning that the RTOS can activate and
deactivate each task according to its priority, with the highest priority task being executed
in general.

1.3.1 Threads vs. Processes

Thread 1

Thread 2 Process 1 Process 2 Process 3

Thread 3

Threads are tasks that share the same memory layout, hence any two threads can access
the same memory locations. If virtual memory is used, the same virtual to physical trans-
lation and access rights are used.

With embOS, all tasks are threads: they all have the same memory access rights and
translation (in systems with virtual memory).

Processes are tasks with their own memory layout. Two processes cannot normally access
the same memory locations. Different processes typically have different access rights and
(in case of MMUs) different translation tables. Processes are not supported with the current
version of embOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

22 CHAPTER 1 Single-task systems (superloop)

1.4 Single-task systems (superloop)

The classic way of designing embedded systems does not use the services of an RTOS,
which is also called “superloop design”. Typically, no real time kernel is used, so interrupt
service routines (ISRs) are used for the real-time parts of the application and for critical
operations (at interrupt level). This type of system is typically used in small, simple systems
or if real-time behavior is not critical.

A
> ISR (nested) B Interrupt
= e level
o Superloop Task level
>
Time

Typically, since no real-time kernel and only one stack is used, both program (ROM) size and
RAM size are smaller for simple applications when compared to using an RTOS. Obviously,
there are no inter-task synchronization problems with a superloop application. However,
superloops can become difficult to maintain if the program becomes too large or uses
complex interactions. As sequential processes cannot interrupt themselves, reaction times
depend on the execution time of the entire sequence, resulting in a poor real-time behavior.

1.4.1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low stack usage (only one stack required)

Disadvantages

No “delay” capability

Higher power consumption due to the lack of a power save mode in most architectures
Difficult to maintain as program grows

Timing of all software components depends on all other software components:

Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

1.4.2 Using embOS in superloop applications

In a true superloop application, no tasks are used, hence the biggest advantage of using
an RTOS cannot be utilized unless the application is re-written for multitasking. However,
even with just one single task, using embOS offers the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

1.4.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been designed as
a single-task super-loop-application. At some point, the disadvantages of this approach
result in a decision to use an RTOS. The typical question now usually is: How do I do this?

The easiest way is to start with one of the sample applications that come with embOS and
to add the existing “super-loop code” into one task. At this point, you should also ensure
that the stack size of this task is sufficient. Later, additional functionality is added to the

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

23 CHAPTER 1 Single-task systems (superloop)

software and can be put in one or more additional tasks; the functionality of the super-loop
can also be distributed over multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

24

CHAPTER 1 Multitasking systems

1.5 Multitasking systems

In a multitasking system, there are different ways to distribute CPU time among different
tasks. This process is called scheduling.

A
ISR I
>
= | High prio task
ke,
a | Low prio task
Idle

Time

1.5.1 Task switches

There are two types of task switches, also called context switches: Cooperative and pre-
emptive task switches.

A cooperative task switch is performed by the task itself. As its name indicates, it requires
the cooperation of the task: it suspends itself by calling a blocking RTOS function, e.g.
OS _TASK Del ay() or OS_TASKEVENT Cet Bl ocked() .

A preemptive task switch, on the other hand, is a task switch that is caused externally.
For example, a task of higher priority becomes ready for execution and, as a result, the
scheduler suspends the current task in favor of that task.

1.5.2 Cooperative multitasking

Cooperative multitasking requires all tasks to cooperate by using blocking functions. A task
switch can only take place if the running task blocks itself by calling a blocking function
such as OS_TASK Del ay() or OS_MAI LBOX Get Bl ocked() . This is illustrated in the diagram
below.

A High priority task
OS_TASK_Delay() resumes

Lower priority

ngh prlO taSk task is executed

Low prio task

Priority

Idle

Time

If tasks in a pure cooperative multi-tasking system do not cooperate, the system “hangs”.
This means that other tasks have no chance of being executed by the CPU while the first
task is being carried out. Even if an ISR makes a higher-priority task ready to run, the
interrupted task will be resumed and completes before the task switch is made.

A pure cooperative multi-tasking system has the disadvantage of longer reaction times
when high priority tasks become ready for execution. This makes their usage in embedded
real-time systems uncommon.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

25

CHAPTER 1 Multitasking systems

1.5.3 Preemptive multitasking

Real-time operating systems like embOS operate with preemptive multitasking. The high-
est-priority task in the READY state always executes as long as the task is not suspended by
a call of any blocking operating system function. A high-priority task waiting for an event is
signaled READY as soon as the event occurs. The event can be set by an interrupt handler,
which then activates the task immediately. Other tasks with lower priority are suspended
(preempted) for as long as the high-priority task is executing. Usually, real-time operating
systems utilize a timer interrupt that interrupts tasks and thereby allows to perform task
switches whenever timed task switches are necessary.

ISR puts high priority
A task in READY state;
task switch occurs
High priority
IS R task is executed
B H . h . t k Executing task Interrupted
: Ig pr|0 as is interrupted task resumes
o
[.
o | Low prio task
Idle
>

Time

Preemptive multitasking may be switched off in sections of a program where task switch-
es are prohibited, known as critical regions. embOS itself will also temporarily disable pre-
emptive task switches during critical operations, which might be performed during the ex-
ecution of some embOS API functions.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

26 CHAPTER 1 Scheduling

1.6 Scheduling

There are different algorithms used by schedulers to determine which task to execute. But
all schedulers have one thing in common: they distinguish between tasks that are ready
to be executed (in the READY state) and other tasks that are suspended for some reason
(delay, waiting for mailbox, waiting for semaphore, waiting for event, etc). The scheduler
selects one of the tasks in the READY state and activates it (executes the body of this
task). The task which is currently executing is referred to as the running task. The main
difference between schedulers is the way they distribute computation time between tasks
in the READY state.

1.6.1 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For example, in
an application that controls a motor, a keyboard, and a display, the motor usually requires
faster reaction time than the keyboard and the display. E.g., even while the display is being
updated, the motor needs to be controlled. This renders preemptive multitasking essential.
Round-robin might work, but as it cannot guarantee any specific reaction time, a more
suitable algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on these
priorities, a task is chosen for execution according to one simple rule:

Note

The scheduler activates the task that has the highest priority of all tasks and is ready
for execution.

This means that every time a task with a priority higher than the running task becomes
ready, it becomes the running task, and the previous task gets preempted. However, the
scheduler can be switched off in sections of a program where task switches are prohibited,
known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between tasks of
identical priority. One hint at this point: round-robin scheduling is a nice feature because
you do not need to decide whether one task is more important than another. Tasks with
identical priority cannot block each other for longer periods than their time slices. But
round-robin scheduling also costs time if two or more tasks of identical priority are ready
and no task of higher priority is, because execution constantly switches between the identi-
cal-priority tasks. It usually is more efficient to assign distinct priority to each task, thereby
avoiding unnecessary task switches.

1.6.2 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating the
running task, it activates the next task that is in the READY state. Round-robin can be used
with either preemptive or cooperative multitasking. It works well if you do not need to
guarantee response time. Round-robin scheduling can be illustrated as follows:

The possession of the CPU changes periodically after a predefined execution time among
all tasks with the same priority. This time is specified inti ne slices and may be defined
individually for each task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

27 CHAPTER 1 Scheduling

1.6.3 Priority inversion / priority inheritance

The rule the scheduler obeys is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a resource
owned by a lower-priority task? According to the above rule, it would wait until the low-
priority task is resumed and releases the resource. Up to this point, everything works as
expected. Problems arise when a task with medium priority becomes ready during the
execution of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than the
low-priority task. In this scenario, a task with medium priority runs in place of the task with
high priority. This is known as priority inversion.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
J s Interrupt activates

ngh prlo taSk high prio task 0S_TASK_Delay() -
= . .
‘= | Medium prio task
o 0S_MUTEX_LockBlocked|() OS_MUTEX_Unloc()
a | Low prio task

Idle

>
Time

The low priority task claims the semaphore with OS_MJTEX LockBIl ocked() . An interrupt
activates the high priority task, which also calls OS_MJTEX_LockBI ocked() . Meanwhile a
task with medium priority becomes ready and runs when the high priority task is suspend-
ed. The task with medium priority eventually calls OS_TASK Del ay() and is therefore sus-
pended. The task with lower priority now continues and calls OS_ MJTEX Unl ock() to release
the mutex. After the low priority task releases the semaphore, the high priority task is
activated and claims the semaphore.

To avoid this situation, embQOS temporarily raises the low-priority task to high priority until
it releases the resource. This unblocks the task that originally had the highest priority and
can now be resumed. This is known as priority inheritance.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
. . Interrupt e
- prio task
2| Medium prio task 05 MUTEX_
) OS_MUTEX_LockBlocked(), Unlock()
a | Low prio task
Idle

Time

With priority inheritance, the low priority task inherits the priority of the waiting high priority
task as long as it holds the mutex. The lower priority task is activated instead of the medium
priority task when the high priority task tries to claim the semaphore.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

28 CHAPTER 1 Polling vs. Event based programming

1.7 Polling vs. Event based programming

The easiest way to communicate between different pieces of code is by using global vari-
ables. In an application without RTOS you could set a flag in an UART interrupt routine and
poll in main() for the flag until it is set.

static int Uar t RxFl ag;
static unsigned char Data;

voi d Uart Rxl SR(void) ({
Uart RxFl ag = 1;
Dat a = UART_RX_REQ STER;
}

int main(void) {
while (1) {
if (UartRxFlag !'= 0) {
printf("Uart: %", Data);
Uart RxFl ag = O;
}
}

return O;

}

This has the disadvantage that the CPU cannot execute any other part of the application
while it waits for new UART characters.

An RTOS offers the opportunity to implement an event based application. Such an event
can be an interrupt. Uart RxTask() calls OS_MAlI LBOX Get Bl ocked() and is suspended until
a new message is stored in the mailbox. Uar t Rxl SR() stores a new message (the received
character) in the mailbox with OS_MAI LBOX Put (). Therefore Uart RxTask() is executed
only when a new UART character is received and does not waste any precious computation
time and energy. Additionally the CPU can execute other parts of the application in the
meantime.

voi d Uart RxI SR(voi d) {
unsi gned char Dat a;

OS_INT_Enter();
Dat a = UART_RX_REQ STER;
OS_MAI LBOX_Put (&Wai | box, &Dat a);
OS_|I NT_Leave();
}

voi d Uart RxTask(void) {
unsi gned char c;
while (1) {
OS_MAI LBOX_Cet Bl ocked(&Wai | box, &c);
printf("Uart: %", c);

}
}
A
UartRxISR
>
ot
§ UartRxTask
Q| |dle

Time

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

29 CHAPTER 1 Synchronization and communication primitives

1.8 Synchronization and communication primitives

1.8.1 Synchronization primitives

In a multitasking (multithreaded) program, multiple tasks work completely separately. Be-
cause they all work in the same application, it will be necessary for them to synchronize
with each other. Semaphores, mutexes and readers-write locks are used for task synchro-
nization and to manage resources of any kind.

For details and samples, refer to the chapters Mutexes on page 151, Semaphores on
page 166 and Readers-Writer Lock on page 179.

1.8.2 Event driven primitives

A task can wait for a particular event without consuming any CPU time. The idea is as
simple as it is convincing, there is no sense in polling if we can simply activate a task once
the event it is waiting for occurs. This saves processor cycles and energy and ensures that
the task can respond to the event without delay. Typical applications for events are those
where a task waits for some data, a pressed key, a received command or character, or the
pulse of an external real-time clock.

For further details, refer to the chapters Task Events on page 115 and Event Objects on
page 126.

1.8.3 Communication primitives

A mailbox is a data buffer managed by the RTOS. It is used for sending a message from
a task or an ISR to a task. It works without conflicts even if multiple tasks and interrupts
try to access the same mailbox simultaneously. embOS activates any task that is waiting
for a message in a mailbox the moment it receives new data and, if necessary, switches
to this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and each
message may have an individual size.

For more information, refer to the chapters Mailboxes on page 192 and Queues on
page 227.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

30 CHAPTER 1 How task switching works

1.9 How task switching works

A real-time multitasking system lets multiple tasks run like multiple single-task programs,
quasi-simultaneously, on a single CPU. A task consists of three parts in the multitasking
world:

e The program code, which typically resides in ROM
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return ad-
dresses of function calls, parameters and local variables, and temporary storage of inter-
mediate results and register values. Each task can have a different stack size. More infor-
mation can be found in chapter Stacks on page 482.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management data.
Knowledge of the stack pointer allows access to the other registers, which are typically
stored (pushed onto) the stack when the task is created and each time it is suspended.
This information allows an interrupted task to continue execution exactly where it left off.
TCBs are only accessed by the RTOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

31

CHAPTER 1

1.9.1 Switching stacks

The following diagram demonstrates the process of switching from one stack to another.

Task O

Task 0 Stack

Task Control Block

Stack Pointer .
Variables

Temp. Storage
Ret. Addresses
CPU Register

Free Stack Area

Task 1

Task Control Block Task 1 Stack

Stack Pointer

Variables
Temp. Storage
Ret. Addresses

CPU Register

CPU Register

Free Stack Area

The scheduler deactivates the task to be suspended (Task 0) by saving the processor reg-
isters on its stack. It then activates the higher-priority task (Task 1) by loading the stack

pointer (SP) and the processor registers from the values stored on Task 1’s stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task’s stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task 1) by performing the sequence in

reverse order:

1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task 1’s stack.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

How task switching works

32 CHAPTER 1 Change of task status

1.10 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY state
with higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task remains in
the READY state.

The running task may be delayed for or until a specified time; in this case it is placed into
the WAITING state and the next-highest-priority task in the READY state is activated.

The running task might need to wait for an event (or semaphore, mailbox or queue). If
the event has not yet occurred, the task is placed into the waiting state and the next-
highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been terminated
or was not created at all.

The following illustration shows all possible task states and transitions between them.

Not existing

OS_TASK_Create()
OS_TASK_CreateEx()

OS_TASK_Terminate()

Scheduler Running

API class such as:
0S_EVENT_Set()
or delay expiration

API class such as:
OS_TASK_Delay()
OS_..._Blocked()

Waiting

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

33 CHAPTER 1 How the OS gains control

1.11 How the OS gains control

Upon CPU reset, the special-function registers are set to their default values. After reset,
program execution begins: The PC register is set to the start address defined by the start
vector or start address (depending on the CPU). This start address is usually in a startup
module shipped with the C compiler, and is sometimes part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs the end of
the defined stack segment(s)

o Initializes all data segments to their respective values

e Calls the mai n() function.

The mai n() function is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without any
modification. If there are any changes required, they are documented in the CPU & Compiler
Specifics manual of the embOS documentation.

With embQS, the mai n() function is still part of your application program. Essentially,
mai n() creates one or more tasks and then starts multitasking by calling S _Start (). From
this point, the scheduler controls which task is executed.

St art up_code()
mai n()
s Init();
CS_ I nitHW);
OS_TASK_CREATE() ;
CS Start();

The mai n() function will not be interrupted by any of the created tasks because those
tasks execute only following the call to OS_Start () . It is therefore usually recommended to
create all or most of your tasks here, as well as your control structures such as mailboxes
and semaphores. Good practice is to write software in the form of modules which are (up
to a point) reusable. These modules usually have an initialization routine, which creates
any required task(s) and control structures. A typical mai n() function looks similar to the
following example:

Example

voi d mai n(void) {
oS Init(); I/l Initialize enbOS (nust be first)
OS_Ini t HW() ; // Initialize hardware for enbOS (in RTOSInit.c)
/1 Call Init routines of all program nodules which in turn will create
/'l the tasks they need ... (Order of creation may be inportant)
MODULEL_Init();
MODULE2_I nit();
MODULE3_I nit();
MODULE4_I nit();
MODULES_I nit();
oS Start(); // Start multitasking
}

With the call to G5 Start (), the scheduler starts the highest-priority task created in
mai n() . Note that OS_St art () is called only once during the startup process and does not
return.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

34 CHAPTER 1 Different builds of embOS

1.12 Different builds of embQOS

embOS comes in different builds or versions of the libraries. The reason for different builds
is that requirements vary during development. While developing software, the performance
(and resource usage) is not as important as in the final version which usually goes as
release build into the product. But during development, even small programming errors
should be caught by use of assertions. These assertions are compiled into the debug build
of the embOS libraries and make the code a little bigger (about 50%) and also slightly
slower than the release or stack-check build used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for your
final product (release or stack-check build of the libraries), and a safer (though bigger
and slower) build for development which will catch most common application programming
errors. Of course, you may also use the release build of embOS during development, but
it will not catch these errors.

The following features are included in the different embOS builds:

Debug code

The embOS debug code detects application programming errors like calling an API func-
tion from an invalid context. An application using an embQOS debug library has to include
CS Error.c. GS Error. c contains the OGS Error () function which will be called if a debug
assertion fails. It is advisable to always use embQOS debug code during development.

Stack Check

The embOS stack check detects overflows of task stacks, system stack and interrupt stack.
Furthermore, it enables additional information in embOSView and IDE RTOS plug-ins, and
provides additional embQOS API regarding stack information. An application using an em-
bOS stack check library has to include OS_Error.c. OS_Error.c contains the GS_Error ()
function which will be called if a stack overflow occurs.

Profiling

The embOS profiling code makes precise information available about the execution time
of individual tasks. You may always use the profiling libraries, but they induce larger task
control blocks as well as additional ROM and runtime overhead. This overhead is usually
acceptable, but for best performance you may want to use non-profiling builds of embOS
if you do not use this feature.

Libraries including support for profiling do also include the support for SystemView.

embOS API Trace

embOS API trace saves information about called API in a trace buffer. The trace data can
be visualized in e.g. SystemView.

embOSView API Trace

embOSView API trace saves information about called API in a trace buffer. The trace data
can be visualized in embOSView.

Round-Robin

Round-Robin lets all tasks at the same priority execute periodically for a pre-defined period
of time.

Object Names

Tasks and OS object names can be used to easily identify a task or e.g. a mailbox in tools
like embOSView, SystemView or IDE RTOS plug-ins.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

35

CHAPTER 1 Different builds of embOS

Task Context Extension

For some applications it might be useful or required to have individual data in tasks that are
unique to the task or to execute specific actions at context switch. With the task context
extension support each task control block includes function pointer to a save and a restore
routine which are executed during the context switch from and to the task.

1.12.1 List of builds

In your application program, you need to let the compiler know which build of embQOS you
are using. This is done by adding the corresponding define to your preprocessor settings and
linking the appropriate library file. If the preprocessor setting does not match the library,
a linker error will occur. Using the preprocessor define, RTCS. h will set embQOS structures
to the same configuration that was used during the creation of the library, thus ensuring
identical structure definitions in both the application and the library. If no preprocessor
setting is given, OS_Confi g. h will be included and will set a library mode automatically
(see GS_Confi g. h).

O %))) pu) @] —

D > |> e | & md

S| B 3|zgmE|S|g 3%

Name / Define Description @ g = |do (4 8 = ’Z’ 3 Q

O| | 50| @| 5§ |25

o) I @ |9 0Wloz| S 5 9%

o O D (¢} (=) > @

5 = | 5|9 x

OS LI BMODE_XR Extreme Release

OS LI BMODE_R Release ° ° °
OS LI BMODE_S Stack Check ° ° ° °
OS LI BMODE_SP Stack Check + Profiling ° ° ° ° ° °
OS_LI BMODE_D Debug o | o o | o | o
OS_LI BMODE_DP Debug + Profiling ° ° ° ° ° ° °
OS_LI BMODE_DT Debug + Trace ° ° ° ° ° ° ° °
OS_LI BMODE_SAFE | Safe Library ° ° ° ° ° ° .

1.12.2 OS_Config.h

OS Config. h is part of every embOS port and located in the Start\ I nc folder. Use of
OS_Confi g. h makes it easier to define the embOS library mode: Instead of defining S LI B-
MODE_* in your preprocessor settings, you may define DEBUG=1 in your preprocessor settings
in debug compile configuration and define nothing in the preprocessor settings in release
compile configuration. Subsequently, GS_Confi g. h will automatically define GS_LI BMOD-
E _DP for debug compile configuration and OS_LI BMODE_R for release compile configuration.

Compile Configuration Preprocessor Define Define Set by OS_Confi g. h
Debug DEBUG=1 Os_LI BMODE_DP
Release OS LI BMODE_R

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

36 CHAPTER 1 Valid context for embOS API

1.13 Valid context for embQOS API

Some embOS functions may only be called from specific locations inside your application.
We distinguish between mai n() (before the call of OS_Start ()), task, interrupt routines
and embOS software timer.

Note

Please consult the embOS API tables to determine whether an embOS function is
allowed from within a specific execution context. Please find the API tables at beginning
of each chapter.

Example
v|S @)
31233
Routine Description 5 |< (€|
S e = |P|3
28| |2
~

Suspends the calling task for a specified
OS_TASK Del ay() amount of system ticks, or waits actively when | e
called from main().

This table entry says it is allowed to call 0S_TASK_Del ay() from main() and a privileged/un-
privileged task but not from an embOS software timer or an interrupt handler. Please
note the differentiation between privileged and unprivileged tasks is relevant only for em-
bOS-MPU. With embOS all tasks are privileged.

Debug check

An embOS debug build will check for violations of these rules and call OS_Error () with an
according error code:

Error code Description
OS ERR I LLEGAL I N MAIN Not a legal API call from mai n() .
OS_ERR | LLEGAL_I N_TASK Not a legal API call after OS_Start ().
OS_ERR | LLEGAL_AFTER OSSTART |0S_Start() called twice.
OS ERR I LLEGAL I N I SR Not a legal API call from an embOS ISR.
OS ERR I LLEGAL I N TI MER Not a legal API call from an embOS software timer.
S ERR I N | SR OS | NT_Enter () has not been called, but CPU is in
- = = ISR state.
OS ERR | LLEGAL_QUT_I SR Not a legal API call outside an interrupt.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

37 CHAPTER 1 Blocking and Non blocking embOS API

1.14 Blocking and Non blocking embOS API

Most embOS API comes in three different version: Non blocking, blocking and blocking with
a timeout. The embOS API uses a specific naming convention for those API functions. API
functions which do not block a task have no suffix. API functions which could block a task
have the suffix "Blocked”. API functions which could block a task but have a timeout have
the suffix “Timed".

Blocking API functions (with or without a timeout) must not be called from any context
other than a task context.

Non blocking API

Non blocking API functions always return at once, irrespective of the state of the OS object.
The return value can be checked in order to find out if e.g. hew data is available in a mailbox.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
r = OS_MAI LBOX_Get (MyMai | box, Buffer);
if (r == 0u) {
/'l Process nessage
}
}
}

Blocking API

Blocking API functions suspend the task until it is activated again by another embQOS API
function. The task does not cause any CPU load while it is waiting for the next activation.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
while (1) {
/1 Suspend task until a new nessage is avail able
OS_MAI LBOX_Cet Bl ocked(MyMai | box, Buffer);
/'l Process nessage
}
}

Blocking API with timeout

These API functions have an additional timeout. They are blocking until the timeout occurs.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
/1 Suspend task until a new nessage is available or the tineout occurs
r = OS_MAI LBOX_Get Ti ned(MyMai | box, Buffer, 10);
if (r == 0u) {
/'l Process nessage
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

38 CHAPTER 1 API functions

1.15 API functions

c
=] (02}
3123112
Routine Description |4 (< |24
Sle = |P|3
28| |a
~
OS_Confi gStop() Configures the Gs_St op() function. °
OS Del nit() De-initializes the embOS kernel. °
CS Init() Initializes the embOS kernel. °
: Determines whether the embOS scheduler was
OS_I'sRunni ng() started by a call to OS_Start (). I Il
OS Start () Starts the embQOS kernel. °
Stops the embOS scheduler and returns from
O5_Stop() s Start(). .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

39

CHAPTER 1 API functions

1.15.1 OS_ConfigStop()

Description

Configures the Gs_St op() function.

Prototype
void OS_Confi gSt op(OS_MAI N_CONTEXT* pCont ext,
voi d* Addr,
0s_U32 Si ze) ;
Parameters
Parameter Description
pCont ext Pointer to an object of type OS_MAI N_CONTEXT.
Addr Address of the buffer which is used to save the main() stack.
Si ze Si ze of the buffer.

Additional information

This function configures the OS_St op() function. When configured, OS_Start () saves the
context and stack from within main(), which subsequently are restored by CS_St op() . The
main() context and stack are saved to the resources configured by OS_Confi gSt op() . Only
the stack that was actually used during main() is saved. Therefore, the size of the buffer
depends on the used stack. If the buffer is too small, debug builds of embOS will call
0S _Error () with the error code OS5 ERR _OSSTCOP_BUFFER. The structure O5_MAI N_CONTEXT
is core and compiler specific; it is specifically defined with each embOS port.

Example

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#defi ne BUFFER_SI ZE
static OS_U8

static OS_MAI N CONTEXT
static OS_STACKPTR i nt
static OS _TASK

(32u)

Buf f er[BUFFER_SI ZE]; // Buffer for main stack copy

Mai nCont ext ; // Main context control structure
St ackHP[128] ; /'l Task stack

TCBHP; /1 Task control bl ock

static void HPTask(void) {

OS_TASK_Del ay(50);
OS_INT_Di sabl e();
CS_Stop();

}

int main(void) {

i nt TheAnswer ToEveryt hing = 42;

CS Init(); /'l Initialize enbOS

Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Vvai nCont ext, Buffer, BUFFER S| ZE);

CS Start(); /1 Start enmbOS

I

/1 W arrive here because OS_Stop() was call ed.
/'l The local stack variable still has its val ue.
I

printf("%l", TheAnswer ToEveryt hing);
whi |l e (TheAnswer ToEveryt hing == 42) {

}

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 1 API functions

1.15.2 OS_Delnit()

Description

De-initializes the embOS kernel.

Prototype

void OS Delnit(void);

Additional information

0S Delnit() can be used to de-initializes the embOS kernel and the hardware which was
initialized in OS_Init (). OS_Delnit() is usually used after returning from OS_Start (). It
does not de-initialize the hardware which was configured in e.g. OS_| ni t H\() but it resets
all embOS variables to their default values.

Example

#def i ne BUFFER_SI ZE (32u)

static OS_STACKPTR int StackHP[128] // Task stacks

static OS _TASK TCBHP; /'l Task control bl ocks
static OS_U8 Buf f er [BUFFER_SI ZE] ;

static OS_MAI N CONTEXT Mai nCont ext ;

static void HPTask(void) {

while (1) {
OS_TASK_Del ay(50);
OS_Stop();
}
}
int main(void) {
CS Init(); /1 Initialize enbOS
Cs InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Vvai nCont ext, Buffer, BUFFER S| ZE);

CS Start(); /1 Start enmbCS

OGS Delnit();

CS_Del ni t HW() ;

DoSomeThi ngEl se() ;

Il

/] Start enbOS for the 2nd tine

Il

CS Init();

CS InitHW);

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&vai nCont ext, Buffer, BUFFER S| ZE);

CS Start();

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 1 API functions

1.15.3 OS_Init()

Description

Initializes the embOS kernel.

Prototype

void OS | nit(void);

Additional information

In library mode OS_LI BMODE_SAFE all RTOS variables are explicitly initialized. All other li-
brary modes presume that, according to the C standard, all initialized variables have their
initial value and all non initialized variables are set to zero.

Note

OS_ I nit () must be called in main() prior to any other embQOS API.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /1 Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200);
}
}

/‘k*‘k**

*

* mai n()
*/
int mai n(void) {
oS _Init(); /1 Initialize enbQOS
S InitHW); Il Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
Os_Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

42 CHAPTER 1 API functions

1.15.4 OS _IsRunning()

Description

Determines whether the embOS scheduler was started by a call to OS_Start ().

Prototype

OS_BOOL OS_I sRunni ng(voi d);

Return value

=0 Scheduler is not started.
*0 Scheduler is running, Gs_St art () has been called.

Additional information

This function may be helpful for some functions which might be called from main() or from
running tasks. As long as the scheduler is not started and a function is called from main(),
blocking task switches are not allowed. A function which may be called from a task or
main() may use OS_I| sRunni ng() to determine whether a subsequent call to a blocking API
function is allowed.

Example

void PrintStatus() {
Cs_BOOL b;

b = OS_I SRunni ng();
if (b ==20) {
printf("enmbOS schedul er not started, yet.\n");
} else {
printf("enmbOS scheduler is running.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 1 API functions

1.15.5 OS_Start()

Description
Starts the embOS scheduler.

Prototype

void OS_Start(void);

Additional information

This function starts the embOS scheduler, which will activate and start the task with the
highest priority.

0s _Start () marks embOS as running; this may be examined by a call of the function
OS IsRunning(). GS _Start() automatically enables interrupts. It must be called from
main() context only.

embOS will reuse the main stack after OS_Start () was called. Therefore, local data locat-
ed on the main stack may not be used after calling CS_Start (). If OS_Stop() is used,
0S_Confi gSt op() will save the main stack and restore it upon stopping embOS.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /1 Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /'l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

44 CHAPTER 1

1.15.6 OS _Stop()

Description

API functions

Stops the embOS scheduler and returns from CS _Start ().

Prototype

voi d OS_Stop(void);

Additional information

This function stops the embOS scheduler and the application returns from OS_Start ().

0S_Confi gSt op() must be called prior to OS_Stop() . If S_Confi gSt op() was not called,
debug builds of embOS will call S_Error () with the error code OS_ERR _CONFI G_CSSTOP.
0S_Stop() restores context and stack to their state prior to calling 0s_Start (). OS_St op()
does not deinitialize any hardware. It's the application’s responsibility to de-initialize all

hardware that was initialized during GS_I ni t H/\() .

It is possible to restart embOS after OS_St op() . To do so, G5 | nit () must be called and
any task must be recreated. It also is the application’s responsibility to initialize all embOS
variables to their default values. With the embOS source code, this can easily be achieved

using the compile time switch OS_I NI T_EXPLI CI TLY.

With some cores it is not possible to save and restore the main() stack. This is e.g. true for
8051. Hence, in that case no functionality should be implemented that relies on the stack

to be preserved. But OS_St op() can be used anyway.

Example

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#defi ne BUFFER_SI ZE (32u)
static OS_U8 Buf f er [BUFFER_SI ZE] ;
static OS_MAI N CONTEXT Mai nCont ext ;

static OS_STACKPTR int StackHP[128];
static OS _TASK TCBHP;

static void HPTask(void) {
OS_TASK_Del ay(50);
OS_Stop();

}

int main(void) {
i nt TheAnswer ToEveryt hing = 42;
CS Init();
CS InitHW);

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Vvai nCont ext, Buffer, BUFFER S| ZE);

CS Start();
Il

/1 We arrive here because OS Stop() was call ed.

/1 The local stack variable still has its val ue.

Il
printf("%l", TheAnswer ToEveryt hing);

while (1) {

}

return O;
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

Chapter 2

Tasks

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

46 CHAPTER 2 Introduction

2.1 Introduction

A task that should run under embOS needs a task control block (TCB), a task stack, and a
task body written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which case
OS TASK Create() is used to create it, or take a single void pointer as parameter, in
which case OS_TASK Creat eEx() is used to create it.

The task routine must not return.
The task routine must be implemented as an endless loop or it must terminate itself
(see examples below).

2.1.1 Example of atask routine as an endless loop

voi d Taskl(void) {

while(l) {

DoSonet hi ng() ; /1 Do somet hing

OS_TASK Del ay(10); // Gve other tasks a chance to run
}

}

2.1.2 Example of atask routine that terminates itself

voi d Task2(void) {
char DoSomeMor e;

do {

DoSoneMore = DoSonet hi ngEl se(); // Do sonething

OS_TASK Del ay(10); /1 Gve other tasks a chance to run
} while (DoSonmeMbre);
OS_TASK Ter mi nat e(NULL) ; /1 Terminate this task

}

There are different ways to create a task: On the one hand, embOS offers a simple macro
to facilitate task creation, which is sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a function is available allowing “fine-tuning” of all parameters.
For most applications, at least initially, we recommend using the macro.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

a7 CHAPTER 2 Cooperative vs. preemptive task switches

2.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemptive
task switches are required to guarantee responsiveness of high-priority, time critical tasks.
However, it may be desirable to disable preemptive task switches for certain tasks in some
circumstances. The default behavior of embOS is to allow preemptive task switches in all
circumstances.

2.2.1 Disabling preemptive task switches for tasks of equal
priority

In some situations, preemptive task switches between tasks running at identical priorities
are not desirable. To inhibit time slicing of equal-priority tasks, the time slice of the tasks
running at identical priorities must be set to zero as in the example below:

#i ncl ude "RTCS. h"

#define PRI O_COOP 10
#define TIME_SLICE_NULL O

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void TaskEx(voi d* pData) {
while (1) {
OS_TASK Del ay ((OS_TI ME) pData);
}
}

/***

*

* mai n()

*/

int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /'l Initialize required hardware
BSP_Init(); /1 Initialize LED ports

OS_TASK Creat eEx(&TCBHP, "HP Task", PRI O COOP, TaskEx, StackHP,
si zeof (StackHP), TIME_SLI CE_NULL, (void *) 50);

OS_TASK Creat eEx(&TCBLP, "LP Task", PRI O COOP, TaskEx, StackLP,
si zeof (StackLP), TIME_SLICE_NULL, (void *) 200);

CS Start(); /1 Start enmbCS

return O;

2.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be OS_TASK Ent er Regi on() as shown in the
following sample:

voi d MyTask(voi d* pContext) {
OS_TASK EnterRegion(); // Disable preenptive context switches
while (1) {
/'l Do sonmething. In the code, nmake sure that you call a bl ocking
/1 function periodically to give other tasks a chance to run.

}
}

This will entirely disable preemptive context switches from that particular task and will
therefore affect the timing of higher-priority tasks. Do not use this carelessly.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

48 CHAPTER 2 Extending the task context

2.3 Extending the task context

For some applications it might be useful or required to have individual data in tasks that are
unique to the task. Local variables, declared in the task, are unique to the task and remain
valid, even when the task is suspended and resumed again. When the same task function
is used for multiple tasks, local variables in the task may be used, but cannot be initialized
individually for every task. embOS offers different options to extend the task context.

2.3.1 Passing one parameter to a task during task creation

Very often it is sufficient to have just one individual parameter passed to a task. Using the
OS_TASK _CREATEEX() or OS_TASK Creat eEx() function to create a task allows passing a
void-pointer to the task. The pointer may point to individual data, or may represent any
data type that can be held within a pointer.

2.3.2 Extending the task context individually at runtime

Sometimes it may be required to have an extended task context for individual tasks to store
global data or special CPU registers such as floating-point registers in the task context.
The standard libraries for file I/0, locale support and others may require task-local stor-
age for specific data like errno and other variables. embOS enables extension of the task
context for individual tasks during runtime by a call of OS_TASK_Set Cont ext Ext ensi on() .
The sample application file OS_Ext endTaskCont ext . ¢ delivered in the application samples
folder of embOS demonstrates how the individual task context extension can be used.

2.3.3 Extending the task context by using own task struc-
tures

When complex data is needed for an individual task context, the OS_TASK CREATEEX() or
OS_TASK Creat eEx() functions may be used, passing a pointer to individual data structures
to the task. Alternatively you may define your own task structure which can be used. Note,
that the first item in the task structure must be an embOS task control structure OS_TASK.
This can be followed by any amount and type of additional data of different types.

The following code shows the example application OS_Ext endedTask. ¢ which is delivered
in the sample application folder of embQOS.

/***

* SEGGER M crocontroller GrbH & Co. KG *
* The Enbedded Experts *
EE R IR Sk S I I S I R R I S I I S R S I S R S I I S S R R R S I I I I Sk I S I R b I S I I
-------------------------- END- OF- HEADER - ------- - mm e e e e o
File . OS_Ext endedTask. c

Purpose : enbOS sanpl e program denonstrating the extension of tasks.
*/

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

[****x*% Custom task structure with extended task context *****xxxxxsksk/
typedef struct {
OS_TASK Task; /1 OS_TASK has to be the first el ement
CS_TIME Timeout; // Any other data type nay be used to extend the context
char* pString; // Any nunber of elenents nay be used to extend the context
} MY_APP_TASK;

/****** Stath data ***/

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static MY_APP_TASK TCBHP, TCBLP; /'l Task control bl ocks

/****** Task functlon ***/

static void MyTask(void) {

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

49 CHAPTER 2 Extending the task context

MY_APP_TASK* pThi's;

CS_TI ME Ti meout ;

char* pString;

pThis = (MY_APP_TASK*) OS_TASK Get | D();
while (1) {

Ti neout = pThi s->Ti neout ;
pString = pThis->pString;
printf(pString);
OS_TASK Del ay(Ti neout) ;
}
}

/***

*

* mai n()

*/

int main(void) {
CS Init(); /'l Initialize enhOS
Cs_ I nitHW); /1 Initialize required hardware
I

/1l Create the extended tasks just as nornal tasks.

/1l Note that the first paraneter has to be of type OS TASK
I

OS_TASK_CREATE(&TCBHP. Task, "HP Task", 100, MyTask, StackHP);
OS_TASK_CREATE(&TCBLP. Task, "LP Task", 50, MyTask, StackLP);

I

/'l Gve task contexts individual data
I

TCBHP. Ti meout = 200;

TCBHP. pString = "HP task runni ng\n";
TCBLP. Ti neout = 500;

TCBLP. pString = "LP task runni ng\n";
CS Start(); /1l Start enbCsS

return O;

}

/****** End G Flle ***/

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

50 CHAPTER 2 API functions

2.4 API functions

Routine Description

urew
Jsel Alld
ysel Audun
Sl
Jawll MS

OS_TASK_AddCont ext Ext ensi on() Adds a task context extension.
Adds a hook (callback) function

OS_TASK _AddTer mi nat eHook () to the list of functions which are oo
called when a task is terminated.
OS _TASK Create() Creates a new task. oo

05 TASK_Gr eat eEx() Creates a new task and passes a ol e
— — parameter to the task.

Suspends the calling task for a
specified amount of system ticks,

O5_TASK_Del ay() or waits actively when called from i I
main().
05 _TASK_Del ay_us() Waits for the given time in mi- olele

croseconds.

Suspends the calling task until a
OS_TASK Del ayUntil () specified time, or waits actively oo |0
when called from main().

0S5 TASK_Get Name() tF:{aestltjrns a pointer to the name of a olelelele

OS_TASK_ Get NunmTrasks() Returns the number of tasks. o o o0 |0

Returns the task priority of a

OS_TASK GetPriority() specified task.

Returns the suspension count and

OS_TASK_ Get SuspendCnt () thus suspension state of the spec- (e | e | o | o | @
ified task.
Returns a pointer to the task con-

OS_TASK Getl IX) trol block structure of the current- (e |e | e e | @

ly scheduled task.

08 TASK_Get Ti meSl i ceRen() Returns the remaining tlmg slice ol olelele
- - value of a task in system ticks.

Determines whether a task control
O5_TASK_I sTask() block belongs to a valid task. i I I I

Returns the task control block of
OS_TASK_I'ndex2Ptr () the task with the specified Index. i I I I g

Removes all hook functions from
the OS_ON_TERM NATE_HOXK list
which contains the list of functions | e | e
that are called when a task is ter-
minated.

OS_TASK _RenpveAl | Ter nmi nat e-
Hooks()

This function removes a hook
function from the OS_ON_TERM -
OS_TASK _RenpveTer m nat eHook() NATE_HOX list which contains the | e | o
list of functions that are called
when a task is terminated.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

51

CHAPTER 2

API functions

Routine

Description

urew
)se] Alld
ysel Audun

ds|
JBWIL MS

OS_TASK Resune()

Decrements the suspend count of
the specified task and resumes it
if the suspend count reaches zero.

OS_TASK ResuneAl | ()

Decrements the suspend count of
all tasks that have a nonzero sus-
pend count and resumes these
tasks when their respective sus-
pend count reaches zero.

OS_TASK_ Set Cont ext Ext ensi on()

Makes global variables or proces-
sor registers task-specific.

OS_TASK_ Set Def aul t Cont ext Ex-
tensi on()

Sets the default task context ex-
tension.

OS_TASK_Set Def aul t St art Hook()

Sets a default hook routine which
is executed before a task starts.

OS_TASK_ Set | nitial SuspendCnt ()

Sets the initial suspend count for
newly created tasks to 1 or 0.

0S_TASK_Set Nane()

Allows modification of a task name
at runtime.

OS TASK SetPriority()

Assigns a priority to a specified
task.

OS_TASK Set Ti meSlice()

Assigns a specified timeslice peri-
od to a specified task.

OS_TASK_Suspend()

Suspends the specified task and
increments a counter.

OS_TASK_SuspendAl | ()

Suspends all tasks except the run-
ning task.

OS_TASK Term nat e()

Ends (terminates) a task.

0S_TASK_Wake()

Ends delay of a specified task im-
mediately.

OS_TASK_Yi el d()

Calls the scheduler to force a task
switch.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

52 CHAPTER 2 API functions

24.1 OS_TASK_ AddContextExtension()

Description

Adds a task context extension. The task context can be extended with OS TASK Set -
Cont ext Ext ensi on() only once. Additional task context extensions can be added with
OS_TASK _AddCont ext Ext ensi on() . OS_TASK_AddCont ext Ext ensi on() can also be called
for the first task context extension.

The function OS_TASK AddCont ext Ext ensi on() requires an additional parameter of type
OS_EXTEND_TASK_ CONTEXT_LI NK which is used to create a task specific linked list of task
context extensions.

Prototype

voi d OS_TASK_AddCont ext Ext ensi on
(OS_EXTEND_TASK_CONTEXT_LI NK* pExt endCont ext Li nk,

OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext) ;
Parameters
Parameter Description
pExt endCont ext Li nk Pointer to the OS_EXTEND TASK CONTEXT LI NK structure.

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

The object of type OS_EXTEND TASK CONTEXT_LI NK is task specific and must only be used
for one task. It can be located e.g. on the task stack. pExt endCont ext , pExt endCont ext -
>pf Save and pExt endCont ext ->pf Rest or e must not be NULL. An embOS debug build calls
OS_Error (OS_ERR _EXTEND CONTEXT) when one of the function pointers is NULL.

Example

static void HPTask(void) {
OS_EXTEND_TASK_CONTEXT_LI NK p;
Il
/'l Extend task context by VFP registers
Il
OS_TASK_Set Cont ext Ext ensi on(&_SaveRest or eVFP) ;
Il
/1 Extend task context by global variable
I
OS_TASK_AddCont ext Ext ensi on(&p, & SaveRestored obal Var);
a=1.2;
while (1) {
b =37* g
d obal Var = 1;
OS_TASK_Del ay(10);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

53 CHAPTER 2 API functions

24.2 OS _TASK_AddTerminateHook()

Description

Adds a hook (callback) function to the list of functions which are called when a task is
terminated.

Prototype

voi d OS_TASK_AddTer nmi nat eHook(OS_ON_TERM NATE_HOOK* pHook,
OS_ROUTI NE_TASK_PTR* pf Routi ne);

Parameters
Parameter Description
Pointer to a variable of type OS_ON _TERM NATE_HOOK which
pHook will be inserted into the linked list of functions to be called
during GS_TASK Terni nate().
f Rout i ne Pointer to the function of type OS_TERM NATE_FUNC which
P shall be called when a task is terminated.

Additional information

For some applications, it may be useful to allocate memory or objects specific to tasks. For
other applications, it may be useful to have task-specific information on the stack. When a
task is terminated, the task-specific objects may become invalid. A callback function may
be hooked into GS_TASK Terni nate() by calling OS TASK AddTer m nat eHook() to allow
the application to invalidate all task-specific objects before the task is terminated. The
callback function of type OS_ROUTI NE_TASK PTR receives the ID of the terminated task as
its parameter.

Note

The variable of type OS_ON TERM NATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not be
located on any stack of any task that might be terminated.

If a task terminates itself, its task control block and task stack are still used until the
scheduler switches to another task or OS | dl e() . You must not use the task control
block or task stack for anything else before the scheduler was executed. For example
you must not free the task control block or task stack in the hook function when using
heap memory for the task control block or task stack.

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) ({
/'l This function is executed upon calling OS_TASK Terninate().
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter mi nat eHook, Ter m nat eHookFunc) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

54

CHAPTER 2 API functions

2.4.3 0OS TASK Create()

Description

Creates a new task.

Prototype
voi d OS_TASK Creat ¢(OS_TASK* pTask,
const char* sNane,

CS_PRI O Priority,
OS_ROUTI NE_VA D* pf Routi ne,
voi d 0S_STACKPTR *pSt ack,
CS_UI NT St ackSi ze,
CS_UI NT Ti meSlice);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.
Pointer to the name of the task. Can be NULL (or 0) if not
used. When using an embOS build without task hame sup-

sNane port, this parameter does not exist and must be omitted.
The embOS OS_LI BMODE_XR libraries do not support task
names.
Priority of the task. Must be within the following range:
1 <Priority <28-1 = 0xFF for 8/16-bit CPUs

Priority 1 <Priority < 232 -1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as a 32-bit value for 32-bit CPUs and as an 8-bit val-
ue for 8 or 16-bit CPUs by default.

pf Routi ne Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack

pSt ack area for the task. The size of this block of memory deter-
mines the size of the stack area.

St ackSi ze Size of stack in bytes.
Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-

TineSlice notes the time (in embOS system ticks) that the task will
run before it suspends, and must be in the following range:
O <TineSlice < 255.

Additional information

OS TASK Create() creates a task and makes it ready for execution. The newly created
task will be activated by the scheduler as soon as there is no other task with higher priority
ready for execution.

OS _TASK Create() can be called either from main() during initialization or from any other
task. The recommended strategy is to create all tasks during initialization in main() to keep
the structure of your application easy to maintain.

The absolute value of Priority is of no importance, only the value in comparison to the
priorities of other tasks matters. If there is another task with the same priority, the new
task will be placed immediately before it.

The stack indicated by pSt ack must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be aligned
to a multiple of the processor word size.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

55 CHAPTER 2 API functions

A Ti meSl i ce value of zero is allowed and disables round-robin task switches (see sample
in chapter Disabling preemptive task switches for tasks of equal priority on page 47).

Note

embOS offers a macro that calls OS_ TASK Cr eat e() with two pre-defined parameters,
OS_TASK CREATE(), allowing to more easily create tasks. OS TASK CREATE() deter-
mines the value of St ackSi ze automatically using si zeof (). This is possible only if
the memory area has been defined at compile time. Furthermore, OS_ TASK CREATE()
uses a default Ti neSl i ce of 2. If the macro shall be used, its definition is as follows:

#defi ne OS_TASK CREATE(pTask, pNane, Priority, pRoutine, pStack)
OS_TASK Create((pTask),
(pName) ,
(OGS _ PRIO (Priority),
(pRouti ne),
(void OS_STACKPTR*) (pSt ack),
si zeof (pSt ack),

\
\
\
\
\
\
\
2u \

Note

Up until embOS V5.8.2, OS TASK Create() expected the task name and time-
slice parameters to be omitted in OS_LI BMODE_XR. From embQOS V5.10.0 onward,
OS5 _TASK Creat e() expects all parameters to be present independent of the library
mode. This means existing applications which call 0S_TASK Creat e() in OS_LI BMOD-
E_XR need to be updated accordingly.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {

while (1) {
OS_TASK_Del ay(50);
}
}
static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200) ;
}
}
int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /'l Initialize required hardware
OS_TASK Create(&TCBHP, "HP Task", 100, HPTask, StackHP, sizeof(StackHP), 2);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbCS
return O;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

56

CHAPTER 2 API functions

2.4.4 OS_TASK_ CreateEx()

Description

Creates a new task and passes a parameter to the task.

Prototype
voi d OS_TASK_Cr eat eEx(0S_TASK* pTask,
const char* sNane,
OS_PRIO Priority,
OS_ROUTI NE_VO D_PTR* pf Routi ne,
voi d OS_STACKPTR *pSt ack,
CS_UI NT St ackSi ze,
CS_UI NT Ti meSli ce,
voi d* pCont ext) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Pointer to the name of the task. Can be NULL (or 0) if not
used. When using an embOS build without task hame sup-
sNane port, this parameter does not exist and must be omitted.
The embOS OS_LI BMODE_XR libraries do not support task
names.
Priority of the task. Must be within the following range:
1 <Priority <28-1 = 0xFF for 8/16-bit CPUs
Priority 1 <Priority < 232 -1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as a 32-bit value for 32-bit CPUs and as an 8-bit val-
ue for 8 or 16-bit CPUs by default.
pf Routi ne Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack
pSt ack area for the task. The size of this block of memory deter-
mines the size of the stack area.
St ackSi ze Size of stack in bytes.
Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
TineSlice notes the time (in embOS system ticks) that the task will
run before it suspends, and must be in the following range:
O <TineSlice < 255.
pCont ext Parameter passed to the created task.

Additional information

This function works the same way as OS_TASK Cr eat e(), but allows passing a parameter,
pCont ext , to the task. Using a voi d pointer as additional parameter gives the flexibility to
pass any kind of data to the task function.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

57 CHAPTER 2 API functions

Note

embOS offers a macro that calls OS TASK Creat eEx() with two pre-defined para-
meters, OS TASK CREATEEX(), allowing to more easily create tasks. OS TASK CRE-
ATEEX() determines the value of St ackSi ze automatically using si zeof (). This is
possible only if the memory area has been defined at compile time. Furthermore,
OS5 _TASK CREATEEX() uses a default Ti neSli ce of 2. If the macro shall be used, its
definition is as follows:

#define OS_TASK_CREATEEX(pTask, pName, Priority, pRoutine, pStack, pContext)
OS_TASK_Creat eEx((pTask),
(pNane) ,
(CS_PRIOQ (Priority),
(pRouti ne),
(voi d OS_STACKPTR*) (pSt ack),
si zeof (pSt ack),
2u,
(pCont ext)

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /| Task control bl ocks

static void Task(void* pContext) {
while (1) {
OS_TASK_Del ay((i nt)pContext);
}

}
int main(void) {
CS Init(); /1 Initialize enbCS
OS InitHW); /1 Initialize required hardware

OS_TASK Creat eEx(&TCBHP, "HP Task", 100, Task,
St ackHP, sizeof (StackHP), 2, (void*) 50);
OS_TASK_CREATEEX(&TCBLP, "LP Task", 50, Task,
St ackLP, (void*)200);
Os_Start(); /] Start enbCs
return O;

Note

Up until embOS V5.8.2, OS TASK Creat eEx() expected the task name and time-
slice parameters to be omitted in GS LI BMODE XR. From embQOS V5.10.0 onward,
OS5 _TASK Creat eEx() expects all parameters to be present independent of the library
mode. This means existing applications which call OS_TASK Cr eat eEx() in OS_LI B-
MODE_XR need to be updated accordingly.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

58 CHAPTER 2 API functions

245 OS_TASK_Delay()

Description

Suspends the calling task for a specified amount of system ticks, or waits actively when
called from main().

Prototype

voi d OS_TASK Del ay(OS _TIME t);

Parameters

Parameter Description

Number of system ticks to delay. Must be within the follow-
ing range:

t 0 <t < 215-1 = Ox7FFF for 8/16-bit CPUs
0 <t < 231 -1 = Ox7FFFFFFF for 32-bit CPUs
Please note that these are signed values.

Additional information

The parameter t specifies the time interval in system ticks during which the task is sus-
pended. The actual delay will be in the following range: t - 1 < delay < t, depending on
when the interrupt for the scheduler occurs. After the expiration of the delay, the task is
made ready and activated according to the rules of the scheduler. A delay can be ended
prematurely by another task or by an interrupt handler calling 05 TASK Wake() .

If OS_TASK Del ay() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled.

Example

voi d Hel | o(void) {
printf("Hello");
printf("The next output will occur in 5000 systemticks.\n");
0S_TASK_Del ay(5000) ;
printf("Delay is over.\n");

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

59 CHAPTER 2 API functions

2.4.6 OS_TASK_DelayUntil()
Description
Suspends the calling task until a specified time, or waits actively when called from main().

Prototype

voi d OS_TASK Del ayUnti| (OS_TIME t);

Parameters

Parameter Description

Time in system ticks to delay until. Must be within the fol-
lowing range:

0 <t < 216 -1 = OxFFFF for 8/16-bit CPUs

0 <t < 232-1 = OxFFFFFFFF for 32-bit CPUs

Also, the following additional condition must be met:

1 < (t - OS_d obal . Tine) < 215 - 1 = 0x7FFF for 8/16-bit
CPUs

1 < (t - OS_d obal . Tine) < 231 - 1 = Ox7FFFFFFF for 32-bit
CPUs

Please note that these are signed values.

Additional information

OS _TASK Del ayUntil () suspends the calling task until the global time-variable OS_Q ob-
al . Time (see OS_d obal . Ti ne on page 513) reaches the specified value. The main ad-
vantage of this function is that it avoids potentially accumulating delays. The additional
condition towards parametert ensures proper behavior even when an overflow of the em-
bOS system tick timer occurs.

If S _TASK Del ayuntil () is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled.

Example

int sec, mn;

voi d TaskShowTi me(voi d) {

OS_TIME t0;

t0 = OS_TI ME_GetTi cks();

while (1) {
ShowTi me(); // Routine to display tine
t0 += 1000;

OS_TASK _Del ayuntil (t0);
if (sec < 59) {
sec++;
} else {
sec = 0;
m n++;
}
}
}

If the example above used OS_TASK Del ay() instead of 0OS_TASK Del ayUunti | (), this could
lead to accumulating overhead between delays if OGS _TASK Del ay() is not called exactly
each second (which may e.g. happen if interrupts or higher priority tasks are executed
instead). This would cause the simple “clock” to be slow. Using OGS _TASK Del ayUntil ()
avoids this accumulating overhead.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

60 CHAPTER 2 API functions

2.47 OS_TASK Delay us()

Description

Waits for the given time in microseconds.

Prototype
voi d OS_TASK Del ay_us(0S_Ul6 us);
Parameters
Parameter Description
Number of microseconds to delay. Must be within the follow-
us ing range:
1 <us < 215-1 = Ox7FFF.
Please note that these are sighed values.

Additional information

This function can be used for short delays. OS_TASK Del ay_us() must only be called with
interrupts enabled and after S Init(), OS_ InitHW) and OS_TI ME Confi gSysTi ner ()
have been called. This only works when the embOS system timer is running. A debug build
of 08 TASK Del ay_us() checks whether interrupts are enabled and calls OS Error () if
they are not.

OS_TASK Del ay_us() does not block task switches and does not block interrupts. Therefore,
the delay may not be accurate because the function may be interrupted for an undefined
time. The delay duration therefore is a minimum delay.

OS _TASK Del ay_us() does not suspend the calling task, thus all tasks with lower prior-
ity cannot interrupt OS_TASK Del ay_us() and will not be executed before OS5 TASK De-
I ay_us() returns.

Note

For embOS V5.06 and later OS_TI ME_Conf i gSysTi ner () must be called before calling
OS_TASK Del ay_us() .

Example

void Hel lo(void) {
printf("Hello");
printf("The next output will occur in 500 m croseconds.\n");
OS_TASK Del ay_us(500);
printf("Delay is over.\n");

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

61 CHAPTER 2 API functions

2.4.8 0OS TASK GetName()

Description

Returns a pointer to the name of a task.

Prototype
char *OS_TASK_Get Name(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Return value
A pointer to the name of the task. NULL indicates that the task has no name.

When using an embOS build without task name support, OS_ TASK Get Nane() returns “n/
a” in any case. The embOS OS LI BMODE _XR libraries do not support task names.

Additional information

If pTask is NULL, the function returns the name of the running task. If there is no currently
running task, the return value is "*OS_I dl e() ”. If pTask is not NULL and does not specify a
valid task, a debug build of embOS calls GS_Error (). The release build of embOS cannot
check the validity of pTask and may therefore return invalid values if pTask does not specify
a valid task.

Example

voi d Print TaskName(void) ({
char* s;
s = OS_TASK_Get Narme(NULL) ;
printf("Task name: %\n", s);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

62 CHAPTER 2 API functions

249 0OS TASK GetNumTasks()

Description

Returns the number of tasks.

Prototype

i nt OS_TASK_ Get NunTasks(voi d);

Return value

Number of tasks.

Example

voi d PrintNunmber Of Tasks(voi d) {
i nt Nunirasks;
NunmTasks = OS_TASK_ Get NunTTasks();
printf("Nunber of tasks %\ n", NunfTasks);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

63 CHAPTER 2 API functions

2.4.10 OS_TASK_GetPriority()

Description

Returns the task priority of a specified task.

Prototype
OS_PRI O OS_TASK_Get Pri ority(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
current task.

Return value

Priority of the specified task (range 1 to 255 for 8/16-bit CPUs and up to 4294967295 for
32-bit CPUs).

Additional information

If pTask is NULL, the function returns the priority of the currently running task. If pTask
does not specify a valid task, the debug build of embOS calls OS_Error (). The release build
of embOS cannot check the validity of pTask and may therefore return invalid values if
pTask does not specify a valid task.

Note

This function can be called from within an interrupt handler with OS_TASK Get Pri or -
i ty(NULL) but if the handler interrupts OS I dl e() no task is currently running and
no valid task is specified. The debug build of embOS calls GS Error () in this case.
We suggest to call OS TASK Get Priority() from an interrupt handler with a pointer
to a valid task control block only.

Example

void PrintPriority(const OS_TASK* pTask) {

OCS_PRIO Prio;

Prio = OS_TASK GetPriority(pTask);

printf("Priority of task Ox% = %\n", pTask, Prio);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

64

CHAPTER 2 API functions

2.4.11 OS_TASK GetSuspendCnt()

Description

Returns the suspension count and thus suspension state of the specified task. This function
may be used to examine whether a task is suspended by previous calls of OS_TASK_ Sus-
pend() .

Prototype
0S_U8 OS_TASK_ Get SuspendCnt (OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Return value
Suspension count of the specified task.

=0 Task is not suspended.
>0 Task is suspended by at least one call of GS_TASK_Suspend() .

Additional information

If pTask does not specify a valid task, the debug build of embOS calls GS Error (). The
release build of embOS cannot check the validity of pTask and may therefore return invalid
values if pTask does not specify a valid task. When tasks are created and terminated dy-
namically, S _TASK | sTask() may be called prior to calling OS_TASK Get SuspendCnt () to
determine whether a task is valid. The returned value can be used to resume a suspended
task by calling OS_TASK Resune() as often as indicated by the returned value.

Example

voi d ResumeTask(OS_TASK* pTask) {
OS_U8 SuspendCnt;
SuspendCnt = OS_TASK_Get SuspendCnt (pTask) ;
whil e (SuspendCnt > Ou) {
OS_TASK_Resune(pTask); // My cause a task sw tch
SuspendCnt - - ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

65

CHAPTER 2 API functions

2.4.12 OS_TASK_GetID()

Description

Returns a pointer to the task control block structure of the currently scheduled task. This
pointer is unique for the task and is used as a task Id.

Prototype

0S_TASK *0S_TASK_Get | D(voi d) ;
Return value

= NULL No task is executing.
NULL Pointer to the task control block of the currently running task.

Additional information

When called from a task, this function may be used for determining which task is currently
executing. This can be helpful if the action(s) of a function depend(s) on which task is
executing it.

If called from an interrupt service routine, this function may be used to determine the
interrupted task (if any).

Example

voi d PrintCurrent Taskl D(voi d) {
OS_TASK* pTask;
pTask = OS_TASK CGetl D();
printf("Task ID Ox%\n", pTask);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

66

CHAPTER 2 API functions

2.4.13 OS_TASK_ GetTimeSliceRem()

Description

Returns the remaining time slice value of a task in system ticks.

Prototype
0S_U8 OS_TASK Get Ti neSl i ceRen(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Return value

Remaining time slice value of the task in system ticks.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call OS Error () in case pTask does not indicate a valid task. The release
build of embOS cannot check the validity of pTask and may therefore return invalid values
if pTask does not specify a valid task.

The function is unavailable when using an embOS build without round-robin support. The
embOS Os LI BMODE XR libraries do not support round-robin. In that case OS_TASK GCet -
Ti meSl i ceRen() returns zero.

Example

voi d PrintRemaini ngTi neSlices(void) ({
OS W8 slices;

slices = OS_TASK Get Ti neSl i ceRem(NULL) ;
printf("Remaining Tinme Slices: %\ n", slices);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

67

CHAPTER 2 API functions

2.4.14 OS_TASK_IsTask()

Description

Determines whether a task control block belongs to a valid task.

Prototype
OS_BOOL OS_TASK | sTask(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Return value

=0 TCB is not used by any task.
=0 TCB is used by a task.

Additional information

This function checks if the specified task is present in the internal task list. When a task is
terminated it is removed from the internal task list. In applications that create and terminate
tasks dynamically, this function may be useful to determine whether the task control block
and stack for one task may be reused for another task.

Example
voi d Print TCBSt at us(OS_TASK* pTask) {
CS_BOOL b;
b = OS_TASK | sTask(pTask);
if (b ==20) {
printf("TCB can be reused for another task.\n");
} else {

printf("TCB refers to a valid task.\n");

}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

68 CHAPTER 2 API functions

2.4.15 OS_TASK_Index2Ptr()

Description

Returns the task control block of the task with the specified Index.

Prototype

OS_TASK *OS_TASK_I ndex2Ptr (i nt Taskl ndex);

Parameters

Parameter Description

Index of a task control block in the task list.
Taskl ndex This is a zero based index. Taskl ndex O identifies the first
task control block.

Return value

= NULL No task control block with this index found.
NULL Pointer to the task control block with the index Taskl ndex.

Example

voi d Print TaskNane(int Taskl ndex) ({
OS_TASK* pTask;

pTask = OS_TASK | ndex2Ptr (Taskl ndex);
if (pTask != NULL) {
printf("%", pTask->Nane);
}
}

voi d HPTask(void) {
/1l
// Print the task nane of the first task in the task |ist
/1l
Pri nt TaskNane(0) ;
while (1) {
OS_TASK Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

69

CHAPTER 2 API functions

2.4.16 OS_TASK_RemoveAllTerminateHooks()

Description

Removes all hook functions from the 0§ _ON_TERM NATE_HOX list which contains the list of
functions that are called when a task is terminated.

Prototype

voi d OS_TASK_RenoveAl | Ter m nat eHooks(voi d);

Additional information

OS_TASK _RenoveAl | Ter mi nat eHooks() removes all hook functions which were previously
added by OS_TASK_AddTer mi nat eHook() .

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Termni nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) {
/1 This function is called when OS TASK Termi nate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter m nat eHook, Ter m nat eHookFunc) ;
OS_TASK _RenpveAl | Ter m nat eHooks() ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

70 CHAPTER 2 API functions

2.4.17 OS_TASK_ RemoveTerminateHook()

Description

This function removes a hook function from the OS_ON_TERM NATE_HOX list which contains
the list of functions that are called when a task is terminated.

Prototype
voi d OS_TASK_RenoveTer n nat eHook(OS_CONST_PTR OS_ON_TERM NATE_HOCOK * pHook) ;
Parameters
Parameter Description
pHook Pointer to a variable of type OS_ON _TERM NATE_HOCK.

Additional information

OS_TASK RenpveTer m nat eHook() removes the specified hook function which was previ-
ously added by OS_TASK_AddTer m nat eHook() .

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) ({
/1 This function is called when OS_TASK Term nate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter m nat eHook, Ter m nat eHookFunc) ;
OS_TASK_RenpveTer m nat eHook(& Ter mi nat eHook) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

71

CHAPTER 2 API functions

2.4.18 OS_TASK Resume()

Description

Decrements the suspend count of the specified task and resumes it if the suspend count

reaches zero.

Prototype
voi d OS_TASK Resune(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

The specified task’s suspend count is decremented. When the resulting value is zero, the
execution of the specified task is resumed. If the task is not blocked by other task blocking
mechanisms, the task is placed in the READY state and continues operation according to the
rules of the scheduler. In debug builds of embOS, OS TASK Resune() checks the suspend
count of the specified task. If the suspend count is zero when OS_TASK Resune() is called,
OS_Error() is called with error 0S_ERR_RESUVE_BEFORE_SUSPEND.

Example

Please refer to the example of 08 TASK Suspend() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

72

CHAPTER 2 API functions

2.4.19 OS_TASK_ResumeAll()

Description

Decrements the suspend count of all tasks that have a nonzero suspend count and resumes
these tasks when their respective suspend count reaches zero.

Prototype

voi d OS_TASK ResuneAl | (voi d);

Additional information

This function may be helpful to synchronize or start multiple tasks at the same time. The
function resumes all tasks, no specific task must be addressed. The function may be used
together with the functions 08 _TASK SuspendAl | () and OS_TASK Set | niti al SuspendCn-
t().

The function may cause a task switch when a task with higher priority than the calling task
is resumed. The task switch will be executed after all suspended tasks are resumed.

The function may be called even when no task is suspended.

Example
Please refer to the example of OS_TASK_Set I ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

73

CHAPTER 2 API functions

2.4.20 OS_TASK_ SetContextExtension()

Description

Makes global variables or processor registers task-specific. The function may be used for
a variety of purposes. Typical applications are:

e Global variables such as “errno” in the C library, making the C-lib functions thread-safe.

e Additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.

e Coprocessor registers such as registers of a VFP (floating-point coprocessor).

e Data registers of an additional hardware unit such as a CRC calculation unit.

This allows the user to extend the task context as required. A major advantage is that
the task extension is task-specific. This means that the additional information (such as
floating-point registers) needs to be saved only by tasks that actually use these registers.
The advantage is that the task switching time of other tasks is not affected. The same is
true for the required stack space: Additional stack space is required only for the tasks which
actually save the additional registers.

Prototype

voi d OS_TASK Set Cont ext Ext ensi on
(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext);

Parameters

Parameter Description

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

pExt endCont ext , pExt endCont ext ->pf Save and pExt endCont ext ->pf Rest ore must not
be NULL. An embOS debug build calls GS_Er r or (OS_ERR_EXTEND_CONTEXT) when one of the
function pointers is NULL).

The save and restore functions must be declared according the function type used in the
structure. The sample below shows how the task stack must be addressed to save and
restore the extended task context.

OS_TASK_ Set Cont ext Ext ensi on() is not available in OS_LI BMODE_XR.

Note

The task context can be extended only once per task with OS_TASK_Set Cont ext Ex-
t ensi on() . The function must not be called multple times for one task. Additional task
context extensions can be set with OS_TASK_AddCont ext Ext ensi on() .

The OS_EXTEND TASK CONTEXT structure is defined as follows:

typedef struct OS_EXTEND TASK CONTEXT {
voi d* (*pf Save) (voi d* pStack);
voi d* (*pfRestore)(const voi d* pStack);
} OS_EXTEND TASK_CONTEXT;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

74

CHAPTER 2 API functions

Note

In embOS V4.16 and earlier the OS5 EXTEND TASK CONTEXT structure was defined as
follows:

typedef struct OS_EXTEND_TASK_CONTEXT_STRUCT {
voi d (*pf Save) (voi d OS_STACKPTR * pStack);
voi d (*pfRestore)(const void OS_STACKPTR * pStack);
} OS_EXTEND_TASK_CONTEXT;

The Save/Restore functions did not return the stack pointer. When updating from
embOS V4.16 and earlier to embOS V4.20 and later please update your Save/Restore
functions accordingly.

Example

#i ncl ude "RTCS. h"

/1
/1l Custom structure with task context extension.
/1 In this case, the extended task context consists of just
/1 a single nenber, which is a global variable.
/1
typedef struct {
int d obal Var;
} CONTEXT_EXTENSI ON,;

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks
static int d obal Var;

static void OS_STACKPTR* _Save(void OS_STACKPTR* pStack) {
CONTEXT_EXTENSI ON* p;
Il
I/l Create pointer to our structure
Il
p = ((CONTEXT_EXTENSI ON*) pStack) - (1 - OS_STACK AT_BOTTOM ;
Il
/1 Save all nenbers of the structure
Il
p- >3 obal Var = @ obal Var;
return (void OS_STACKPTR*) p;

}

static void OS_STACKPTR* _Restore(const void OS_STACKPTR* pStack) ({
const CONTEXT_EXTENSI ON* p;
Il
I/l Create pointer to our structure
Il
p = ((const CONTEXT_EXTENSI ON *)pStack) - (1 - OS_STACK_AT_BOTITOM ;
Il
/'l Restore all nenbers of the structure
Il
d obal Var = p->d obal Var;
return (void OS_STACKPTR*) p;

}
const OS_EXTEND TASK_CONTEXT _SaveRestore = {
_Save, /1 Function pointer to save the task context
_Restore // Function pointer to restore the task context
Ji 5

static void HPTask(void) {
OS_TASK_Set Cont ext Ext ensi on(& _SaveRestore);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

75 CHAPTER 2

d obal Var = 1;

while (1) {
CS_TASK Del ay(10);

}

}

static void LPTask(void) {

OS_TASK_Set Cont ext Ext ensi on(& _SaveRestore);

d obal Var = 2;
while (1) {
OS_TASK Del ay(50);

}
}
int main(void) {
CS Init(); /1 Initialize enbGS
OS_ I nit HW); /1 Initialize required hardware

0S_TASK_CREATE(&TCBHP, "HP Task",
0S_TASK_CREATE(&TCBLP, "LP Task",

CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS

API functions

100, HPTask, StackHP);
LPTask, StackLP);

© 1995-2022 SEGGER Microcontroller GmbH

76

CHAPTER 2 API functions

2.4.21 OS_TASK_ SetDefaultContextExtension()

Description

Sets the default task context extension.

Prototype

voi d OS_TASK_Set Def aul t Cont ext Ext ensi on
(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext);

Parameters

Parameter Description

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

After calling this function all newly started tasks will automatically use this context exten-
sion. The same task context extension is used for all tasks.

pExt endCont ext , pExt endCont ext ->pf Save and pExt endCont ext ->pf Rest ore must not
be NULL. An embOS debug build calls GS_Err or (OS_ERR _EXTEND CONTEXT) when one of the
function pointers is NULL).

Example

extern const OS_EXTEND _TASK_CONTEXT _SaveRest ore;

int main(void) {
OS_Init(); Il Initialize embOS
OS I nit HW); /1 Initialize required hardware
OS_TASK_Set Def aul t Cont ext Ext ensi on(& SaveRestore);
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

77

CHAPTER 2 API functions

2.4.22 0OS_TASK_ SetDefaultStartHook()

Description

Sets a default hook routine which is executed before a task starts. May be used to perform
additional initialization for newly created tasks.

Prototype
voi d OS_TASK_Set Def aul t St art Hook(OS_ROUTI NE_VO D* pf Routi ne) ;
Parameters
Parameter Description
f Rout i ne Pointer to the hook routine.
P If NULL is passed no hook routine gets executed.

Additional information

After calling OS_TASK Set Def aul t St art Hook() all newly created tasks will automatically
call this hook routine before the tasks are started for the first time. The same hook function
is used for all tasks.

Example

voi d _HookRoutine(void) { // This routine is automatically executed before

DoSomeThi ng() ; /'l HPTask() gets executed
}
voi d HPTask(void) {

while (1) {

OS_TASK Del ay(10);

}
}
int main(void) {

OS_Init(); Il Initialize embOS

OS_ I nit HW); /1 Initialize required hardware

OS_TASK_ Set Def aul t St art Hook(_HookRoutine); // Set task start hook routine
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);

CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

78

CHAPTER 2 API functions

2.4.23 OS_TASK_ SetlnitialSuspendCnt()

Description

Sets the initial suspend count for newly created tasks to 1 or 0. May be used to create
tasks which are initially suspended.

Prototype
voi d OS_TASK Setlnitial SuspendCnt (0OS_U8 SuspendCnt);
Parameters
Parameter Description
SuspendCnt 1: Tasks will be created in suspended state.
P 0: Tasks will be created normally, unsuspended.

Additional information

Can be called at any time from main(), any task, ISR or software timer. After calling this
function with nonzero SuspendCnt, all newly created tasks will be automatically suspended
with a suspend count of one. This function may be used to inhibit further task switches,
which may be useful during system initialization.

Note

When this function is called from main() to initialize all tasks in suspended state, at
least one task must be resumed before the system is started by a call of 05 Start ().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Example

/1
/1 High priority task started first after OS Start().
/1
voi d I nitTask(void) {
OS_TASK SuspendAll ();
/1 Prevent execution of all other existing tasks.
OS_TASK Setlnitial SuspendCnt (1);
/'l Prevent execution of subsequently created tasks.
/1 New tasks may be created, but will not execute.
. /'l Even when |nitTask() blocks itself, no other task may execute.
OS _TASK Setlnitial SuspendCnt(0); // Reset initial suspend count for new tasks.
OS_TASK ResuneAl | ();
/1l Resune all tasks that were bl ocked before or

/1 were created in suspended state. May cause a
/1 task sw tch.
while (1) {
/1 Do the normal work.
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

79 CHAPTER 2 API functions

2.4.24 0OS_TASK SetName()

Description

Allows modification of a task name at runtime.

Prototype
voi d OS_TASK_Set Nane(OS_TASK* pTask,
const char* sNane) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Pointer to a null-terminated string which is used as task
shame name

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must
not be passed for pTask from main(), from a timer callback or from an interrupt handler.
A debug build of embOS will call S_Error () in case pTask does not indicate a valid task.

When using an embOS build without task name support, OS_TASK Set Nane() performs no
modifications at all. The embQOS OS_LI BMODE_XR libraries do not support task names.

Example

voi d Task(void) {
OS_TASK Set Nane(NULL, "Initializer Task");
while (1) {
OS_TASK_Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

80 CHAPTER 2 API functions

2.4.25 OS_TASK_SetPriority()

Description

Assigns a priority to a specified task.

Prototype

voi d OS_TASK SetPriority(OS_TASK* pTask,
OS PRIO Priority);

Parameters

Parameter Description

Pointer to a task control block of type GS_TASK or NULL for
current task.

Priority of the task. Must be within the following range:

1 <Priority <28 -1 = OxFF for 8/16-bit CPUs

1 <Priority < 232-1 = OxFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as 32-bit value for 32-bit CPUs and 8-bit value for 8
or 16-bit CPUs per default.

pTask

Priority

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must
not be passed for pTask from main(). A debug build of embOS will call S Error () in case
pTask does not indicate a valid task.

Calling this function might lead to an immediate task switch.
Example

voi d Task(void) {
OS_TASK SetPriority(NULL, 20); /'l Change priority of this task to 20.
while (1) {
OS_TASK Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

81

CHAPTER 2 API functions

2.4.26 OS_TASK SetTimeSlice()

Description

Assigns a specified timeslice period to a specified task.

Prototype

O5_U8 Os_TASK Set Ti neSli ce(O5_TASK* pTask,
os_us TineSlice);

Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
New time slice period for the task in system ticks. Must be
TineSlice within the following range:
0 <TineSlice < 255.

Return value

Previous time slice period of the task in system ticks.

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must not
be passed for pTask from main(), a timer callback or from an interrupt handler. A debug
build of embOS will call S Error () in case pTask does not indicate a valid task.

Setting the time slice period only affects tasks running in round-robin mode. The new time
slice period is interpreted as a reload value: It is used with the next activation of the task,
but does does not affect the remaining time slice of a running task.

A time slice value of zero is allowed, but disables round-robin task switches (see Disabling
preemptive task switches for tasks of equal priority on page 47).

The function is unavailable when using an embOS build without round-robin support. The
embOS OS LI BMODE_XR libraries do not support round-robin. In that case OS _TASK Set -
Ti meSl i ce() does nothing and returns zero.

Example
voi d Task(void) {
OS_TASK_Set Ti neSl i ce(NULL, 4); /1 Gve this task a higher tine slice
while (1) {
OS_TASK Del ay(100);
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

82

CHAPTER 2 API functions

2.4.27 OS_TASK Suspend()

Description

Suspends the specified task and increments a counter.

Prototype
voi d OS_TASK_ Suspend(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

If pTask is NULL, the current task suspends. If the function succeeds, execution of the
specified task is suspended and the task’s suspend count is incremented. The specified task
will be suspended immediately. It can only be restarted by a call of GS_TASK Resune() or
OS_TASK ResuneAll ().

OS_TASK Suspend() may be called from main() but only if pTask is not NULL. Every task
has a suspend count with a maximum value of 3. If the suspend count is greater than zero,
the task is suspended.

In debug builds of embQOS, upon calling GS_TASK Suspend() more often than the maxi-
mum value without calling OS_TASK Resune() the task’s internal suspend count is not in-
cremented and OS_Error () is called with error OS_ ERR _SUSPEND TOO CFTEN.

Cannot be called from an interrupt handler or software timer as this function may cause an
immediate task switch. The debug build of embOS will call the GS Error () function when
OS_TASK Suspend() is not called from main() or a task.

Example

voi d Hi ghPrioTask(void) {
OS_TASK_Suspend(NULL) ;
/1 Suspends itself, low priority task will be executed

}

voi d LowPri oTask(void) {
OS_TASK_Resune(&H ghPri oTCB); // Resunes the high priority task

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

83 CHAPTER 2 API functions

2.4.28 OS_TASK_SuspendAll()

Description

Suspends all tasks except the running task.

Prototype

voi d OS_TASK SuspendAl | (void);

Additional information

This function may be used to inhibit task switches. It may be useful during application
initialization or supervising.

The calling task will not be suspended.

After calling OS_TASK_SuspendAl | (), the calling task may block or suspend itself. No other
task will be activated unless one or more tasks are resumed again. The tasks may be re-
sumed individually by a call of OS_TASK Resune() or all at once by a call of CS_TASK Re-
suneAl | ().

Example
Please refer to the example of OS_TASK_Set I ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

84 CHAPTER 2 API functions

2.4.29 0OS_TASK_Terminate()

Description

Ends (terminates) a task.

Prototype
voi d OS_TASK_ Ter ni nat e(OS_TASK* pTask);
Parameters
Parameter Description
Task Pointer to a task control block of type GS_TASK. A value of
P NULL terminates the current task.

Additional information

The specified task will terminate immediately. The memory used for stack and task control
block can be reassigned.

All resources which are held by a task are released upon its termination. Any task may be
terminated regardless of its state.

Example

voi d Task(void) {
OS_TASK_Ternmi nate(&TCBHP); // Term nate HPTask()
DoSonet hi ng() ;
OS_TASK_Ter mi nat e(NULL) ; /'l Termnate itself

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

85

CHAPTER 2 API functions

2.430 OS_TASK_Wake()

Description

Ends delay of a specified task immediately.

Prototype
voi d OS_TASK Wake(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

Places the specified task, which is already suspended for a certain amount of time by a call
of OS_TASK Del ay() or OS_TASK Del ayuntil (), back into the READY state.

The specified task will be activated immediately if it has a higher priority than the task that
had the highest priority before. If the specified task is not in the WAITING state (e.g. when
it has already been activated, or the delay has already expired, or for some other reason),
calling this function has no effect.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static void HPTask(void) {
while (1) {
OS_TASK Del ay(50);
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(10);
OS_TASK Wake(&TCBHP); // Wake HPTask() which is in delay state
}
}

/***

*

k3 mai n()
*/
int main(void) {
OS_Init(); Il Initialize embOS
OS I nit HW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

86

CHAPTER 2 API functions

2431 OS_TASK_Yield()

Description

Calls the scheduler to force a task switch.

Prototype

void OS_TASK Yiel d(void);

Additional information

If the task is running on round-robin, it will be suspended if there is another task with equal
priority ready for execution.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
DoSonet hi ng() ;
}
}

static void LPTask(void) {
while (1) {
DoSomet hi ngEl se() ;
I
/1l This task doesn't need the conplete time slice.
/1 Gve another task with the sane priority the chance to run
I
OS_TASK Yiel d();
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /'l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 100, LPTask, StackLP);
CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 3

Software Timers

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

88 CHAPTER 3 Introduction

3.1 Introduction

A software timer is an object that calls a user-specified routine after a specified delay. An
unlimited number of software timers can be created.

embOS software timers can be stopped, started and re-triggered much like hardware
timers. When defining a timer, you specify a routine to be called after the expiration of the
delay. Timer routines are similar to interrupt routines: they have a priority higher than the
priority of any task. For that reason they should be kept short just like interrupt routines.

Software timers are called by embQOS with interrupts enabled, so they can be interrupt-
ed by any hardware interrupt. Generally, software timer run in single-shot mode, which
means they expire exactly once and call their callback routine exactly once. By calling
OS_TI MER Restart () from within the callback routine, the timer is restarted with its initial
delay time and therefore functions as a periodic timer.

The state of timers can be checked by the functions OS_TI MER _Get St at us(), OS_TI MER _Ge-
t Remai ni ngPeri od() and OS_TI MER Get Peri od() .

Example

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

static OS_TIMER Tiner0, Tinerl,

static void Call backO(void) {
BSP_Toggl eLED 0) ;
OS_TI MER_Rest art (&Ti ner 0) ;
}

static void Call backl(void) {
BSP_Toggl eLED(1) ;
OS_TI MER _Restart (&Ti nerl);

}

int mai n(void) {
CS Init(); /[l Initialize enbCS
S InitHW); [/ Initialize required hardware
BSP_Init(); /1 Initialize LED ports

OS_TI MER_CREATE(&Ti ner 0, Cal | backO, 50u);
OS_TI MER_CREATE(&Ti ner 1, Call backl, 200u);
CS start(); /'l Start enbOS

return O;

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This allows
the callback function to be shared between different software timers. Since version 3.32m
of embOS, the extended timer structure and related extended timer functions were imple-
mented to allow parameter passing to the callback function. Except for the different call-
back function with parameter passing, extended timers behave exactly the same as regular
embOS software timers and may be used in parallel with these.

Example

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS TIMER Tinmer0, Tinerl;
static void Call back(void* Led) {

BSP_Toggl eLED((i nt) Led);
OS_TI MER_Rest art Ex(OS_TI MER_Get Current Ex());

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

89 CHAPTER 3 Introduction

}

int main(void) {
CS Init(); /'l Initialize enhOS
OS_InitHW); /1 Initialize required hardware
BSP_Init(); /1 Initialize LED ports
CS_TI MER_CREATEEX(&Ti mer 0, Cal | back, 50u, (void*)0);
CS_TI MER_CREATEEX(&Ti mer 1, Cal | back, 200u, (void*)1);
CS Start(); /1l Start enbCsS
return O;

}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

90

CHAPTER 3 Introduction

Minimum timeout / period

Software timer periods elapse with the appropriate embOS system tick. This means that the
actual timeout period can actually be slightly shorter than the configured timeout period.
For example, if the system tick is configured to occur once every millisecond, and the timer
is configured for a timeout of 1, the actual timeout duration is somewhere between 0 and
1 millisecond.

The following diagram illustrates how software timer timeouts work. We can see that the
timer configuration is performed prior to the first system tick, that is: at system time 0.
The timeout period is configured to 5 system ticks, therefore the callback is called upon the
5th system tick. For example, if the the system ticks occurs at 1 millisecond, 2 millisecond,
(...), 5 millisecond, and the timer was started at 0.8 millisecond, the actual timer period
would equal 4.2 millisecond.

OS_TIMER_Create() Execution of timer routine

Sytem ticks

0 1 2 3 4 5 6

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-bit
value on 32-bit CPUs. The comparisons are done as signed comparisons because expired
time-outs are permitted. This means that only 15 bits can be used on 8/16-bit CPUs, 31
bits on 32-bit CPUs. Another factor to take into account is the maximum time spent in
critical regions. Timers may expire during critical regions, but because the timer routine
cannot be called from a critical region (timers are “put on hold”), the maximum time that
the system continuously spends in a critical region needs to be deducted. In most systems,
this is no more than a single tick. However, to be safe, we have assumed that your system
spends no more than a maximum of 255 consecutive system ticks in a critical region and
defined a macro for the maximum timeout value. This macro, OS_TI MER_MAX_TI Mg, defaults
to Ox7F00 on 8/16-bit systems and to Ox7FFFFF0O0 on 32-bit Systems as defined in RTCS. h.
If your system spends more than 255 consecutive ticks in a critical section, effectively
disabling the scheduler during this time (which is not recommended), you must ensure
your application uses shorter timeouts.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 3 API functions
3.2 APl functions

v|S 7))
312252
Routine Description 4 (< |2 4
S|e 4|03
28| |2

~

OS_TI MER Create()

Creates a software timer without starting
it.

OS_TI MER Creat eEx()

Creates an extended software timer with-
out starting it.

OS_TI MER Del et e()

Stops and deletes a software timer.

OS_TI MER Del et eEx()

Stops and deletes an extended software
timer.

OS_TI MER Get Current ()

Returns a pointer to the software timer
object whose callback is currently execut-

ing.

OS_TI MER_Get Current Ex()

Returns a pointer to the data structure of
the extended software timer that just ex-
pired.

OS_TI MER_Get Peri od()

Returns the reload value of a software
timer.

OS_TI MER Get Per i odEx()

Returns the current reload value of an ex-
tended software timer.

OS_TI MER _Get Renai ni ng-
Peri od()

Returns the remaining timer value of a
software timer.

OS_TI MER Get Renai ni ng-
Per i odEx()

Returns the remaining timer value of an
extended software timer.

OS_TI MER_Cet St at us()

Returns the current timer status of a soft-
ware timer.

OS_TI MER Get St at usEx()

Returns the current timer status of an ex-
tended software timer.

OS TI MER Restart ()

Restarts a software timer with its initial
time value.

OS_TI MER _Rest art Ex()

Restarts an extended software timer with
its initial time value.

OS_TI MER_Set Peri od()

Sets a new timer reload value for a soft-
ware timer.

OS_TI MER _Set Peri odEx()

Sets a new timer reload value for an ex-
tended software timer.

OS_TIMER Start ()

Starts a software timer.

OS TI MER Start Ex()

Starts an extended software timer.

OS_TI MER_St op()

Stops a software timer.

OS_TI MER_St opEx()

Stops an extended software timer.

OS_TI MER Trigger ()

Ends a software timer at once and calls
the timer callback function.

OS_TI MER Tri gger Ex()

Ends an extended software timer at once
and calls the timer callback function.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

92

CHAPTER 3 API functions

3.2.1 OS_TIMER_Create()

Description

Creates a software timer without starting it.

Prototype
void OS_TI MER Creat e(OS_TI MER* pTi ner,
OS_ROUTI NE_VA D* pf Ti ner Rout i ne,
oS _TI ME Peri od);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

Initial period in embOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

pf Ti mer Rout i ne

Additional information

Once the period is expired, the callback routine will be called immediately (unless the
current task is in a critical region or has interrupts disabled). The timer is not au-
tomatically started. This must be done explicitly by a call of OGS TIMER Start() or
OS TIMER Restart().

Example

static OS_TI MER Ti ner;

static void Call back(void) {

BSP_Toggl eLED(0) ;

OS_TI MER Restart(&Tiner); // Make tinmer periodic
}

voi d I nitTask(void) {
OS_TI MER_Creat e(&Ti mer, Cal | back, 100u);
OS_TIMER Start (&Ti ner);

}

Note

embOS offers a macro that calls the functions OS_TI MER Create() and OS_TI MER_S-
tart () sequentially, allowing to more easily create software timers. As the macro
does “hide” the called functions, however, we typically suggest to call these functions
directly. If the macro shall still be used, its definition is as follows:

#define OS_TI MER_CREATE(pTi mer, cb, Peri od) \
OS_TI MER Create(pTimer, cb, Period); \
OS_TIMER Start (pTi mer)

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

93

CHAPTER 3 API functions

3.2.2 OS_TIMER_CreateEx()

Description

Creates an extended software timer without starting it.

Prototype

void OS_TI MER Cr eat eEx(OS_TI MER_EX* pTi mer Ex,
OS_ROUTI NE_VA D_PTR* pf Ti mer Rout i ne,
S _TI ME Peri od,
voi d* pDat a) ;

Parameters

Parameter Description
oTi mer Ex Pointer to an extended software timer object of type

OS_TI MER_EX.

Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

pf Ti mer Rout i ne

Initial period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

A void pointer which is used as parameter for the extended
timer callback function.

pDat a

Additional information

Once the period is expired, the callback routine will be called immediately (unless the cur-
rent task is in a critical region or has interrupts disabled). The timer is not automatically
started. This must be done explicitly by a call of OS_TI MER_St art Ex() or OS_TI MER_Rest ar -
tEx().

Example

static OS Tl MER EX Ti nmer ExO, Ti ner Ex1;

static void Call back(void* pData) ({

BSP_Toggl eLED((i nt) pDat a) ;

OS_TI MER_Restart Ex(NULL); // Make timer periodic
}

voi d I nitFunc(void) {
OS_TI MER_Cr eat eEx(&Ti mer Ex0, Cal | back, 50u, (void*)O0);
OS_TI MER_Cr eat eEx(&Ti mer Ex1, Cal | back, 200u, (void*)1);
OS_TI MER_St ar t Ex(&Ti ner ExO0) ;

OS_TI MER_St ar t Ex(&Ti ner Ex1) ;

}

Note

embOS offers a macro that calls the functions OS Tl MER Creat eEx() and
OSs _TI MER St art Ex() sequentially, allowing to more easily create extended software
timers. As the macro does “hide” the called functions, however, we typically suggest to
call these functions directly. If the macro shall still be used, its definition is as follows:

#defi ne OS_TI MER_CREATEEX(pTi ner, cb, Period, pData) \
OS_TI MER_Cr eat eEx(pTi ner, cb, Period, pData); \

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

94 CHAPTER 3 API functions

OS_TI MER_St art Ex(pTi ner)

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

95 CHAPTER 3 API functions

3.2.3 OS_TIMER_Delete()

Description

Stops and deletes a software timer.

Prototype
voi d OS_TI MER Del et e(OS_TI MER* pTi ner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

The timer is stopped and therefore removed from the linked list of running timers. In debug
builds of embOS, the timer is also marked invalid.

Example

static OS_TIMER Ti ner;

voi d Task(void) {
% Create and inmplicitly start tinmer
é)/S_TI MER_CREATE(&Ti ner, Cal | back, 100u);
n
/'l Delete tiner

Il
CS_TI MER_Del et e(&Ti ner) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

96 CHAPTER 3 API functions

3.2.4 OS_TIMER_ DeleteEx()

Description

Stops and deletes an extended software timer.

Prototype
voi d OS_TI MER Del et eEx(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

The extended software timer is stopped and removed from the linked list of running timers.
In debug builds of embQS, the timer is also marked invalid.

Example

static OS_TI MER_EX Ti ner Ex;

voi d Task(void) {
% Create and inmplicitly start tinmer
é)/S_TI MER_CREATEEX(&Ti nmer Ex, Cal | back, 100u, (voi d*)&TCB);
n
/'l Delete tiner

Il
OS_TI MER_Del et eEx(&Ti mer Ex) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

97 CHAPTER 3 API functions

3.25 OS TIMER_GetCurrent()

Description

Returns a pointer to the software timer object whose callback is currently executing.

Prototype
OS_TI MER *0S_TI MER_Get Cur r ent (voi d) ;
Return value

= NULL No software timer callback is currently being executed.
NULL Pointer to the software timer object of type OS_TI MER.

Example

#i ncl ude "RTCS. h"
static OS_TIMER Tinmer0, Tinmeril;
static void Callback(void) {

OS_TI MER* pTinmer = OS_TIMER GetCurrent();
OS_TI MER Restart(pTiner); // Make timer periodic

}
int mai n(void) {
oS _Init(); /1 Initialize enbQOS
CS InitHW); Il Initialize required hardware

OS_TI MER_CREATE(&Ti ner 0, Cal | back, 50u);
OS_TI MER_CREATE(&Ti ner 1, Call back, 200u);
Os_Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

98 CHAPTER 3 API functions

3.2.6 OS_TIMER_GetCurrentEx()

Description

Returns a pointer to the extended software timer object whose callback is currently exe-
cuting.

Prototype
OS_TI MER_EX* OS_TI MER Get Cur r ent Ex(voi d) ;
Return value

= NULL No software timer callback is currently being executed.
NULL Pointer to the software timer object of type OS_TI MER_EX.

Example

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_TI MER_EX Ti mer ExO, Ti ner Ex1;

static void Call back(void* pData) ({
BSP_Toggl eLED((i nt) pDat a) ;
OS_TI MER* pTinmerEx = OS_TI MER _Get Cur rent Ex();
OS_TI MER _Rest art Ex(pTi merEx); // Make tiner periodic

}
int main(void) {
OS_Init(); /1 Initialize enbQOS
S InitHW); Il Initialize required hardware

OS_TI MER_CREATEEX(&Ti mer Ex0, Cal | back, 50u, (void*)O0);
OS_TI MER_CREATEEX(&Ti mer Ex1, Cal | back, 200u, (void*)1);
Os_Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

99

CHAPTER 3 API functions

3.2.7 OS_TIMER_GetPeriod()

Description

Returns the reload value of a software timer.

Prototype
OS_TI ME OS_TI MER_Get Per i od(OS_CONST_PTR OS_TI MER *pTi ner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value

The returned value is the reload value of a software timer.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER_Set Peri od() . This reload
value will be used as time period when the timer is retriggered by OS_TI MER Restart ().

Example

static void PrintPeriod((OS_TIMER* pTiner) {
int period;

period = OS_TI MER _Get Peri od(pTi ner) ;
printf("Period %\n", period);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

100

CHAPTER 3 API functions

3.2.8 OS_TIMER_GetPeriodEx()

Description

Returns the current reload value of an extended software timer.

Prototype
OS_TI ME OS_TI MER_Get Per i odEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value

The returned value is the current reload value of an extended software timer.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER_Set Peri odEx() . This reload
value will be used as time period when the timer is re-triggered by OS_TI MER Rest art Ex() .

Example

static void PrintPeriodEx(OS_TI MER EX* pTi mer Ex) {
int period;

period = OS_TI MER_Get Peri odEx(pTi mer Ex) ;
printf("Period %\n", period);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

101 CHAPTER 3 API functions

3.2.9 OS_TIMER_GetRemainingPeriod()

Description

Returns the remaining timer value of a software timer.

Prototype
CS_TI ME OS_TI MER_Get Rerrai ni ngPer i od(OS_CONST_PTR OS_TI MER *pTi ner) ;
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value

The returned timer value is the remaining timer time in embOS system ticks until expiration
of the timer.

Example

static void PrintRemaini ngPeri od((OS_TI MER* pTiner) {
int period;

period = OS_TI MER_Get Rerrai ni ngPeri od(pTi nmer) ;
printf("Remaining %\n", period);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

102 CHAPTER 3 API functions

3.2.10 OS_TIMER_GetRemainingPeriodEXx()

Description

Returns the remaining timer value of an extended software timer.

Prototype
OCS_TI ME OS_TI MER_Get Rerrai ni ngPer i odEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value

The returned time value is the remaining timer value in embOS system ticks until expiration
of the extended software timer.

Example

static void PrintRemai ni ngPeri odEx((CS_TI MER_EX* pTinmer) {
int period;

period = OS_TI MER_Get Rerrai ni ngPer i odEx(pTi ner) ;
printf("Remaining %\n", period);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

103 CHAPTER 3 API functions

3.2.11 OS_TIMER_GetStatus()

Description

Returns the current timer status of a software timer.

Prototype
0S_BOOL OS_TI MER Get St at us(OS_CONST_PTR OS_TI MER *pTi ner) ;
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

Example

static void PrintStatus(CS_TIMER* pTiner) {
if (OS_TIMER GetStatus(pTiner) == 0) {
printf("Tiner has stopped");
} else {
printf("Tiner is running");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

104 CHAPTER 3 API functions

3.2.12 OS_TIMER_GetStatusEx()

Description

Returns the current timer status of an extended software timer.

Prototype
0S_BOOL OS_TI MER_Get St at usEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

Example

static void PrintStatusEx(OS Tl MER EX* pTi mer Ex) {
if (OS_TIMER Get StatusEx(pTinerEx) == 0) {
printf("Tiner has stopped");
} else {
printf("Tiner is running");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

105 CHAPTER 3 API functions

3.2.13 OS_TIMER_Restart()

Description

Restarts a software timer with its initial time value.

Prototype
void OS_TIMER Restart(OS_TI MER* pTi mer);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS TI MER Restart () restarts the software timer using the initial time value programmed
at creation of the timer or which was set using the function OS_TI MER_Set Peri od() .
OS TIMER Restart () can be called regardless the state of the timer. A running timer will
continue using the full initial time. A timer that was stopped before or had expired will be
restarted.

If NULL is passed for pTi ner , the currently running timer is restarted. This can be used from
the software timer callback function only. If no timer is currently running, GS Error () is
called with the error code OS_ERR | NV_TI MER.

Example
Please refer to the example for OS_TI MER_CREATE() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

106 CHAPTER 3 API functions

3.2.14 OS_TIMER_RestartEx()

Description

Restarts an extended software timer with its initial time value.

Prototype
void OS_TI MER Restart Ex(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS_TI MER Restart Ex() restarts the extended software timer using the initial time val-
ue which was programmed at creation of the timer or which was set using the function
OS_TI MER Set Peri odEx(). OS_TI MER Restart Ex() can be called regardless the state of
the timer. A running timer will continue using the full initial time. A timer that was stopped
before or had expired will be restarted.

If NULL is passed for pTi ner , the currently running timer is restarted. This can be used from
the software timer callback function only. If no timer is currently running, GS Error () is
called with the error code OS_ERR | NV_TI MER.

Example
Please refer to the example for OS_TI MER_CREATEEX() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

107 CHAPTER 3

3.2.15 OS_TIMER_SetPeriod()

Description

Sets a new timer reload value for a software timer.

Prototype

void OS_TI MER_Set Peri od(OS_TI MER* pTi mer,
CS_TIME Period);

API functions

Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.
Timer period in embQOS system ticks.
The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:
1 < Period < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Additional information

OS_TI MER Set Peri od() sets the initial time value of the specified software timer. Peri od
is the reload value of the timer to be used as initial value when the timer is retriggered

by G5 TI MER Restart ().

A call of OS_TI MER Set Peri od() does not affect the remaining time period of a software

timer.

Example

static OS_TIMER Tiner;

static void Call back(void) {

pul se in 500 systemticks

Toggl ePul seCut put () ; /1 Toggl e out put
OS _TI MER Restart(&Tiner); // Make tinmer periodic
}
voi d I nitTask(void) {
I
/1l Create and inplicitly start timer with first
I
OS_TI MER_CREATE(&Ti ner, Cal | back, 500u);
I
/1 Set tinmer period to 200 systemticks for further pul ses
I
OS_TI MER_Set Peri od(&Ti mer, 200u);
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

108 CHAPTER 3 API functions

3.2.16 OS_TIMER_SetPeriodEx()

Description

Sets a new timer reload value for an extended software timer.

Prototype
voi d OS_TI MER_Set Per i odEx(OS_TI MER_EX* pTi mer Ex,
CS_TI ME Peri od) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.
Initial period in embQOS system ticks.
The data type OS_TI ME is defined as an integer, therefore valid values
Peri od are:
1 < Period < 215 -1 = Ox7FFF for 8/16-bit CPUs
1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs

Additional information

OS_TI MER Set Peri odEx() sets the initial time value of the specified extended software
timer. Peri od is the reload value of the timer to be used as initial value when the timer is
re-triggered the next time by OS_TI MER Rest art Ex() .

A call of OS_TI MER_Set Per i odEx() does not affect the remaining time period of an extended
software timer.

Example

static OS_TI MER_EX Ti rer;
static OS_TASK TCB;

static void TimerPul se(voi d* pTask) {
if (pTask !'= NULL) {
OS_TASKEVENT _Set (0x01, (OS_TASK*)pTask);
}
OS_TI MER RestartEx(&Tiner); // Make tinmer periodic
}

voi d I nitTask(void) {
” Create and inmplicitly start Pulse Tinmer with first pulse in 500 systemticks
é)/S_TI VER_CREATEEX(&Ti ner, Ti ner Pul se, 500, (void*)&TCB);
” Set tiner period to 200 systemticks for further pulses
é)/S_TI MER_Set Peri odEx(&Ti mer, 200);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

109 CHAPTER 3

3.2.17 OS_TIMER_Start()

Description

Starts a software timer.

API functions

Prototype
void OS_TIMER Start(OS_TI MER* pTiner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS TIMER Start () is used for the following reasons:

e Start a timer which was created by OGS TI MER Creat e() . The timer will start with its

initial timer value.

e Restart a timer which was stopped by calling OS_TI MER_St op() . In this case, the timer
will continue with the remaining time value which was preserved upon stopping the

timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired: use OS_TI MER Rest art () to restart those timers.

Example
Please refer to the example for OS_TI MER Create().

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

110 CHAPTER 3

3.2.18 OS_TIMER_StartEx()

Description

Starts an extended software timer.

API functions

Prototype
void OS_TIMER StartEx(CS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS TI MER Start Ex() is used for the following reasons:
e Start an extended software timer which was created by OS_TI MER Creat eEx(). The

timer will start with its initial timer value.

e Restart a timer which was stopped by calling OGS _TI MER St opEx() . In this case, the
timer will continue with the remaining time value which was preserved upon stopping

the timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_TI MER _Rest art Ex() to restart those timers.

Example

Please refer to the example for GS_TI MER Cr eat eEx() .

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

111 CHAPTER 3

3.2.19 OS_TIMER_Stop()

Description

Stops a software timer.

API functions

Prototype
void OS_TI MER St op(COS_TI MER* pTiner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

The actual value of the software timer (the time until expiration) is maintained until
OS TIMER Start () lets the timer continue. The function has no effect on timers that are

not running, but have expired.

Example

static OS_TI MER Tl MER10OO;

static void Task(void) {

OS_TI MER _Restart (&TI MERLOO); // Start the tiner

OS_TI MER_St op(&TI MERLOO) ; /l Stop the tiner

}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

112

CHAPTER 3 API functions

3.2.20 OS_TIMER_StopEx()

Description

Stops an extended software timer.

Prototype
voi d OS_TI MER St opEx(OS_TI MER_EX* pTi mer Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

The actual value of the extended software timer (the time until expiration) is maintained
until OS_TI MER St art Ex() lets the timer continue. The function has no effect on timers
that are not running, but have expired.

Example

static OS_TI MER_EX Tl MER10O;

static void Task(void) {
OS_TI MER_Rest art Ex(&TI MER100); // Start the tinmer

OS_TI MER_St opEx(&TI MERL00) ; /l Stop the tiner
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

113

CHAPTER 3 API functions

3.2.21 OS_TIMER_Trigger()

Description

Ends a software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Tri gger (OS_TI MER* pTi mer);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS_TI MER Trigger () can be called regardless of the state of the timer. A running timer will
be stopped and the callback function is called. For a timer that was stopped before or had
expired the callback function will not be executed.

Example

static OS_TIMER TI MERUar t Rx;

void TinmerUart(void) {
Handl eUar t Rx() ;
}

voi d Uart Rxl nt Handl er (voi d) {
OS_TIMER Trigger (&TI MERUart Rx); // Character received, stop the software tiner
}

voi d Uart SendNext Characht er (void) ({
OS_TI MER_Start (&TI MERUar t Rx) ;
/1 Send next UART character and wait for Rx character

}

int main(void) {
OS_TI MER _Creat e(&TI MERUart Rx, Ti nmerUart, 20);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

114 CHAPTER 3

3.2.22 OS_TIMER_TriggerEx()

Description

API functions

Ends an extended software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Trigger Ex (OS_TI MER_EX* pTi nmer Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS_TI MER Tri gger Ex() can be called regardless of the state of the timer. A running timer
will be stopped and the callback function is called. For a timer that was stopped before or

had expired the callback function will not be executed.

Example

static OS_TI MER_EX Tl MERUart Rx;
static OS_U32 Uar t Num

void TinmerUart(voi d* pNum) {
Handl eUar t Rx((CS_U32) pNun) ;
}

voi d Uart Rxl nt Handl er (voi d) {
OS_TI MER_Tri gger Ex(&TI MERUar t Rx) ;
/'l Character received, stop the software tinmer

}

voi d Uart SendNext Characht er (void) ({
OS_TI MER_St art Ex(&TI MERUar t Rx) ;
/1 Send next UART character and wait for Rx character

}

int main(void) {
Uart Num = O;

OS_TI MER_Cr eat eEx(&TI MERUart Rx, TinerUart, 20, (void*)&UartNum;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 4

Task Events

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 4 Introduction

Introduction

Task events are another way of communicating between tasks. In contrast to semaphores
and mailboxes, task events are messages to a single, specified recipient. In other words,
a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for one
of several events) to occur. This task can be kept inactive until the event is signaled by
another task, a software timer or an interrupt handler. An event can be, for example, the
change of an input signal, the expiration of a timer, a key press, the reception of a character,
or a complete command.

Every task has an individual bit mask, which by default is the width of an unsigned integer,
usually the word size of the target processor. This means that 32 or 8 different events can
be signaled to and distinguished by every task. By calling OS_TASKEVENT_GCet Bl ocked(), a
task waits for one of the events specified as a bit mask. As soon as one of the events occurs,
this task must be signaled by calling OS_TASKEVENT_Set () . The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the scheduler
as soon as it becomes the task with the highest priority of all tasks in the READY state.

By changing the definition of OS_TASKEVENT, which is defined as unsigned long on 32-bit
CPUs and unsigned char on 16 or 8-bit CPUs per default, the task events can be expanded
to 16 or 32 bits thus allowing more individual events, or reduced to smaller data types
on 32-bit CPUs.

Changing the definition of OS_TASKEVENT can only be done when using the embQOS sources
in a project, or when the libraries are rebuilt from sources with the modified definition.

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
OS_TASKEVENT MyEvents;

while (1) {
MyEvents = OS_TASKEVENT_Get Bl ocked(3) ; /[l Wait for event bits 0 or 1
if (MEvents & 1) {
_Handl eEvent 0() ;
} else
_Handl eEvent 1() ;

}
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
OS_TASKEVENT_Set (&TCBHP, 1);
}
}
int mai n(void) {
CS Init(); /[l Initialize enbGS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

117 CHAPTER 4 API functions

4.2 API functions

Routine Description

urew
Jsel Alld
ysel Audun
Sl
Jawll MS

0S_TASKEVENT d ear () Returns the actual state of evenps and R
- - then clears all events of a specified task.

Returns the actual state of events and
OS_TASKEVENT_C ear Ex() then clears the specified events for the oo 0|00
specified task.

0S_TASKEVENT Get () Returns a list of (_eyents that have oc- olele
- - curred for a specified task.

Waits for one of the events specified in
OS_TASKEVENT_Get Bl ocked() | the bit mask and clears the event mem- oo
ory when the function returns.

Waits for one of the specified events and

OG_TASKEVENT_Get Si ngl e- clears only those events that were speci- oo

Bl ocked() fied in the event mask.
Waits for one of the specified events
OS_TASKEVENT_Get Si ngl e- for a given time and clears only those ol e
Ti med() events that were specified in the event
mask.
Waits for the specified events for a giv-
OS_TASKEVENT_Get Ti ned() en time, and clears all task events when oo
the function returns.
OS_TASKEVENT_Set () Signals event(s) to a specified task. o o o 0|0

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

118

CHAPTER 4 API functions

42.1 OS_TASKEVENT_Clear()

Description

Returns the actual state of events and then clears all events of a specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_C ear (OS_TASK* pTask);
Parameters
Parameter Description
Pointer to a task control block of type OS_TASK. The task
pTask whose event mask is to be returned, NULL means current
task.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears all
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

MyEvents = OS_TASKEVENT_d ear (NULL) ;

while (1) {
Il
/1 Wait for event O or 1 to be signal ed
Il
MyEvents = OS_TASKEVENT_Cet Bl ocked(3) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

119 CHAPTER 4 API functions

4.2.2 OS_TASKEVENT_ClearEx()

Description

Returns the actual state of events and then clears the specified events for the specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_C ear Ex(OS_TASK* pTask,
OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description

Pointer to a task control block of type OS_TASK. The task

pTask whose event mask is to be returned, NULL means current
task.

Event Mask The bit mask containing the event bits which shall be
cleared.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears the
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call OS_Error () in case pTask does not indicate a valid task.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

My/Events = OS_TASKEVENT_C ear Ex(NULL, 1);

while (1) {
/1
/1 Wait for event 0 or 1 to be signaled
/1
My/Events = OS_TASKEVENT_Get Bl ocked(3);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

120

CHAPTER 4 API functions

4.2.3 OS_TASKEVENT Get()

Description

Returns a list of events that have occurred for a specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get (OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type OS_TASK. The task
pTask whose event mask is to be returned, NULL means current
task.

Return value

All events that have been signaled.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

By calling this function, all events remain signaled: event memory is not cleared. This is one
way for a task to query which events are signaled. The task is not suspended if no events
are signaled. If pTask is NULL, the function returns the events of the currently running task.

voi d PrintEvents(void) {
OS_TASKEVENT MyEvents;

M/Events = OS_TASKEVENT_Get (NULL) ;
printf("Events %\n", M/Events);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

121 CHAPTER 4 API functions

4.2.4 OS_TASKEVENT GetBlocked()

Description

Waits for one of the events specified in the bit mask and clears the event memory when
the function returns.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Bl ocked(OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for.

Return value

All events that have been signaled.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the specified
events will wake the task. These events are signaled by another task, a software timer or
an interrupt handler. Any bit that is set in the event mask enables the corresponding event.

When a task waits on multiple events, all of the specified events shall be requested by a
single call of OS_TASKEVENT_Cet Bl ocked() and all events must be be handled when the
function returns.

Note that all events of the task are cleared when the function returns, even those events
that were not set in the parameters in the Event Mask. The calling function must handle the
returned value, otherwise events may get lost. Consecutive calls of OS_TASKEVENT_Get -
Bl ocked() with different event masks will not work, as all events are cleared when the
function returns. If this is not desired, OS_TASKEVENT Get Si ngl eBl ocked() may be used
instead.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
Il
/1 Wait for event O or 1 to be signal ed
Il
MyEvents = OS_TASKEVENT_Cet Bl ocked(3) ;
Il
/'l Handl e all events
Il
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1();
}
}
}

For another example, see OS_TASKEVENT Set ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

122 CHAPTER 4 API functions

425 OS_TASKEVENT GetSingleBlocked()

Description

Waits for one of the specified events and clears only those events that were specified in
the event mask.

Prototype

OS_TASKEVENT OS_TASKEVENT_Cet Si ngl eBl ocked(OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for and reset.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the requested
events will wake the task. These events are signaled by another task, a software timer, or an
interrupt handler. Any bit in the event mask may enable the corresponding event. When the
function returns, it delivers all of the requested events. The requested events are cleared
in the event state of the task. All other events remain unchanged and will not be returned.

OS_TASKEVENT _Cet Si ngl eBl ocked() may be used in consecutive calls with individual re-
quests. Only requested events will be handled, no other events can get lost. When the
function waits on multiple events, the returned value must be evaluated because the func-
tion returns when at least one of the requested events was signaled. When the function
requests a single event, the returned value does not need to be evaluated.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
Il
/1 Wait for event O or 1 to be signal ed
Il
MyEvent s = OS_TASKEVENT_GCet Si ngl eBl ocked(3);
Il
/'l Handl e all events
Il
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1();
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

123 CHAPTER 4 API functions

4.2.6 OS_TASKEVENT GetSingleTimed()

Description

Waits for one of the specified events for a given time and clears only those events that
were specified in the event mask.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Si ngl eTi med(OS_TASKEVENT Event Mask,
S _TI ME Ti meout) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask

waited for and reset.

Maximum time in system ticks until the event must be sig-
naled. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No event available within the specified timeout.
*#0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Ti meout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Any bit in the event mask may enable the corresponding event. All unmasked events remain
unchanged.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(l) {
Il
/1l Wait for event 0 and 1 to be signaled within 10 systemticks
Il
M/Events = OS_TASKEVENT_Get Si ngl eTi ned(3, 10);
if (M/Events == 0) {
_Handl eTi nmeout () ;
} else {
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1();
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

124 CHAPTER 4 API functions

4.2.7 OS_TASKEVENT GetTimed()

Description
Waits for the specified events for a given time, and clears all task events when the function
returns.
Prototype
OS_TASKEVENT OS_TASKEVENT_Get Ti med(OS_TASKEVENT Event Mask,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for.

Maximum time in system ticks until the events must be sig-
naled. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No event available within the specified timeout.
*#0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Ti meout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Note that the function returns all events that were signaled until the task continues execu-
tion, even those which were not requested. The calling function must handle the returned
value, otherwise events may get lost. Consecutive calls of 0OS_ TASKEVENT _Get Ti ned() with
different event masks will not work, as all events are cleared when the function returns. If
this is not desired, OS_TASKEVENT_GCet Si ngl eTi ned() may be used instead.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
/1l Wait for event 0 and 1 to be signaled within 10 systemticks
M/Events = OS_TASKEVENT_Get Ti med(3, 10);
if ((MfEvents & 3) == 0) {
_Handl eTi nmeout () ;
} else {
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1() ;
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

125

CHAPTER 4 API functions

4.2.8 OS_TASKEVENT Set()

Description

Signals event(s) to a specified task.

Prototype
voi d OS_TASKEVENT_Set (OS_TASK* pTask,
OS_TASKEVENT Event);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Event The event bit mask containing the event bits, which shall be
signaled.

Additional information

If the specified task is waiting for one of these events, it will be put in the READY state and
activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be received
either via the keyboard (EVENT_KEYPRESSED) or serial interface (EVENT_SERI N):

#def i ne EVENT_KEYPRESSED (1u << 0)
#defi ne EVENT_SERI N (1u << 1)

static OS_STACKPTR int Stack0[96]; // Task stacks
static OS_TASK TCBO; /| Data area for tasks (task control bl ocks)

voi d TaskO(void) {
OS_TASKEVENT MyEvent;
whi | e(1)
MyEvent = OS_TASKEVENT_GCet Bl ocked(EVENT_KEYPRESSED | EVENT_SERI N)
if (MyEvent & EVENT_KEYPRESSED) {
/1 Handl e key press
}
if (MyEvent & EVENT_SERIN) {
/1 Handl e serial reception
}
}
}

voi d Key_ I SR(void) { /1 1SR for external interrupt
OS_TASKEVENT_Set (&TCBO, EVENT_KEYPRESSED); // Notify task that key was pressed

}

voi d UART_| SR(voi d) { /1 1SR for UART interrupt
OS_TASKEVENT_Set (&TCB0, EVENT_SERI N);
/1 Notify task that a character was received

}

voi d I nitTask(void) {
OS_TASK_CREATE(&TCBO, "HPTask", 100, TaskO, StackO);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 5

Event Objects

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

127 CHAPTER 5 Introduction

5.1 Introduction

Event objects are another type of communication and synchronization object. In contrast
to task-events, event objects are standalone objects which are not owned by any task.

The purpose of an event object is to enable one or multiple tasks to wait for a particular
event to occur. The tasks can be kept suspended until the event is set by another task,
a software timer, or an interrupt handler. An event can be, for example, the change of
an input signal, the expiration of a timer, a key press, the reception of a character, or a
complete command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

Using event object API

There are two groups of event object API functions. The first group does not have “mask”
as part of their name and operates on the complete event object. These functions are
OS EVENT _Get (), OS _EVENT Get Bl ocked(), OS EVENT Get Ti ned(), OS_EVENT_Pul se(),
and OS_EVENT_Set (). The second group does have “mask” as part of the API name and
operates on a event object bit mask. These functions are OS_EVENT_Get Mask(), OS_EVEN-
T CGet MaskBl ocked(), OS_EVENT_Get MaskMode(), OS EVENT_ Get MaskTi ned(), OS_EVEN
T _Set Mask(), and OS_EVENT_Set MaskMbde() . Any event object is in non-signaled state
when the event object value is zero, and in signaled state when the event object value is
unequal to zero. We do not recommend to use both API groups on the same event object.
For example, you must not wait for an event object with OS_EVENT_Get Bl ocked() and sig-
nal that event object with OS_EVENT_Set Mask(), but with OS_EVENT _Set ().

Reset mode

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mode() .

e (OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e (OS_EVENT_RESET MODE_AUTO:

This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e (OS_EVENT_RESET_ MODE_MANUAL:

This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Mask mode

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbode() .
e (OS_EVENT_MASK MODE OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e (S _EVENT_MASK_MODE_AND LOG C:
With this mode all specified event object mask bits must be signaled.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 5 Introduction

5.1.1 Examples

Activate a task from interrupt by an event object

The following code example shows usage of an event object which is signaled from an ISR
handler to activate a task. The waiting task should reset the event after waiting for it.

static OS_EVENT _Event;

static void _I SRHandl er (void) {
OS INT_Enter();
11
/1l \Wake up task to do the rest of the work
11
OS_EVENT_Set (& Event);
OS_I NT_Leave();
}

static void Task(void) {
while (1) {
OS_EVENT_Get Bl ocked(& Event);
Il
/'l Do the rest of the work (which has not been done in the |ISR)
Il

Activating multiple tasks using a single event object

The following sample program shows how to synchronize multiple tasks with one event
object.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128], StackHW 128];
static OS_TASK TCBHP, TCBLP, TCBHW
static OS_EVENT HW Event ;

static void HPTask(void) {
Il
/1 Wait until HWnodule is set up
Il
OS_EVENT_Get Bl ocked(&HW Event) ;
while (1) {
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
Il
/1 Wait until HWnodule is set up
Il
OS_EVENT_GCet Bl ocked(&HW Event) ;
while (1) {
OS_TASK Del ay(200);
}
}

static void HWrask(void) {
;; Wait until HWnodule is set up
é)/S_TASK_DeI ay(100);
% Init done, send broadcast to waiting tasks

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

129

/1
OS_EVENT_Set (&HW Event) ;
while (1) {

OS_TASK Del ay(40);

}

}

int main(void) {
s Init(); /1
S InitHW); /1
OS_TASK_CREATE(&TCBHP, "HP Task",
OS_TASK_CREATE(&TCBLP, "LP Task",

OS_TASK_CREATE(&TCBHW " HWrask",
OS_EVENT_Cr eat e(&HW Event) ;
CS Start();

return O;

Using event object mask bits

CHAPTER 5

/1 Start

Introduction

Initialize enbOS
Initialize required hardware

100, HPTask, StackHP);
50, LPTask, StackLP);
25, HWrask, StackHW;

nmul titasking

The following sample program shows how to use event object mask bits.

#i ncl ude "RTGCS. h"

#define EVENT1_BI TMASK (1lu << 0)
#define EVENT2_BI TMASK (1lu << 1)

static OS_STACKPTR int StackTaskl[128],
TCBTask1l, TCBTask2, TCBLP;

static OS_TASK
static OS_EVENT _Event;
static void Taskl(void) {
OS_EVENT_Cet MaskBl ocked(& Event,
while (1) {
OS_TASK Del ay(50);
}
}

static void Task2(void) {
OS_EVENT_Cet MaskBl ocked(& Event,
while (1) {
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
OS_EVENT_Set Mask(& Event,
OS_EVENT_Set Mask(& Event,
while (1) {
OS_TASK Del ay(200);

}

}

int main(void) {
CS Init(); /1
CS I nitHW); /1

St ackTask2[128], StackLP[128];

EVENT1_BI TMASK) ;

EVENT2_BI TMASK) ;

EVENT1_BI TMASK) ;
EVENT2_BI TMASK) ;

Initialize enbOS
Initialize required hardware

OS_TASK_CREATE(&TCBTaskl, "Task 1", 100, Taskl, StackTaskl);
OS_TASK_CREATE(&TCBTask2, "Task 2", 100, Task2, StackTask2);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_EVENT_Creat e(& Event);

CS Start(); /1 Start multitasking

return O;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

CHAPTER 5 API functions
5.2 APIfunctions

v|S 7))
312252
Routine Description 4 (< |2 4
S|e 4|03
28| |2

~

OS_EVENT Create()

Creates an event object and resets the
event.

OS_EVENT_Cr eat eEx()

Creates an extended event object and
sets its reset behavior as well as mask
bits behavior.

OS_EVENT Del et e()

Deletes an event object and releases all
waiting tasks.

OS_EVENT_Get ()

Retrieves current state of an event ob-
ject without modification or suspension.

OS_EVENT_Get Bl ocked()

Waits for an event object and suspends
the task until the event has been sig-
naled.

OS_EVENT_Get Mask()

Returns the bits of an event object that
match the given Event Mask.

OS_EVENT_Cet MaskBI ocked()

Waits for the specified event bits in
Event Mask, depending on the current
mask mode.

OS_EVENT_Get MaskMbde()

Retrieves the current mask mode (mask
bits behavior) of an event object.

OS_EVENT_Get MaskTi med()

Waits for the specified event bits Event -
Mask with timeout, depending on the
current mask mode.

OS_EVENT_Cet Reset Mbde()

Returns the reset mode (reset behavior)
of an event object.

OS_EVENT_Get Ti ned()

Waits for an event and suspends the
task for a specified time or until the
event has been signaled.

OS_EVENT_Pul se()

Signals an event object and resumes
waiting tasks, then resets the event ob-
ject to non-signaled state.

OS_EVENT_Reset ()

Resets the specified event object to non-
signaled state.

OS_EVENT_Reset Mask()

Resets the specified mask bits in the
event object to non-signaled state.

OS_EVENT_Set ()

Sets an event object to signaled state,
or resumes tasks which are waiting at
the event object.

OS_EVENT_Set Mask()

Sets the event mask bits of an event ob-
ject.

OS_EVENT_Set MaskMode()

Sets the mask mode of an event object
to OR/AND logic.

OS_EVENT_Set Reset Mbde()

Sets the reset behavior of an event ob-
ject to automatic, manual or semi-auto.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

131

CHAPTER 5 API functions

5.2.1 OS_EVENT Create()

Description

Creates an event object and resets the event. Must be called before the event object can
be used.

Prototype
voi d OS_EVENT_Creat e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

Before the event object can be used, it must be created by a call of OS_ EVENT Create() .
On creation, the event is set in non-signaled state, and the list of waiting tasks is empty.
Therefore, OS_EVENT_Creat e() must not be called for an event object which is already
created. A debug build of embOS will check whether the event object is created twice and
will call G8_Error () with error code OS_ERR 2USE _EVENT in case of an error.

The event is created with the default reset behavior which is semi-auto. Since version
3.88a of embOS, the reset behavior of the event can be modified by a call of the function
OS_EVENT_Set Reset Mode() .

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0 AND 1 to be set

}

voi d LPTask(void) {
OS_EVENT_Set Mask(& Event, 1); /'l Resunmes HPTask due to OR logic

}

int main(void) {
.O.S._EVENT_Cr eate(& Event);
.réfurn 0;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

132

CHAPTER 5 API functions

5.2.2 OS_EVENT CreateEx()

Description

Creates an extended event object and sets its reset behavior as well as mask bits behavior.

Prototype

voi d OS_EVENT_Cr eat eEx(OS_EVENT* pEvent,
unsi gned int Mde);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Specifies the reset and mask bits behavior of the event ob-
ject. You can use one of the predefined reset modes:
OS_EVENT_RESET_MODE_SEM AUTO
OS_EVENT_RESET_MODE_NMANUAL

Mode OS_EVENT_RESET_MODE_AUTO

and one of the mask modes:
OS_EVENT_MASK_MODE_OR LOG C
OS_EVENT_MASK_MODE_AND LOG C

which are described under additional information.

Additional information

Before the event object can be used, it must be created by a call of 0S EVENT _Creat e() or
OS_EVENT_Cr eat eEx() . On creation, the event is set in nonsignaled state, and the list of
waiting tasks is empty. Therefore, OS_EVENT_Cr eat eEx() must not be called for an event
object which is already created. A debug build of embOS will check whether the event
object is created twice and will call OS_Error () with error code OS_ERR 2USE_EVENT in case
of an error.

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mode() .

e OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS5 _EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMode() .

e (OS_EVENT_MASK_MODE_OR LOd C:
This mask mode is the default mode. Only one of the bits specified in the event object

bit mask must be signaled.
e (OS_EVENT_MASK_MODE_AND LOG C:

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

133 CHAPTER 5 API functions

With this mode all specified event object mask bits must be signaled.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0 AND 1 to be set

}

voi d LPTask(void) {
OS_EVENT_Set Mask(& Event, 1); /1 Does not resune HPTask
OS_EVENT_Set Mask(& Event, 2);
/1 Resune HPTask since both bits are now set

}

int mai n(void) {

OS_EVENT_Cr eat eEx(& Event, OS_EVENT_RESET MODE_AUTO |
0S_EVENT_MASK_MODE_AND LOGI C) ;

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

134

CHAPTER 5 API functions

5.2.3 OS_EVENT Delete()

Description

Deletes an event object and releases all waiting tasks.

Prototype
voi d OS_EVENT_Del et e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

To keep the system fully dynamic, it is essential that event objects can be created dynam-
ically. This also means there must be a way to delete an event object when it is no longer
needed. The memory that has been used by the event object’s control structure can then
be reused or reallocated.

It is your responsibility to make sure that:

e the program no longer uses the event object to be deleted
e the event object to be deleted actually exists (has been created first)
e no tasks are waiting at the event object when it is deleted.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Del et e() . A debug build of embOS will check whether pEvent addresses a valid
event object and will call CS_Error () with error code OS_ERR_EVENT_I NVALI D in case of
an error.

If any task is waiting at the event object which is deleted, a debug build of embQOS calls
OS_Error () with error code OS_ERR _EVENT_DELETE.

To avoid any problems, an event object should not be deleted in a normal application.
Example
static OS EVENT _Event;

voi d Task(void) {

OS_EVENT_Del et e(& Event);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

135

CHAPTER 5 API functions

5.2.4 OS_EVENT Get()

Description

Retrieves current state of an event object without modification or suspension.

Prototype
0S_BOOL OS_EVENT_Get (OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

=0 Event object is not set to signaled state.
+#0 Event object is set to signaled state.

Additional information

By calling this function, the actual state of the event object remains unchanged. pEvent
must address an existing event object, which has been created before by a call of OS_EVEN-
T Create().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get (). A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OGS ERR EVENT | NVALI D in case of
an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_BOCOL St at us;

Status = OS_EVENT_Get (& Event);
printf("Event Object Status: %\n", Status);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

136

CHAPTER 5 API functions

5.2.5 0OS EVENT_ GetBlocked()

Description

Waits for an event object and suspends the task until the event has been signaled.

Prototype
voi d OS_EVENT_GCet Bl ocked(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

The state of the event object after calling OS_EVENT_Get Bl ocked() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T Creat eEx() or OS_EVENT_Set Reset Mode() .

The event is consumed when OS _EVENT_RESET MODE AUTO is selected. The event is not
consumed when OS_EVENT_RESET MODE MANUAL is selected. With OS_EVENT_RESET MOD-
E_SEM AUTO the event is consumed only when it was already set before.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Bl ocked() . A debug build of embQOS will check whether pEvent addresses
a valid event object and will call S Error () with error code OS_ ERR EVENT | NVALI D in
case of an error.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Cet Bl ocked(& Event); // Suspends the task

}

voi d LPTask(void) {
OS_EVENT_Pul se(& Event); /'l Signals the HPTask

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

137 CHAPTER 5 API functions

5.2.6 OS_EVENT GetMask()

Description

Returns the bits of an event object that match the given Event Mask. The returned event
mask bits are consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_Get Mask(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Event Mask tTr?:vzlé mask containing the event bits which shall be re-

Return value

All events that have been signaled and were specified in the Event Mask.

Additional information

The state of the event object after calling OS_EVENT_Get Mask() depends on the reset mode
of the event object which was set by creating the event object by a call of OS_EVENT Cre-
at eEx() or OS_EVENT_Set Reset Mode() .

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Mask() . A debug build of embQOS will check whether pEvent addresses a valid
event object and will call CS_Error () with error code OS_ERR_EVENT_I NVALI D in case of
an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask = ~0; // Request all event bits

Event Mask = OS_EVENT_Get Mask(& Event, Event Mask);
printf("Signaled Event Bits: O0x%X\n", EventMask);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

138 CHAPTER 5 API functions

5.2.7 OS EVENT_ GetMaskBlocked()

Description

Waits for the specified event bits in Event Mask, depending on the current mask mode. The
task is suspended until the event(s) have been signaled. It returns the bits of the event
object that match the given Event Mask. The returned event mask bits are consumed unless
OS_EVENT_RESET_MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskBl ocked(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits, which shall be
Event Mask .
waited for.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

The state of the event object after calling OS_EVENT_Get MaskBI ocked() depends on the
reset mode of the event object which was set by creating the event object by a call of
OS_EVENT_Creat eEx() or OS_EVENT_Set Reset Mode() .

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get MaskBI ocked() . A debug build of embOS will check whether pEvent address-
es a valid event object and will call OS_Error () with error code S _ERR EVENT | NVALI D
in case of an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
/1
/1 VWaits either for the first or second, or for
/1 both event bits to be signal ed, depending on
/1 the specified mask node.

I
OS_EVENT_Get MaskBl ocked(& Event, 0x3);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

139

CHAPTER 5 API functions

5.2.8 0OS EVENT_GetMaskMode()

Description

Retrieves the current mask mode (mask bits behavior) of an event object.

Prototype
OS_EVENT_MASK_MODE OS_EVENT_Get MaskMode(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

The mask mode which is currently set.

Modes are defined in enum OS_EVENT _NMASK MODE.

OS_EVENT_MASK_MODE_OR LOG C (0x00u): Mask bits are used with OR logic (default).
OS_EVENT_MASK _MODE_AND LOd C (0x04u): Mask bits are used with AND logic.

Additional information

Since version 4.34 of embQOS, the mask mode of an event object can be controlled by
the OS_EVENT_Cr eat eEx() function or set after creation using the new function CS_EVEN-
T_Set MaskMode() . If needed, the current setting of the mask mode can be retrieved with
OS_EVENT_Get MaskMode() .

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get MaskMode() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error () with error code OS_ERR _EVENT_| NVALI D in
case of an error.

Example

static OS EVENT _Event;

voi d Task(void) {
OS_EVENT_MASK_MODE MaskMode;

MaskMode = OS_EVENT_Get MaskMbde(& Event);
i f (MaskMbde == OS_EVENT_MASK_MODE_OR LOd Q) {
printf("Logic: ORN");
} else {
printf("Logic: AND\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

140 CHAPTER 5 API functions

5.2.9 OS_EVENT GetMaskTimed()

Description

Waits for the specified event bits Event Mask with timeout, depending on the current mask
mode. The task is suspended for the specified time or until the event(s) have been signaled.
It returns the bits of the event object that match the given Event Mask. The returned event
mask bits are consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskTi ned(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask,

oS _TI ME Ti meout) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Event Mask The event bit mask containing the event bits, which shall be

waited for.

Maximum time in embOQOS system ticks until events must be
signaled. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Ti meout .
*#0 All events that have been signaled and were specified in the Event Mask.

Additional information

The state of the event object after calling OS_EVENT_Get MaskTi med() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T Creat eEx() or OS_EVENT_Set Reset Mode() .

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get MaskTi med() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call S Error () with error code OS_ ERR EVENT | NVALI D in
case of an error.

Example

static OS_EVENT _Event;
voi d Task(void) {
I
/1 Waits either for the first or second, or for
/'l both event bits to be signal ed, depending on
/'l the specified mask node. The task resumes after
/1 1000 systemticks, if the needed event bits were not
/'l signal ed.

Il
OS_EVENT_Get MaskTi ned(& _Event, 0x3, 1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

141

CHAPTER 5 API functions

5.2.10 OS_EVENT GetResetMode()

Description

Returns the reset mode (reset behavior) of an event object.

Prototype
OS_EVENT_RESET_MODE OS_EVENT_Get Reset Mode(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

The reset mode which is currently set.

Modes are defined in enum OS_EVENT_RESET MODE.

OS_EVENT_RESET_MODE_SEM AUTO (0x00u): As previous mode (default).
OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set, has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset automatically.

Additional information

Since version 3.88a of embOS, the reset mode of an event object can be controlled by the
new OS_EVENT Creat eEx() function or set after creation using the new function OS_EVEN-
T_Set Reset Mode() . If needed, the current setting of the reset mode can be retrieved with
OS_EVENT_Cet Reset Mode() .

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Reset Mode() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error () with error code OS_ERR _EVENT_| NVALI D in
case of an error.

Example

static OS EVENT _Event;

voi d Task(void) {
OS_EVENT_RESET MODE Reset Mode;

Reset Mbde = OS_EVENT_GCet Reset Mbde(& Event);

i f (Reset Mbde == OS_EVENT_RESET_MODE_SEM AUTO) ({
printf("Reset Mbde: SEM AUTOn");

} else if (ResetMbde == OS_EVENT_RESET_MODE MANUAL) {
printf("Reset Mde: MANUAL\n");

} else {
printf("Reset Mde: AUTOnN");

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

142

CHAPTER 5 API functions

5.2.11 OS_EVENT GetTimed()

Description

Waits for an event and suspends the task for a specified time or until the event has been
signaled. The event is consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

char OS_EVENT_Get Ti ned(OS_EVENT* pEvent,
OS_TIME Tineout);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Maximum time in embOS system ticks until the event must
be signaled. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Timeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success, the event was signaled within the specified time.
*#0 If the event was not signaled within the specified time.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Ti ned() . A debug build of embOS will check whether pEvent addresses a
valid event object and will call 08 Error () with error code S ERR EVENT | NVALI Din case
of an error.

Example

static OS_EVENT _Event;
voi d Task(void) {

if (OS_EVENT_GetTinmed(& Event, 1000) == 0) {
/1l event was signaled within tinmeout tine, handl e event
} else {
/'l event was not signaled within tinmeout tinme, handle tineout

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

143 CHAPTER 5 API functions

5.2.12 OS_EVENT_Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to non-
signaled state.

Prototype

voi d OS_EVENT_Pul se(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT _Pul se() . A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OGS ERR EVENT | NVALI D in case of
an error.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Cet Bl ocked(& Event); // Suspends the task

}
voi d LPTask(void) {

OS_EVENT_Pul se(& Event); /'l Signals the HPTask
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

144 CHAPTER 5 API functions

5.2.13 OS_EVENT_Reset()

Description

Resets the specified event object to non-signaled state.

Prototype
voi d OS_EVENT_Reset (OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Reset (). A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OGS ERR EVENT | NVALI D in case of
an error.

Example

static OS_EVENT _Event;
voi d Task(void) {

OS_EVENT_Reset (& Event);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

145

CHAPTER 5 API functions

5.2.14 OS_EVENT_ResetMask()

Description

Resets the specified mask bits in the event object to non-signaled state.

Prototype

voi d OS_EVENT_Reset Mask(OS_EVENT* pEvent,

OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits which shall be
Event Mask cleared

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Reset Mask() . A debug build of embOS will check whether pEvent addresses a
valid event object and will call OS_Err or () with error code OS_ERR_EVENT_I NVALI D in case
of an error. 0OS_EVENT_Reset Mask() resets only the event mask bits specified in EventMask.

Example

static OS_EVENT _Event;

voi d Task(void) {

OS_EVENT_Reset Mask(& Event, 1);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

146

CHAPTER 5 API functions

5.2.15 OS_EVENT_Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the event
object.

Prototype
voi d OS_EVENT_Set (OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

If no tasks are waiting at the event object, the event object is set to signaled state. Any
task that is already waiting for the event object will be resumed. The state of the event
object after calling OS_EVENT_Set () then depends on the reset mode of the event object.

e With reset mode OS_EVENT_RESET MODE SEM AUTOC:
This is the default mode when the event object was created with OS_EVENT Create() .
This was the only mode available in embOS versions prior version 3.88a. If tasks were
waiting, the event is reset when the waiting tasks are resumed.

e With reset mode OS_EVENT_RESET MODE AUTC:
The event object is automatically reset when waiting tasks are resumed and continue
operation.

e With reset mode OS_EVENT_RESET_ MODE_MANUAL :
The event object remains signaled when waiting tasks are resumed and continue
operation. The event object must be reset by the calling task.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Set (). A debug build of embQOS will check whether pEvent addresses a valid
event object and will call CS_Error () with error code OS_ERR_EVENT_I NVALI D in case of
an error.

Example

Examples on how to use the OS_EVENT_Set () function are shown in Examples on page 128.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

147 CHAPTER 5 API functions

5.2.16 OS_EVENT_SetMask()

Description

Sets the event mask bits of an event object.

Prototype

voi d OS_EVENT_Set Mask(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits, which shall be
Event Mask .
signaled.

Additional information

Any task that is already waiting for matching event mask bits on this event object will be
resumed. OS_EVENT_Set Mask() does not clear any event mask bits.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Set Mask() . A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OS_ERR EVENT_I NVALI D in case of
an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask = 1 << ((sizeof (OS_TASKEVENT) * 8) - 1); // Set MSB event bit
OS_EVENT_Set Mask(& Event, Event Mask); /1 Signal MSB event bit

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

148

CHAPTER 5 API functions

5.2.17 OS_EVENT_ SetMaskMode()

Description
Sets the mask mode of an event object to OR/AND logic.

Prototype
voi d OS_EVENT_Set MaskMbde(OS_EVENT* pEvent,
OS_EVENT_MASK_MODE MaskMbde) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Event Mask mode.
Modes are defined in enum OS_EVENT_MASK_MCDE.
MaskMode OS_EVENT_MASK_MODE OR LOG C (0x00u): Mask bits are used
with OR logic (default).
OS_EVENT_MASK_MODE_AND LOd C (0x04u): Mask bits are
used with AND logic.

Additional information

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbde() . The following mask modes are
defined and can be used as parameter:
e OS_EVENT_MASK MODE_OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e OS_EVENT_MASK MODE_AND LOG C:
With this mode all specified event mask bits must be signaled.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Set MaskMode() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error () with error code OS ERR EVENT | NVALI D in
case of an error.

Example

static OS_EVENT _Event;
voi d Task(void) {

/1l Set the mask node for the event object to AND | ogic
OS_EVENT_Set MaskMode(& Event, OS_EVENT_MASK MODE_AND LOd C);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

149

CHAPTER 5 API functions

5.2.18 OS_EVENT_ SetResetMode()

Description

Sets the reset behavior of an event object to automatic, manual or semi-auto.

Prototype
voi d OS_EVENT_Set Reset Mbde(OS_EVENT* pEvent,
OS_EVENT_RESET_MODE Reset Mode) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Controls the reset mode of the event object.
OS_EVENT_RESET_MODE_SEM AUTO (0x00u): As previous mode
(default).
Reset Mbde OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set,
has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset auto-
matically.

Additional information

Implementation of event objects in embOS versions before 3.88a unfortunately was not
consistent with respect to the state of the event after calling OS_EVENT_Set () or OS_EVEN-
T_Get Bl ocked() functions. The state of the event was different when tasks were waiting
or not.

Since embOS version 3.88a, the state of the event (reset behavior) can be controlled after
creation by the new function OS_EVENT_Set Reset Mbde(), or during creation by the new
OS_EVENT_Cr eat eEx() function. The following reset modes are defined and can be used
as parameter:

e OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Set Reset Mode() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error () with error code OS ERR EVENT | NVALI D in
case of an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
/1l Set the reset node for the event object to manual

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

150 CHAPTER 5 API functions

OS_EVENT_Set Reset Mbde(& Event, OS_EVENT RESET_MANUAL) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 6

Mutexes

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

152 CHAPTER 6 Introduction

6.1 Introduction

Mutexes are used for managing resources by avoiding conflicts caused by simultaneous
use of a resource. The resource managed can be of any kind: a part of the program that is
not reentrant, a piece of hardware like the display, a flash prom that can only be written
to by a single task at a time, a motor in a CNC control that can only be controlled by one
task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_MJTEX_ LockBI ocked() or CS_MJ}
TEX Lock() routines of embOS. If the mutex is available, the program execution of the
task continues, but the mutex is blocked for other tasks. If a second task now tries to
acquire the same mutex while it is in use by the first task, this second task is suspended
until the first task releases the mutex. However, if the first task that uses the mutex calls
OS_MUTEX_ LockBI ocked() again for that mutex, it is not suspended because the mutex is
blocked only for other tasks.

The following diagram illustrates the process of using a mutex:

OS_MUTEX_LockBlocked()

Access resource

0S_MUTEX_Unlock()

A mutex contains a counter that keeps track of how many times the mutex has been
claimed by calling OS_MJTEX Lock() or OS_MJTEX LockBl ocked() by a particular task. It
is released when that counter reaches zero, which means the CS_MJTEX_Unl ock() routine
must be called exactly the same number of times as OS_MJTEX LockBIl ocked() or OS_MJ
TEX Lock() . If it is not, the mutex remains blocked for other tasks.

On the other hand, a task cannot release a mutex that it does not own by calling 05_MJ
TEX_Unl ock() . In debug builds of embOS, a call of OS_MJTEX_Unl ock() for a mutex that
is not owned by this task will result in a call to the error handler OS_Error ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

153

CHAPTER 6 Introduction

Example of using a mutex

Here, two tasks access a (debug) terminal completely independently from each other. The
terminal is a resource that needs to be protected with a mutex. One task may not interrupt
another task which is writing to the terminal, as otherwise the following might occur:

e Task A begins writing to the terminal
e Task B interrupts Task A and writes to the terminal
e Task A is resumed and its output is written at a wrong position

To avoid this type of situation, every time the terminal is to be accessed by a task it is
first claimed by a call to S_MJTEX LockBl ocked() (and is automatically waited for if the
mutex is blocked). After the terminal has been written to, it is released by a call to OS_MJ+
TEX _Unl ock().

The sample application file OS_Mut exes. ¢ delivered in the application samples folder of
embOS demonstrates how mutex can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task-control -bl ocks
static OS_MJTEX Mt ex;

static void Wite(char const* s) {
OS_MJTEX_ LockBIl ocked(&Vt ex) ;
printf(s);
OS_MJTEX_Unl ock(&Vt ex) ;

}

static void HPTask(void) {
while (1) {
_Wite("HPTask\n");
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
while (1) {
_Wite("LPTask\n");
OS_TASK Del ay(200);
}
}

int mai n(void) {
CS Init(); /1 Initialize enhCS
CS I nitHW); /1 Initialize hardware for enbCs
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

OS_MJTEX_Cr eat e(&Vt ex) ; /1 Creates nutex
Os _Start(); /1 Start nultitasking
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

154 CHAPTER 6 API functions

6.2 API functions

c
T (S (0))
31282
Routine Description 24|92
> g — 3
22 |2
x~
OS_MUTEX Create() Creates a mutex. oo
0Ss_MJTEX Del et e() Deletes a specified mutex. oo
0S_MJTEX_ Get Oaner () Returns the mutex owner if any. o oo

Returns the value of the usage counter

OS_MUTEX_Get Val ue() of a specified mutex.

0S_MUTEX_| sMut ex() Egg:}rzfe\;v:e%ther a mutex has already olele

Requests a specified mutex and blocks it

O5_MJTEX_Lock() for other tasks if it is available.

0S_MJUTEX_LockBl ocked() tC&:gll(r:s a mutex and blocks it for other olele

Tries to claim a mutex and blocks it for
OS_MJTEX_LockTi ned() other tasks if it is available within a o oo
specified time.

Releases a mutex currently in use by a

OS_MUTEX _Unl ock() task

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

155 CHAPTER 6 API functions

6.2.1 OS MUTEX_ Create()

Description

Creates a mutex.

Prototype
voi d OS_MJUTEX Create(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

After creation, the mutex is not blocked; the value of the counter is zero.
Example
static OS_MJTEX _Mit ex;
int main(void) {
.O.S._MJTEX_Cr eat e(& Mut ex);

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

156

CHAPTER 6 API functions

6.2.2 OS_MUTEX_Delete()

Description

Deletes a specified mutex. The memory of that mutex may be reused for other purposes
or may be used for creating another mutex using the same memory.

Prototype
voi d OS_MUTEX Del et e(OS_MJTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

Before deleting a mutex, make sure that no task is claiming the mutex. A debug build of
embOS will call S_Error () with the error code S ERR_MUTEX_DELETE if a mutex is deleted
when it is already in use. In systems with dynamic creation of mutexes, you must delete a
mutex before recreating it. Failure to so may cause mutex handling to work incorrectly.

Example

static OS_MJTEX _Mit ex;

int Task(void) {
.O.S._MJTEX_DeI ete(& Mitex);
.réfurn 0;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

157

CHAPTER 6 API functions

6.2.3 OS _MUTEX_ GetOwner()

Description

Returns the mutex owner if any. When a task is currently using (blocking) the mutex the
task Id (address of task according task control block) is returned.

Prototype
0S_TASK *0S_MUTEX_Get Oaner (OS_CONST_PTR OS_MJUTEX * pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

= NULL The mutex is not used by any task.
NULL Task Id (address of the task control block).

Additional information

If a mutex was used in main() the return value of S MJUTEX Get Oaner () is ambiguous.
The return value NULL can mean it is currently used in main() or it is currently unused.
Therefore, OS_MUTEX_ Get Omner () must not be used to check if a mutex is available. Please
use OS_MUTEX Get Val ue() instead.

It is also good practice to free all used mutexes in main() before calling GS_Start ().

Example
Please find an example at OS_MJTEX_GCet Val ue() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

158 CHAPTER 6 API functions

6.2.4 OS MUTEX GetValue()

Description

Returns the value of the usage counter of a specified mutex.

Prototype
int OS_MJTEX Get Val ue(OS_CONST_PTR OS_MJTEX *pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

The counter value of the mutex.
A value of zero means the mutex is available.

Example

static OS_MJTEX _Mit ex;

voi d CheckMut ex(void) {
i nt Val ue;
OS_TASK* Owner ;

Val ue = OS_MJUTEX_Cet Val ue(& Mt ex) ;
if (Value == 0) {
printf("Mitex is currently unused");
} else {
Onner = OS_MJTEX_Get Oaner (& Mt ex) ;
if (Oaner == NULL) {
printf("Mitex was used in main()");
} else {
printf("Mitex is currently used in task Ox%", Owner);
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

159

CHAPTER 6 API functions

6.2.5 OS _MUTEX_IsMutex()

Description

Returns whether a mutex has already been created.

Prototype
0S_BOOL OS_MUTEX_| sMut ex(OS_CONST_PTR OS_MJTEX *pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

=0 Mutex has not been created or was deleted.
=0 Mutex has already been created.

Additional information

OS_MUTEX | sMut ex() returns 1 if a mutex was created with OS_MJUTEX Creat e() and not
yet deleted with OS_MUTEX Del et e(). OS_MJTEX | sMut ex() returns 0 if a mutex was not
yet created with OS_MUTEX Cr eat e() or it was deleted with OS_MJTEX Del et e() .

Example

static OS_MJTEX _Mit ex;
int main(void) {

if (OS_MJTEX | sMutex(& Mutex) != (OS_BOOL)0) {
printf("Mitex has already been created");

} else {
printf("Mitex has not yet been created");

}

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

160 CHAPTER 6 API functions

6.2.6 OS_MUTEX_Lock()

Description

Requests a specified mutex and blocks it for other tasks if it is available. Continues execution
in any case.

Prototype

char OS_MJTEX_ Lock(OS_MJUTEX* pMitex);

Parameters

Parameter Description

pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

=0 Mutex was not available.
*#0 Mutex was available, now in use by calling task.

Additional information
The following diagram illustrates how 08 MJUTEX Lock() works:

0S_MUTEX_Lock()

Resource in use
by other task?

Mark current

In use by this task?
¥ task as owner

Inc Usage Counter Usage Counter =1

Example
if (OS_MJUTEX Lock(&Mutex_LCD)) {
Di spTinme(); /'l Access the resource LCD
OS_MJTEX _Unl ock(&WVutex_LCD); // Resource LCD is no |onger needed
} else {

/1 Do sonething el se

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

161

CHAPTER 6 API functions

6.2.7 OS_MUTEX_LockBlocked()

Description

Claims a mutex and blocks it for other tasks.

Prototype
int OS_MJTEX LockBl ocked(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

The counter value of the mutex.
A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

Case B: The mutex is used by this task.

The counter of the mutex is incremented. The program continues without a break.
Case C: The mutex is being used by another task.

The execution of this task is suspended until the mutex is released. In the meantime if
the task blocked by the mutex has a higher priority than the task blocking the mutex,
the blocking task is assigned the priority of the task requesting the mutex. This is called
priority inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

Example

static OS_MJTEX _Mit ex;

voi d Task(void) {

OS_MJTEX LockBIl ocked(& Mit ex);

CS_MJTEX Unl ock(& Mut ex) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

162 CHAPTER 6 API functions

The following diagram illustrates how OS_MJTEX_LockBl ocked() works:

OS_MUTEX_LockBlocked()

Yes, by this task Yes, by other task Wait for resource

Resource in use?
to be released

Mark current
task as owner

Increase usage
counter

Usage counter=1

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

163

CHAPTER 6 API functions

6.2.8 OS_MUTEX_LockTimed()

Description

Tries to claim a mutex and blocks it for other tasks if it is available within a specified time.

Prototype

int OS_MJTEX LockTi med(OS_MJTEX* pMit ex,

OS_TIME Tineout);

Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.
Maximum time in system ticks until the mutex must be
available. The data type GS_TI ME is defined as an integer,
Ti meout therefore valid values are:
1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.
1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0
+0

Failed, mutex not available before timeout.
Success, mutex available, current usage count of mutex.

A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

Case B: The mutex is used by this task.

The counter of the mutex is incremented. The program continues without a break.
Case C: The mutex is being used by another task.

The execution of this task is suspended until the mutex is released or the timeout time
expired. In the meantime if the task blocked by the mutex mutex has a higher priority
than the task blocking the mutex, the blocking task is assigned the priority of the task
requesting the mutex. This is called priority inheritance. Priority inheritance can only
temporarily increase the priority of a task, never reduce it.

If the mutex becomes available during the timeout, the calling task claims the mutex
and the function returns a value greater than zero, otherwise, if the mutex does not
become available, the function returns zero.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mutex becomes available before the calling task is resumed.
Anyhow, the function will not claim the mutex because it was not available within the
requested time.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

164 CHAPTER 6

Example

static OS_ MJUTEX _Mit ex;
voi d Task(void) {

if (OS_MJUTEX LockTi med(& Miutex, 100)) {
/1l Miutex acquired

} else {
/' Ti meout

}

UMO01001 User Guide & Reference Manual for embOS

API functions

© 1995-2022 SEGGER Microcontroller GmbH

165 CHAPTER 6 API functions

6.2.9 OS_MUTEX_ Unlock()

Description

Releases a mutex currently in use by a task.

Prototype
voi d OS_MUTEX Unl ock(OS_MJUTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

OS_MUTEX Unl ock() may be used on a mutex only after that mutex has been locked by
calling GS_MUTEX Lock(), G5 MJTEX LockBl ocked(), or OS_ MJTEX LockTi ned(). CS_MJF
TEX _Unl ock() decrements the usage counter of the mutex, which must never become
negative. If the counter becomes negative, debug builds will call the embOS error handler
GS _Error () with error code S ERR UNUSE BEFORE_USE. In a debug build OS _Error () will
also be called if 0S_MJTEX _Unl ock() is called from a task which does not own the mutex.
The error code in this case is 0S_ ERR_MJUTEX_ OMNER.

Example
Please find an example at OS_MJTEX_Lock() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 7

Semaphores

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

167 CHAPTER 7 Introduction

7.1 Introduction

A semaphore is a mechanism that can be used to provide synchronization of tasks.
Semaphores which allow an arbitrary resource count are called counting semaphores, while
semaphores which are restricted to the values 0 and 1 are called binary semaphores.

One way to use semaphores is for signaling from one task (or ISR/software timer) to another
task. For example, if two tasks need to execute the same total number of times over the
long run: A counting semaphore can be created with an initial count of zero (no "tokens’ in
it). Every time the first task runs, it puts a token into the semaphore, thus incrementing
the semaphore’s count. The second task of the pair waits at the semaphore for tokens to
appear, and runs once for each new token, thus consuming the token and decrementing
the semaphore’s count. If the first task runs with moderate bursts, the second task will
eventually ‘catch up’ to the same total number of executions.

Binary semaphores can be used for signaling from task to task, too, in situations where
signals (counts, tokens) will not accumulate or need not be counted.

Counting semaphores are also used for regulating the access of tasks to multiple equivalent
serially-shareable resources. For instance, 10 tasks may wish to share 4 identical printers.
In this case, a counting semaphore can be created and initialized with 4 tokens. Tasks are
then programmed to take a token before printing, and return the token after printing is
done.

Example of using counter semaphore for signaling

Here, an interrupt is issued every time data is received from a peripheral source. The in-
terrupt service routine then signals the arrival of data to a worker task, which subsequently
processes that data. When the worker task is blocked from execution, e.g. by a higher-pri-
ority task, the semaphore’s counter effectively tracks the number of data packets to be
processed by the worker task, which will be executed for that exact number of times when
resumed.

The following sample application shows how semaphores can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int Stack[128]; /'l Task stack

static OS_TASK TCB; /1l Task control bl ock

static OS_SEMAPHORE Senm; /'l Semaphore

static OS_TI MER Ti mer; [/ Timer to emulate interrupt

static void Task(void) {

while(l) {
OS_SEMAPHORE_TakeBl ocked(&Senm) ; /1 Wait for signaling of received data
printf("Task is processing data\n"); // Act on received data

}

}

static void TinmerCallback(void) {
/1 Software timer function to enulate an interrupt

OS_SEMAPHORE_G ve(&Sem) ; /1 Signal data reception
CS_TI MER_Rest art (&Ti ner) ;
}
int mai n(void) {
CS Init(); /[l Initialize enbQCS
CS I nitHW); /1 Initialize required hardware

CS_TI MER _Creat e(&Ti mer, Ti mer Cal | back, 10);
CS_TI MER _Start (&Ti nmer);
OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);

OS_SEMAPHORE_Cr eat e(&Semm, 0); /|l Creates semaphore
CS start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

168 CHAPTER 7 Introduction

Example of using semaphore for regulating the access to shareable resources:

Ten tasks need to print messages on four available printers. The access to the printer must
not be interrupted by another task. It is not essential for a task which actual printer is
used and the Printer() function does not care about this aspect (this is a limitation of the
example but not relevant). The example creates the semaphore with 4 tokens. Each token
represents one printer. If a task wants to use one of the printers it takes one token and
give it back after the print job is done. When no token (printer) is available the task is
suspended until a token is again available.

#i ncl ude "RTCS. h"
#i ncl ude <stdio. h>

#define NUM PRI NTERS 4

#def i ne NUM_TASKS 10

static OS_STACKPTR int Stack[NUM TASKS][128]; // Task stack

static OS_TASK TCB[NUM_TASKS] ; /1 Task control bl ock
static OS_SEMAPHORE Senn; /'l Semaphor e

static void Print(const char* s) {
OS_SEMAPHORE_TakeBl ocked(&Semm) ;
/1l Print message on one of the available printers
OS_SEMAPHORE_G ve(&Sem) ;

}

static void Task(void) {
while(1l) {
Print("Hello World");
}
}

int main(void) {
Cs_U32 i;

CS Init(); /1 Initialize enbCS
CS InitHW); /1 Initialize required hardware
for (i = O0u; i < NUMTASKS; i++) {

OS_TASK_CREATE(&TCB[i], "Task", 100, Task, Stack[i]);

}

OS_SEMAPHORE_Cr eat e(&Senma, NUM PRI NTERS); // Creates senmaphore
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

169

CHAPTER 7 API functions
7.2 APl functions

v|S %)
312252
Routine Description 4 (< |2 4
S g |- o
=~ |& 2

~

0S_SEMAPHORE_Cr eat e()

Creates a semaphore with a specified
initial count value.

OS_SEMAPHORE_Del et e()

Deletes a semaphore.

OS_SEMAPHORE_Get Val ue()

Returns the current counter value of a
specified semaphore.

OS_SEMAPHORE_Gi ve()

Increments the counter of a sema-
phore.

0S_SEMAPHORE_G veMax()

Increments the counter of a sema-
phore up to a specified maximum val-
ue.

OS_SEMAPHORE_Set Val ue()

Sets the counter value of a specified
semaphore.

0S_SEMAPHORE_Take()

Decrements the counter of a sema-
phore, if it was signaled.

OS_SEMAPHORE_TakeBl ocked()

Decrements the counter of a sema-
phore.

OS_SEMAPHORE_TakeTi med()

Decrements a semaphore counter if
the semaphore is available within a
specified time.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

170 CHAPTER 7 API functions

7.2.1 0OS_SEMAPHORE_Create()

Description

Creates a semaphore with a specified initial count value.

Prototype
voi d OS_SEMAPHORE_Cr eat e(OS_SEMAPHORE* pSenm,
OS_UI NT I nitVal ue);
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Initial count value of the semaphore:
I ni tVal ue 0 < InitValue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < InitValue < 232 -1 = OxFFFFFFFF for 32-bit CPUs.

Example
static OS SEMA _Senm;
int main(void) {
.C.B._SEI\/API-mE_Cr eate(& Semn, 8);

return O;

Note

embOS offers a macro that calls 0OS_SEMAPHORE Cr eat e() with an initial count value of
0, allowing to more easily create semaphores. If the macro shall be used, its definition
is as follows:

#defi ne OS_SEMAPHORE_CREATE(ps) OS _SEMAPHORE Create((ps), 0)

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

171 CHAPTER 7 API functions

7.2.2 OS_SEMAPHORE_Delete()

Description

Deletes a semaphore.

Prototype
voi d OS_SEMAPHORE_Del et e(0OS_SEMAPHORE* pSema) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

Before deleting a semaphore, make sure that no task is waiting for it and that no task will
signal that semaphore at a later point.
A debug build of embOS will reflect an error if a deleted semaphore is signaled.

Example

static OS_SEMA _Senms;
voi d Task(void) {

OS_SEMAPHORE_Del et e(& Sem) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

172 CHAPTER 7 API functions

7.2.3 0OS_SEMAPHORE_GetValue()

Description

Returns the current counter value of a specified semaphore.

Prototype
int OS_SEMAPHORE_Get Val ue(0S_CONST_PTR OS_SEMAPHORE *pSens) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

The current counter value of the semaphore.

Example

static OS_SEMA _Senms;

voi d Print SenmaVal ue(void) ({
i nt Val ue;

Val ue = OS_SEMAPHORE_Get Val ue(& _Senmm) ;
printf("Sema Value: %l\n", Val ue)

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

173 CHAPTER 7 API functions

7.2.4 0OS_SEMAPHORE_SetValue()

Description

Sets the counter value of a specified semaphore.

Prototype
0S_U8 OS_SEMAPHORE_Set Val ue(OS_SEMAPHORE* pSenm,
CS_UI NT Val ue) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Count value of the semaphore:
Val ue 0 < Val ue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < Val ue < 232 - 1 = OxFFFFFFFF for 32-bit CPUs.

Return value

= 0: In any case. The return value can safely be ignored.

Example

static OS_SEMA _Senms;
voi d Task(void) {

OS_SEMAPHORE_Set Val ue(& _Senm, 0);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

174 CHAPTER 7 API functions

7.25 OS_SEMAPHORE_Give()

Description

Increments the counter of a semaphore.

Prototype
voi d OS_SEMAPHORE G ve(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

OS_SEMAPHORE G ve() signals an event to a semaphore by incrementing its counter. If one
or more tasks are waiting for an event to be signaled to this semaphore, the task with
the highest priority becomes the running task. The counter can have a maximum value
of OxFFFF for 8/16-bit CPUs or 0xFFFFFFFF for 32-bit CPUs. It is the responsibility of the
application to make sure that this limit is not exceeded. A debug build of embOS detects
a counter overflow and calls S Error () with error code OS_ERR SEMAPHORE OVERFLOWif
an overflow occurs.

Example

Please refer to the example in the introduction of chapter Semaphores on page 166.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

175 CHAPTER 7 API functions

7.2.6 OS_SEMAPHORE_GiveMax()

Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype
voi d OS_SEMAPHORE G veMax(OS_SEMAPHORE* pSenm,
CS_UI NT MaxVal ue) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Count value of the semaphore:
MaxVal ue 1 < MaxVal ue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
1 < MaxVal ue < 232 - 1 = OxFFFFFFFF for 32-bit CPUs.

Additional information

As long as current value of the semaphore counter is below the specified maximum value,
OS_SEMAPHORE G veMax() signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the tasks are
placed into the READY state and the task with the highest priority becomes the running task.

Calling OS_SEMAPHORE G veMax() with a MaxVal ue of 1 makes a counting semaphore be-
have like a binary semaphore.

Example

static OS_SEMA _Senms;
voi d Task(void) {

OS_SEMAPHORE_G veMax(& Sema, 8);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

176

CHAPTER 7 API functions

7.2.7 OS_SEMAPHORE_Take()

Description

Decrements the counter of a semaphore, if it was signaled.

Prototype
0S_BOOL OS_SEMAPHORE Take(OS_SEMAPHORE* pSens) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

=0 Failed, semaphore was not signaled before the call.
=0 Success, semaphore was available and counter was decremented once.
Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE Take() does not wait and does not modify the sem-
aphore counter.

Example

static OS_SEMA _Senms;
voi d Task(void) {

i f (OS_SEMAPHORE Take(& Semm) != 0) {
printf("Semaphore decrenented successfully.\n");
} else {
printf("Semaphore not signaled.\n");

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

177 CHAPTER 7 API functions

7.2.8 0OS_SEMAPHORE_TakeBlocked()

Description

Decrements the counter of a semaphore.

Prototype
voi d OS_SEMAPHORE TakeBl ocked(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE TakeBl ocked() waits until the counter is incremented
by another task, a timer or an interrupt handler by a call to 08 SEMAPHORE G ve(). The
counter is then decremented and program execution continues. An unlimited number of
tasks can wait for a semaphore. According to the rules of the scheduler, of all the tasks
waiting for the semaphore, the task with the highest priority will continue program exe-
cution.

Example

Please refer to the example in the introduction of chapter Semaphores on page 166.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

178 CHAPTER 7 API functions

7.2.9 0OS_SEMAPHORE_TakeTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified time.

Prototype
0S_BOOL OS_SEMAPHORE TakeTi med(OS_SEMAPHORE* pSem,
S _TI ME Ti meout) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Maximum time in system ticks until the semaphore must be
available. The data type GS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, semaphore not available before timeout.
+#0 Success, semaphore was available and counter decremented.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE TakeTi med() waits until the semaphore is signaled
by another task, a timer, or an interrupt handler by a call to OS_SEMAPHORE G ve(). The
counter is then decremented and program execution continues. If the semaphore was not
signaled within the specified time the program execution continues, but returns a value of
zero. An unlimited number of tasks can wait for a semaphore. According to the rules of
the scheduler, of all the tasks waiting for the semaphore, the task with the highest priority
will continue program execution.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the semaphore becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because
the semaphore was not available within the requested time. In this case, the state of the
semaphore is not modified by OS_ SEMAPHORE TakeTi ned() .

Example

static OS_SEMA _Senms;
voi d Task(void) {
i f (OS_SEMAPHORE TakeTi ned(& Sermm, 100)) {
/'l Semaphore acquired

} else {
... [l Tinmeout
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 8

Readers-Writer Lock

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

180 CHAPTER 8 Introduction

8.1 Introduction

A readers-writer lock is a synchronization primitive that solves the readers-writer problem.
A readers-writer lock allows concurrent access for read-only operations, while write opera-
tions require exclusive access. This means that multiple tasks can read the data in parallel
but an exclusive lock is needed for writing or modifying data. When a writer is writing the
data, all other writers or readers will be blocked until the writer has finished writing. A
common use might be to control access to a data structure in memory that cannot be up-
dated atomically and is invalid (and should not be read by another task) until the update is
complete. An embOS readers-writer lock is implemented using semaphores and mutexes.

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#defi ne NUM _READERS 2

static OS_STACKPTR int StackRd1[128], StackRd2[128], StackW][128];

static OS_TASK TCBRd1, TCBRd2, TCBW;
static OS_ RW.OCK Lock;
static OS_U32 d obal Var;

static void RdTask(void) {
while (1) {
OS_RW.OCK_RdLockBIl ocked(&L.ock) ;
printf("%\n", G obal Var);
OS_RW.OCK_RdUnl ock(&Lock) ;

}
}

static void WTask(void) {
while (1) {
OS_RW.OCK_W LockBIl ocked(&L.ock) ;
d obal Var ++;
OS_RW.OCK_W Unl ock(&Lock) ;
OS_TASK_Del ay(10);
}
}

int main(void) {
oS Init(); Il Initialize enbGS
CS InitHW); // Initialize required hardware
OS_TASK _CREATE(&TCBRd1, "Reader Task 1", 100, RdTask, StackRd1l);
OS_TASK _CREATE(&TCBRd2, "Reader Task 2", 100, RdTask, StackRd2);
OS_TASK CREATE(&TCBW, "Witer Task" , 101, WTask, StackW);
OS_RWL.OCK_Cr eat e(& ock, NUM READERS);
OS Start(); Il Start enbGCs
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

181 CHAPTER 8 API functions

8.2 API functions

c
=] (0]
3123112
Routine Description D4 |< (;/03 =
> g — 3
22| |2
~
OS RW.OCK Create() Creates a readers-writer lock. oo
OS RW.OCK Del et e() Deletes a readers-writer lock. oo
0S_RW.OCK_RdLock() Claims a lock and blocks it for writer ol olelele
tasks.
0S_RW.OCK_RdLockBl ocked() g:ll(ns'ls a lock and blocks it for writer ol e

Claims a lock if the lock is available
OS RW.OCK_RdLockTi med() within the specified timeout and blocks oo
it for writer tasks.

Releases a lock currently used by the

OS RW.OCK_RdUnl ock() reader task.

Claims a lock and blocks it for writer
O5_RWLOCK_W Lock() and reader tasks. i

0S_RW.OCK_W LockBl ocked() g‘ac:”:esa‘;é?ctl;:gd blocks it for writer ole

Claims a lock if the lock is available
OS RW.OCK_W LockTi med() within the specified timeout and blocks oo
it for writer and reader tasks.

Releases a lock currently used by the

OS_RW.OCK_W Unl ock() writer task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

182 CHAPTER 8

8.2.1 0OS RWLOCK_ Create()
Description
Creates a readers-writer lock.

Prototype

voi d OS_RW.OCK_Creat e(OS_RW.OCK* pLock,

CS_UI NT NurrReader s) ;

Parameters

API functions

Parameter

Description

pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Number of reader tasks. Maximum number is:
NunReader s 0 < InitVal ue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < InitValue < 232 - 1 = OxFFFFFFFF for 32-bit CPUs.

Additional information

If you use readers-writer lock from an unprivileged task you need not only access to the
lock object itself but also to the semaphore and the mutex member. Please see embOS-MPU

example below.
Example
#defi ne NUM_READERS 2
static OS_RW.OCK Lock;
int main(void) {
IO.SI_RV\LOCK_O' eat e(&Lock, NUM READERS) ;

return O;

}

Example using embOS-MPU

static OS_RW.OCK Lock;

static const OS_MPU OBJ _alist[] = {{&Lock,

{&Lock. Semaphor e,
{&Lock. Mut ex,

{ NULL,

static void Task(void) {
OS_MPU_Set Al | onedObj ect s(&TCB, _alist);
OS_MPU_Swi t chToUnprivState();
while (1) {
OS_RW.OCK_RdLockBI ocked(&L.ock) ;
ReadDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;
e
}

UMO01001 User Guide & Reference Manual for embOS

0S_MPU_OBJTYPE_RW.OCK} ,
0OS_MPU_OBJTYPE_SEMA},
0S_MPU_OBJTYPE_MUTEX},
OS_MPU_OBJTYPE_| NVALI D} };

© 1995-2022 SEGGER Microcontroller GmbH

183 CHAPTER 8 API functions

8.2.2 0OS_RWLOCK_Delete()

Description

Deletes a readers-writer lock.

Prototype
voi d OS_RW.OCK Del et e(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.
Example

static OS_ RALOCK Lock;
voi d Task(void) {

CS_RW.OCK _Del et e(&.ock) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

184 CHAPTER 8 API functions

8.2.3 0OS _RWLOCK_RdLock()

Description

Claims a lock and blocks it for writer tasks. Reader tasks can still access the guarded object.
OS RW.OCK _RdLock() returns at once in any case.

Prototype
OS_BOOL OS_RW.OCK_RdLock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Return value

=0 Failed, lock could not be claimed.
=0 Success, lock was available.
Example

static OS_ RALOCK Lock;

voi d Task(void) {
0s_BOOL r;

r = OS_ RW.OCK RdLock(&Lock);
if (r '=0) {
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

185 CHAPTER 8 API functions

8.2.4 0OS RWLOCK RdLockBlocked()

Description

Claims a lock and blocks it for writer tasks. Reader tasks can still access the guarded object.
OS RW.OCK _RdLockBl ocked() suspends the current task and returns once a read lock is
available.

Prototype

voi d OS_RW.OCK_RdLockBl ocked(OS_RW.OCK* pLock) ;

Parameters

Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Example

static OS_ RALOCK Lock;

voi d Task(void) {
OS_RW.OCK_RdLockBIl ocked(& ock) ;
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

186 CHAPTER 8 API functions

8.2.5 0OS_RWLOCK_RdLockTimed()

Description

Claims a lock if the lock is available within the specified timeout and blocks it for writer tasks.
Reader tasks can still access the guarded object. S RW.OCK_RdLockTi med() suspends the
current task and returns once a reader lock is available or the timeout has expired.

Prototype

0S_BOOL OS_RW.OCK_RdLockTi ned(OS_RW.OCK* pLock,
CS_TI ME Ti meout) ;

Parameters

Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Maximum time in system ticks until the lock must be avail-
able. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, lock could not be claimed within the timeout.
=0 Success, lock was available.
Example

static OS_ RW.OCK Lock;

voi d Task(void) {
OS BOOL r;

r = OS_RW.OCK _RdLockTi med(&.ock, 100);
if (r 1'=0) {
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

187 CHAPTER 8 API functions

8.2.6 OS _RWLOCK_RdUnlock()

Description

Releases a lock currently used by the reader task.

Prototype
voi d OS_RW.OCK_RdUnl ock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.
Example

static OS_ RALOCK Lock;

voi d Task(void) {
OS_RW.OCK_RdLockBIl ocked(& ock) ;
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

188 CHAPTER 8 API functions

8.2.7 OS_RWLOCK_WrLock()

Description

Claims a lock and blocks it for writer and reader tasks. OS_ RW.OCK_W Lock() returns at
once in any case.

Prototype
0S_BOOL OS_RW.OCK_W Lock(OS_RW.OCK* pLock) ;
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Return value

=0 Failed, writer lock could not be claimed.
=0 Success, writer lock was available.
Example

static OS_ RALOCK Lock;

voi d Task(void) {
0s_BOOL r;

r = OS_ RW.OCK W Lock(&Lock);
if (r !1=0) {
Wi teSoneDat a();
OS_RW.OCK_W Unl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

189 CHAPTER 8 API functions

8.2.8 0OS_RWLOCK_WrLockBlocked()

Description

Claims a lock and blocks it for writer and reader tasks. S RW.OCK_W LockBl ocked() sus-
pends the current task and returns once the write lock is available.

Prototype
voi d OS_RW.OCK_W LockBl ocked(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.
Example

static OS_ RALOCK Lock;

voi d Task(void) {
OS_RW.OCK_W LockBIl ocked(& ock) ;
Wi teSoneData();
OS_RW.OCK_W Unl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

190 CHAPTER 8 API functions

8.2.9 OS RWLOCK_WrLockTimed()

Description

Claims a lock if the lock is available within the specified timeout and blocks it for writer
and reader tasks. It requires all readers to relinquish their locks before the writer lock can
be acquired. OS RALOCK_W LockTi ned() suspends the current task and returns once the
writer lock is available or the timeout has expired.

Prototype

0S_BOOL OS_RW.OCK_W LockTi ned(OS_RW.OCK* pLock,
CS_TI ME Ti meout) ;

Parameters

Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Maximum time in system ticks until the lock must be avail-
able. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, lock could not be claimed.
=0 Success, lock was available.
Example

static OS_ RW.OCK Lock;

voi d Task(void) {
OS BOOL r;

r = OS_RALOCK_W LockTi med(&.ock, 100);
if (r 1'=0) {
Wi teSoneDat a() ;
OS_RW.OCK_W Unl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

191 CHAPTER 8 API functions

8.2.10 OS_RWLOCK_WrUnlock()

Description

Releases a lock currently used by the writer task.

Prototype
voi d OS_RW.OCK_W Unl ock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.
Example

static OS_ RALOCK Lock;

voi d Task(void) {
OS_RW.OCK_W LockBIl ocked(& ock) ;
Wi teSoneData();
CS_RW.OCK_W Unl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

Chapter 9

Mailboxes

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

193 CHAPTER 9 Introduction

9.1 Introduction

In the preceding chapters, task synchronization by the use of semaphores was described.
Unfortunately, semaphores cannot transfer data from one task to another. If we need to
transfer data between tasks for example via a buffer, we could use a mutex every time we
accessed the buffer. But doing so would make the program less efficient. Another major
disadvantage would be that we could not access the buffer from an interrupt handler,
because the interrupt handler is not allowed to wait for the mutex.

One solution would be the usage of global variables. In this case we would need to disable
interrupts each time and in each place that we accessed these variables. This is possible,
but it is a path full of pitfalls. It is also not easy for a task to wait for a character to be
placed in a buffer without polling the global variable that contains the number of characters
in the buffer. Again, there is solution -- the task could be notified by an event signaled to
the task each time a character is placed in the buffer. This is why there is an easier way to
do this with a real-time OS: The use of mailboxes.

A mailbox is a buffer that is managed by the real-time operating system. The buffer behaves
like a normal buffer; you can deposit something (called a message) and retrieve it later.
Mailboxes usually work as FIFO: first in, first out. So a message that is deposited first will
usually be retrieved first. "Message” might sound abstract, but very simply it means “item
of data”. It will become clearer in the typical applications explained in the following section.

Limitations:

Both the number of mailboxes and buffers are limited only by the amount of available
memory. However, the number of messages per mailbox, the message size per mailbox,
and the buffer size per mailbox are limited by software design.

Nunmber of nessages on 8 or 16-bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Nunmber of nessages on 32-bit CPUs:
1 <= x <= 231 - 1 = Ox7FFFFFFF

Message size in bytes on 8 or 16-bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Message size in bytes on 32-bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Maxi mum buffer size in bytes for one mailbox on 8 or 16-bit CPUs:
216 = OxFFFF

Maxi mum buffer size in bytes for one nmil box on 32-bit CPUs:
232 = OxFFFFFFFF

These limitations have been placed on mailboxes to guarantee efficient coding and also to
ensure efficient management. These limitations are typically not a problem.

A mailbox can be used by more than one producer, but must be used by one consumer
only. This means that more than one task or interrupt handler is allowed to deposit new
data into the mailbox, but it does not make sense to retrieve messages by multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

194

CHAPTER 9 Introduction

9.1.1 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer sin-
gle-byte messages. This is the case, for example, with a mailbox that takes the character
received or sent via serial interface, or typically with a mailbox used as a keyboard buffer.
In some of these cases, time is very critical, especially if a lot of data is transferred in short
periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_MAI LBOX_Put Bl ocked(), OS_MAI LBOX Put (), OS_MAI LBOX Get Bl ocked(), and
OS_MAI LBOX_Get () can transfer messages of sizes between 1 and 32,767 bytes each.

Their single-byte equivalents GS_MAI LBOX_Put Bl ocked1(), OS_MAI LBOX Put 1(), CS_MAI L-
BOX_Get Bl ocked1(), and OS_MAI LBOX_Get 1() work the same way with the exception that
they execute much faster because management is simpler. It is recommended to use the
single-byte versions if you transfer a lot of single-byte data via mailboxes.

The routines OS_MAI LBOX_Put Bl ocked1(), OS_MAILBOX Putl1(), OS_MAILBOX_ Get-
Bl ocked1(), and OS_MAI LBOX_ Get 1() work exactly the same way as their universal equiv-
alents. The only difference is that they must only be used for single-byte mailboxes.

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

195 CHAPTER 9 Introduction

Example

#define MAX MSG SIZE (9) // Max. nunber of bytes per nessage
#define MAX_ MSG NUM (2) // Max. nunber of messages per Mail box

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS _TASK TCBHP, TCBLP; // Task control bl ocks
static OS_MAI LBOX MyMai | box;
static char MyMai | boxBuf f er [MAX_MSG_SI ZE * MAX_MSG_NUM ;

static void HPTask(void) {
char abDat a] MAX_MSG_SI ZE] ;

while (1) {
OS_MAI LBOX_Get Bl ocked(&WMai | box, (void *)aData);
OS_COM SendStri ng(abat a) ;

}
}
static void LPTask(void) {
while (1) {
OS_MAI LBOX_Put Bl ocked(&WMai | box, "Hello\0 ");
OS_MAI LBOX_Put Bl ocked(&WMai | box, "Wbrld !'\n");
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS_MAI LBOX_Cr eat e(&WMai | box, MAX_MsSG_SI ZE, MAX_MSG NUM &MW Mai | boxBuffer);
OS_COM SendString("enbOS OS_Mai | box exampl e");
OS_COM SendString("\n\nDenonstrating nessage passing\n");
CS Start(); /1 Start enmbCS
return O;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

9.2 APIfunctions

CHAPTER 9

API functions

Routine

Description

urew
Nsel Alid

ysel Audun

dS|
BUWIL MS

OS_MAI LBOX _d ear ()

Clears all messages in the specified
mailbox.

OS_MAI LBOX Creat e()

Creates a new mailbox.

OS_MAI LBOX_Del et e()

Deletes a specified mailbox.

OS_MAI LBOX_Get ()

Retrieves a new message of a prede-
fined size from a mailbox if a message
is available.

OS_MAI LBOX_Get 1()

Retrieves a new message of size 1
from a mailbox if a message is avail-
able.

OS_MAI LBOX Cet Bl ocked()

Retrieves a new message of a prede-
fined size from a mailbox.

OS_MAI LBOX_Get Bl ocked1()

Retrieves a new message of size 1
from a mailbox.

OS_MAI LBOX_CGet MessageCnt ()

Returns the number of messages cur-
rently available in a specified mailbox.

OS_MAI LBOX_Get Ti med()

Retrieves a new message of a prede-
fined size from a mailbox if a message
is available within a given time.

OS_MAI LBOX_Get Ti med1()

Retrieves a new message of size 1
from a mailbox if a message is avail-
able within a given time.

OS_MAI LBOX_Get Pt r ()

Retrieves a pointer to a new message
of a predefined size from a mailbox, if
a message is available.

OS_MAI LBOX_Cet Pt r Bl ocked()

Retrieves a pointer to a new message
of a predefined size from a mailbox.

OS_MAI LBOX_| sl nUse()

Delivers information whether the mail-
box is currently in use.

OS_NAI LBOX_Peek()

Peeks a message from a mailbox with-
out removing the message.

OS_MAI LBOX_Pur ge()

Deletes the last retrieved message in a
mailbox.

OS_MAI LBOX_Put ()

Stores a new message of a predefined
size in a mailbox if the mailbox is able
to accept one more message.

OS_MAI LBOX_Put 1()

Stores a new message of size 1 in a
mailbox if the mailbox is able to accept
one more message.

OGS _MAI LBOX _Put Bl ocked()

Stores a new message of a predefined
size in a mailbox.

OS_NAI LBOX_Put Bl ocked1()

Stores a new message of size 1 in a
mailbox.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2022 SEGGER Microcontroller GmbH

197 CHAPTER 9 API functions

Routine Description

urew
jsel Ald
ysel Audun
dSI
Jawlil MS

Stores a new message of a predefined
size into a mailbox in front of all other
O5_MAILBOX_Put Front () messages if the mailbox is able to ac- ol I I e

cept one more message.

Stores a new message of size 1 into a
mailbox in front of all other messages
if the mailbox is able to accept one
more message.

OS_NAI LBOX_Put Front 1()

Stores a new message of a predefined
size at the beginning of a mailbox in oo
front of all other messages.

OS_MAI LBOX_Put Front -
Bl ocked()

Stores a new message of size 1 at the
beginning of a mailbox in front of all oo
other messages.

OS_MAI LBOX_Put Fr ont -
Bl ockedl()

Stores a new message of a predefined
0S_MAI LBOX_Put Ti med() size in a mailbox if the mallbox.ls_able ol e
- - to accept one more message within a

given time.

Stores a new message of size 1 in a
OS_MAI LBOX_Put Ti med1() mailbox if the mailbox is aplg to ac- ol e
- - cept one more message within a given

time.

Waits until a message is available, but
OS_MAI LBOX Wi t Bl ocked() does not retrieve the message from oo
the mailbox.

Waits until a message is available or
the timeout has expired, but does not
retrieve the message from the mail-
box.

OS_MAI LBOX_ Wi t Ti med()

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

198 CHAPTER 9 API functions

9.2.1 0OS_MAILBOX_ Clear()

Description

Clears all messages in the specified mailbox.

Prototype
voi d OS_MAI LBOX_Cl ear (OS_MAI LBOX* pMB) ;
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

When the mailbox is in use, a debug build of embOS will call G8 Error () with error code
OS_ERR_MB_I NUSE.

OS_MAI LBOX O ear () may cause a task switch.
Example

static OS_MAI LBOX _MBKey;

voi d C ear KeyBuf fer(void) {
OS_MAI LBOX_Ol ear (& _MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

199

CHAPTER 9 API functions

9.2.2 OS_MAILBOX_ Create()

Description

Creates a new mailbox.

Prototype

voi d OS_MAI LBOX_Cr eat e(OS_MAI LBOX* pMB,
Os_U16 si zeof Msg,
OS_UI NT maxnof Msg,
voi d* Buf fer);

Parameters

Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.
si zeof Msg Size of a message in bytes. Valid values are

1 < sizeof Msg < 32,767.

Maximum number of messages. Valid values are
maxnof Msg 1 < Maxnof Msg < 32,767 on 8 or 16-bit CPUs, or
1 < Maxnof Msg < 2,147,483,647 on 32-bit CPUs.

Pointer to a memory area used as buffer. The buffer must
be big enough to hold the given humber of messages of
Buf f er the specified size: si zeof Msg * naxnoMsg bytes. For 8/16-
bit CPUs the total buffer size for one mailbox is limited to

65,536 Bytes.

Example

Mailbox used as keyboard buffer:

static OS_MAI LBOX _MBKey;
char MBKeyBuf f er[6] ;

voi d I nitKeyMan(void) {
Il
/1 Create mail box, functioning as type ahead buffer
Il
OS_MAI LBOX Create(& MBKey, 1, sizeof(MBKeyBuffer), &VBKeyBuffer);

}
Mailbox used for transferring complex commands from one task to another:

/*
* Exanpl e of mail box used for transferring commands to a task
* that controls a notor
*/
typedef struct {
char Cnd;
i nt Speed[2];
int Position[2];
} MOTORCMVD;

OS_MAI LBOX MBMbt or;

#def i ne NUM_MOTORCMDS 4

char BufferMtor[sizeof (MOTORCMD) * NUM MOTORCMDS] ;
void MOTOR I nit(void) {

/* Create nmuil box that holds commands nessages */
OS_MAI LBOX_Cr eat e(&vBMot or, si zeof (MOTORCMD), NUM MOTORCMDS, &Buffer Motor);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

200 CHAPTER 9 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

201 CHAPTER 9 API functions

9.2.3 0OS_MAILBOX_ Delete()

Description

Deletes a specified mailbox.

Prototype
voi d OS_MAI LBOX_Del et e(OS_MAI LBOX* pMB) ;
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

To keep the system fully dynamic, it is essential that mailboxes can be created dynamically.
This also means there must be a way to delete a mailbox when it is no longer needed. The
memory that has been used by the mailbox for the control structure and the buffer can
then be reused or reallocated.

It is the programmer’s responsibility to:

make sure that the program no longer uses the mailbox to be deleted
e make sure that the mailbox to be deleted actually exists (i.e. has been created first).

When the mailbox is in use, a debug build of embOS will call S Error () with error code
OS_ERR_MB_| NUSE.

In a debug build CS_Error () will also be called if GS_MAI LBOX_Del et e() is called while
tasks are waiting for new data from the mailbox. The error code in this case is OS_ER-
R _MAI LBOX_DELETE.

Example

static OS_MAI LBOX _MBSerln;

voi d C eanup(void) {
OS_MAI LBOX_Del et e(& MBSer 1 n);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

202

CHAPTER 9 API functions

9.2.4 OS_MAILBOX_Get()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available.

Prototype
char OS_MAI LBOX_Get (OS_MAI LBOX* pMB,
voi d* pDest);
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.
Return value
=0 Success; message retrieved.
0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pDest points
to remains unchanged, but the program execution continues. This function never suspends
the calling task. It may therefore also be called from an interrupt routine.

Example

#defi ne MESSAGE_SI ZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er [MESSAGE_SI ZE] ;

char GetData(void) {
return OS_MAlI LBOX Get (& MBData, & Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

203 CHAPTER 9 API functions

9.25 OS _MAILBOX_ Getl1()

Description

Retrieves a new message of size 1 from a mailbox if a message is available.

Prototype
char OS_MAI LBOX_ Get 1(OS_MAI LBOX* pMB,
char* pDest);
Parameters
Parameter Description

pMB Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area

pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Return value

=0 Success; message retrieved.

0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pDest points
to remains unchanged, but the program execution continues. This function never suspends
the calling task. It may therefore also be called from an interrupt routine.

See Single-byte mailbox functions on page 194 for differences between OS_MAI LBOX_Get ()
and OS_MAI LBOX_Get 1() .

Example

static OS_MAI LBOX _MBKey;

/1
/1 If a key has been pressed, it is taken out of the nail box
/1 and returned to caller. O herw se zero is returned.
/1
char GetKey(void) {
char ¢ = 0;

OS_MAI LBOX_Get 1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

204 CHAPTER 9 API functions

9.2.6 0OS MAILBOX GetBlocked()

Description

Retrieves a new message of a predefined size from a mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked(OS_MAI LBOX* pMB,
voi d* pDest);
Parameters
Parameter Description

pMB Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area

pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

Example

#defi ne MESSAGE_SIZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er [MESSAGE_SI ZE] ;

char WaitData(void) {
return OS_MAl LBOX_Get Bl ocked(& MBData, & Buffer);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

205 CHAPTER 9 API functions

9.2.7 OS_MAILBOX_GetBlocked1()

Description

Retrieves a new message of size 1 from a mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked1(OS_MAI LBOX* pMB,
char* pDest);
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

See Single-byte mailbox functions on page 194 for differences between OS_MAI LBOX Get -
Bl ocked() and OS_MAI LBOX_Get Bl ocked1() .

Example

static OS_MAI LBOX _MBKey;

char Wi tKey(void) {
char c;

OS_MAI LBOX_Get Bl ocked1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

206 CHAPTER 9 API functions

9.2.8 0OS MAILBOX GetMessageCnt()

Description

Returns the number of messages currently available in a specified mailbox.

Prototype
OS_UI NT OS_MAI LBOX_Get MessageCnt (OS_CONST_PTR OS_MAI LBOX *pMB)
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.

Return value

The number of messages currently available in the mailbox.

Example

static OS_MAI LBOX _MBDat a;

voi d PrintAvail abl eMessages() {
OS_UI NT Nunf Msgs;

NumOF Msgs = OS_MAI LBOX_Get MessageCnt (& _MBDat a) ;

printf("Milbox contains % nessages.\n", NunmOf Msgs);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

207

CHAPTER 9 API functions

9.2.9 0OS_MAILBOX GetTimed()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available
within a given time.

Prototype
char OS_MAI LBOX_Get Ti med(OS_MAI LBOX* pMB,
voi d* pDest,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Maximum time in system ticks until the requested message
must be available. The data type OGS _TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message retrieved.
=0 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and the task is suspended for the given
timeout. The task continues execution according to the rules of the scheduler as soon as
a message is available within the given timeout, or after the timeout value has expired.
If the timeout has expired and no message was available within the timeout the memory
area where pDest points to remains unchanged.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case, no message is retrieved
from the mailbox.

Example

#define MESSAGE_SIZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er [MESSACGE_SI ZE] ;

char WaitData(void) ({
Il
/1 Wait for up to 10 systemticks
Il
return OS_MAI LBOX Get Ti ned(& MBData, & Buffer, 10);

UMO01001 User Guide & Reference Manual for embOS © 1995-2022 SEGGER Microcontroller GmbH

208

CHAPTER 9 API functions

9.2.10 OS_MAILBOX_GetTimed1()

Description

Retrieves a new message of size 1 from a mailbox if a message is available within a given
time.

Prot