embOS

Real-Time Operating System
Software Version 3.40A
CPU-independent
User & reference guide
Document revision 1

) E—
/SEGGER

A product of SEGGER Microcontroller Systeme GmbH

Disclaimer

The information in this document is subject to change without notice. While the infor-
mation herein is assumed to be accurate, SEGGER MICROCONTROLLER SYSTEME
GmbH (the manufacturer) assumes no responsibility for any errors or omissions.

The author makes and you receive no warranties or conditions, express, implied,
statutory or in any communications with you. The manufacturer specifically disclaims
any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without the prior written permission of the manufacturer.

The software described in this document is furnished under a license and may only be
used or copied in accordance with the terms of such a license. If you have received
this product as a trial version for evaluation, you are entitled to evaluate it, but you
may under no circumstances use it in a product. If you want to do so, you must
obtain a fully licensed version from the manufacturer.

© 1997-2007 SEGGER Microcontroller Systeme GmbH, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective Companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Registration

Register the software via email. This way we can make sure you will receive updates
or notifications of updates as soon as they become available. For registration, pro-
vide the following information:

Company name and address

Your name

Your job title

Your email address and telephone number
Name and version of the product

Send this information to: register@segger.com

Contact address

SEGGER Microcontroller Systeme GmbH
Heinrich-Hertz-Str. 5
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
Email: support@segger.com

Internet: http://www.segger.com

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

Software and manual versions

This manual describes the software version 3.40A. If any error occurs, inform us and
we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: 08.06.2007

Software | Manual Date | By Description

Chapter “Counting semaphores" updated.
- OS_SetCSemaValue() added.
- OS_CreateCSema(): Data type of parameter InitValue
3.40A 1 070608 SK changed from unsigned char to unsigned int.
- OS_SignalCSemaMax(): Data type of parameter MaxValue
changed from unsigned char to unsigned int.
- OS_SignalCSema(): Additional information updated.

Chapter “Performance and resource usage" added.

Chapter “Configuration of your target system (RTOSInit.c)"
renamed to “Configuration of your target system".

3.40 0 070516 SK | Chapter "STOP\WAIT\IDLE modes" moved into

chapter “Configuration of your target system™.

Chapter “time-related routines™ renamed to “Time measure-
ment".

Chapter 4: OS_CREATETIMER_EX(), additional information cor-

3.320 9 070422 SK
rected.

Chapter 4: Extended timer added.

3.32m 8 070402 | AW Chapter 8: API overview corrected, OS_Q_GetMessageCount()

3.32j 7 070216 | AW | Chapter 6: OS_CSemaRequest() function added.

3.32e 6 061220 SK | About: Company description added.
Some minor formating changes.

3.32e 5 061107 | AW | Chapter 7: OS_GetMessageCnt() return value corrected to
unsigned int.

3.32d 4 061106 | AW Chapter 8: 0OS_Q_GetPtrTimed() function added.

Chapter 3: OS_CreateTaskEx() function, description of parame-
ter pContext corrected.

Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.

Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.

Chapter 9: OS_GetEventsOccured() renamed to
0OS_GetEventsOccurred().

Chapter 10: OS_EVENT_WaitTimed() added.

3.32a 3 061012 | AW

3.32a 2 060804 | AW | Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

3.32 1 060717 | OO | Event objects introduced. Chapter 10 inserted which describes
event objects.
Previous chapter "Events" renamed to "Task events"

3.30 1 060519 0O | New software version.

3.28 5 060223 | OO | All chapters: Added API tables.
Some minor changes.

3.28 4 051109 | AW | Chapter 7: OS_SignalCSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

3.28 3 050926 | AW | Chapter 6: OS_DeleteRSema() function added.

w

.28 2 050707 | AW | Chapter 4: OS_GetSuspendCnt() function added.

3.28 1 050425 | AW | Version number changed to 3.28 to fit to current ombOS ver-
sion.

Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected

Chapter 4: OS_Terminate() modified due to new features of
version 3.26.

Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in detail.

3.26 050209 | AW

3.24 041115 AW Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

Software

Manual

Date

By

Description

3.22

1

040816

AW

Chapter 8: New Mailbox functions added
OS_PutMailFront()

OS_PutMailFront1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()

3.20

040621

RS

Software timers: Maximum timeout values and
OS_TIMER_MAX_TIME described.

Chapter 14: Description of rules for interrupt handlers
revised.

0OS_LeaveNestableInterruptNoSwitch() added which was not
described before.

3.20

040329

AW

OS_CreateCSema() prototype declaration corrected. Return
type is void.

0S_Q_GetMessageCnt() prototype declaration corrected.
0S_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20

031128

AW

OS_CREATEMB() Range for parameter MaxnofMsg corrected.
Upper limit is 65535, but was declared 65536 in previous
manuals.

040831

AW

Code samples modified: Task stacks defined as array of int,
because most CPUs require alignment of stack on integer
aligned addresses.

3.20

031016

AW

Chapter 4: Type of task priority parameter corrected to
unsigned char.

Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resume() added.

Chapter 5: OS_GetTimerValue(): Range of return value cor-
rected.

Chapter 6: Sample program for usage of resource sema-
phores modified.

Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.

Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.

Chapter 8: OS_WaitMail() added

Chapter 10: OS_WaitEventTimed(): Range of timeout value
specified.

021015

AW

Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG
KG
KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related rou-
tines).

Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains con-
trol).

Chapter 4 (Configuration for your target system) moved to after
Chapter 15 (System variables).

Chapter 16 (Time-related routines) added.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

¢ DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

The intention of this manual is to give you a CPU- and compiler-independent intro-
duction to embOS and to be a reference for all embOS API functions.

For a quick and easy startup with embOS, refer to Chapter 2 in the CPU & Compiler
Specifics manual of embOS documentation, which includes a step-by-step introduc-
tion to using embOS.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Text that you enter at the command-prompt or that appears on the

Keyword display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, tables and figures or other documents.

GUIElement | Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

SEGGER Microcontroller Systeme GmbH develops

and distributes software development tools and ANSI
’ C software components (middleware) for embedded

systems in several industries such as telecom, medi-
/ cal technology, consumer electronics, automotive
SEGG EH industry and industrial automation.

SEGGER’s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office: United States Office:
http://www.segger.com http://www.segger-us.com
EMBEDDED SOFTWARE SEGGER TOOLS
(Middleware)
emWin Flasher
Graphics software and GUI Flash programmer
emWin is designed to provide an effi- Flash Programming tool primarily for microcon-
cient, processor- and display control- trollers.
ler-independent graphical user .
interface (GUI) for any application that J-Link
operates with a graphical display. JTAG emulator for ARM cores
Starterkits, eval- and trial-versions are USB driven JTAG interface for ARM cores.
available.
J-Trace
embOS JTAG emulator with trace
Real Time Operating System USB driven JTAG interface for ARM cores with
=== embOS is an RTOS designed to offer Trace memory. supporting the ARM ETM (Embed-
=] the benefits of a complete multitasking ded Trace Macrocell).
[system for hard real time applications .
with minimal resources. The profiling J-Link / J-Trace Related Software
PC tool embOSView is included. Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
emfFile programming software and flash breakpoints.

File system

emFile is an embedded file system with

FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-

mum memory consumption in RAM and

ROM while maintaining high speed.

Various Device drivers, e.g. for NAND

and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack

USB device stack

A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

g

User & reference manual for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

Table of Contents

1 Introduction t0 eMBDOS o 13
1.1 What IS €mMbDOS .. e e e 14
1.2 ST L 1 < 15

P Y- L (ol oo (o =T o) £ RSP PPPPRTPPRTRPP 17
2.1 L=] G 18
2.2 Single-task systems (SUPEIIOOP) .iiiiiii i i e e 19
2.3 MUIEIEASKING SYSEEMIS .ot e e 20
2.3.1 Cooperative MUIttasKing ..oivii i i e 20
2.3.2 Preemptives multitasking.....covuiiiiiiii i e 21
2.4 1| =T 11] 19T P 22
2.4.1 Round-robin scheduling algorithm ... 22
2.4.2 Priority-controlled scheduling algorithm ... 22
2.4.3 oY a1V g AV =T =1 o] o 23
2.5 Communication between tasksciiiiiiiiiii i i 24
2.5.1 Global Variables. ..o e 24
2.5.2 Communication MEeChaNISMIS ...viirii i e e e enes 24
2.5.3 MailbOXES AN QUEUES . uiiiiiiii ittt a e ae e e eas 24
2.5.4 Y=] 0 F=] 0 5 o 1P 24
2.5.5 =T) o= 24
2.6 How task-switChing WOrKS. ... e 25
2.7 SWIECHING STACKS . it e e 26
2.8 Change of task Status.....cviiiiiiii i e e 27
2.9 How the OS gains CONTIOl ...oiiiiiiii i e e e 28
2.10 Different builds of @mbOS ..o e 30
2.10.1 o) 111 o Vo R PP 30
2.10.2 LISt Of DrariEs e e 30

G T = 1S (o 10 1] TSR 31
3.1 Task routine API funCtion OVEIVIEWciiviiiiiiii i e e eneas 33
3.1.1 O S CREATETASK() tuttttttttt et ttastaattaeeesseatsae e asestsaeaae e rteaneaeanereanaaeeneanes 34
3.1.2 O CreateTask() coue ettt i i e e e e aeaas 35
3.1.3 OS _CREATETASK EX () tttuttutttiteitiitiie e seitsse it se s tsaesie e s tsa e e e aaenaaaeaneenes 37
3.1.4 O _CreateTaskEX () «iveeiiiiiiiii i i i e e ettt et a e at e 38
3.1.5 (O T D L= = 1V () PPN 39
3.1.6 O DEIaYUNLII() ittt 40
3.1.7 O S P IO Y () ettt ittt it e et e 41
3.1.8 OGP O Y () ettt ittt e e 42
3.1.9 (OIS Y=o I [0 g =15 =T () 43
3.1.10 (O 1S Y 1= 0 1= T 1 (PP 44
3.1.11 (O I T 2= 1T U] 0 0 1= (PP 45
3.1.12 (OIS 1= wSY U] 0 1=] g o [o) f () 1 PP 46
3.1.13 (O 1 T =1 5 11 0 =1 =T () TP PP 47
3.1.14 OIS L | LI 11 SO PP 48
3.1.15 (O T =0 =11 O T PP 49
3.1.16 (O T L= ol =11 4 1 5 1 T PP 50
3.1.17 OS_ GetplUITENETASK () « ittt ittt e e e e e e e aaeaas 51

Y0 1Tz TSI (] 41T £ 53
4.1 Software timers API funNCtion OVEerVIEW......oiviiiiii i 55

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

4.1.1 OS_CREATETIMER () tuttttttiittiiti ittt it a e et e s st e st s ae st e aa e st e a e eeaaaeaeans 56
4.1.2 (@ ST O 1=) (= N 1= () P 57
4.1.3 (@ ST =T ol T 2 = ol () P 58
4.1.4 (@IS o] o 1T £ =T ol () I PP 59
4.1.5 (O ST U o g Te o [=1 ol T =T ol () I 60
4.1.6 (@ SIS =] ol 0 1= =T o T T I P 61
4.1.7 (@ ST B =1 1= = T 0 1 1= o (I 62
4.1.8 (@ ST =] N g 1= o =T o T T I (PP 63
4.1.9 (@ ST =] o M 0 1= V=1 LU =T () PP 64
4.1.10 OS_GetTimerStatusS() «uveevieii i e s as e raa e aneas 65
4.1.11 (@ S €11 o1 OfN g /=T o Lol I 1o o 1= of () 1P 66
4.1.12 OS_CREATETIMER _EX() tuttittttiittiitiite st tatesitsasesaesssesaesanesaeessesaeesnesieannenns 67
4.1.13 (O S O 1=) =l N 1=T = () T PP 68
4.1.14 (@ SIS =T ol T =T of =t) PP 69
4.1.15 (@ TS W] o T =T of =t () PP 70
4.1.16 OS_RetriggerTimerEX() «cooe e e e a e eeaas 71
4.1.17 (O ST SY=1 ol 1] =T o T 1 () IR 72
4.1.18 (@ ST B 121 (=1 W=l W 0 1] o = () 1 PP 73
4.1.19 (@ ST C1=] M g 1] o =T T T 1 = () I PP 74
4.1.20 OS_GetTimerValUEEX() «.cvvviiiiii i e e s e e e e aeaas 75
4.1.21 OS _GetTimerStatUSEX() «evuveieiiii it e e s e s e e aaneanns 76
4.1.22 OS_GetpCUurrentTiMEIrEX () . .e ueeeeieiiiertiite et ransaserareaerareseraesasraeaaneannans 77
5 RESOUICE SEMAPNOIEScciiiieiieeeeeeeeeeiettr e e s et e e e e e e e ettt e e e e e e r s s eaaeeaeaaeeeeeeeeaesnnsrnnnnns 79
5.1 Resource semaphores API function OVervieWcoooviii i i 82
5.1.1 OS _CREATERSEMA() ettt iitiittiieeate st s asesitsanesanssnesanssnesanssneeaseseannennenns 83
5.1.2 (@I U F=1=T () I PR 84
5.1.3 (@ ST U L[S F=1=T () T PP 86
5.1.4 (@I 2T LU= o (PP 87
5.1.5 08 _GetSemMaAVaAlUE() ettt st e 88
5.1.6 OS _GetRESOUINCEOWNEI() e uttiuttite ittt iiesaseteeasesesasssesansanraanerneaanerneaanernenns 89
5.1.7 OS_DeletERSEMA() +iuviirtiitii it e et r e ar e areaas 90
6 CouNtiNg SEMAPRNOIEScooiiiiiiiiiiee et a e r e e e e eeas 91
6.1 Counting semaphores API function OVerviewc.ccciiiiiiiiiiiiiiiiii i 93
6.1.1 OS _CREATECSEMA() tttittiteiteiatesseiasssnesassssesasssnesanssnsanssansanssnnsansrnesnnsrnnnns 94
6.1.2 (O I I O =T) =T @1 o = () 95
6.1.3 (@ S o [=1 LGS =T 0 1= () I PP 96
6.1.4 0S8 _SigNalCSEMAMaAX() +ttittiiitt it iie it e a e et 97
6.1.5 (@ STV = 11 (@S] o 0 1= T PP 98
6.1.6 OS_WaitCSemMaTimeEd() .. eeeerreiirernernnesneraeesneraneseranernrraneraneanerneeanernnennernnans 99
6.1.7 (OIS O Y=T 0 a1 2 =T LU =) f () 100
6.1.8 (O S =IO 0 0 = A= 1 (U =T () P 101
6.1.9 (O T =] (= =T @RS Y =T o o T= 1 PP 102
T MaAIIDOXESt a e e e e e eeaees 103
7.1 WY Mai D OXES 2 ettt e e e e 104
7.2 = =] T oL 105
7.3 Typical @appliCationNs ...uiiii i e 106
7.4 Single-byte mailboxX fuNCHiONS ..o 107
7.5 Mailboxes API fUNCLION OVEIVIEW....iivi i e e neenaeaas 108
7.5.1 OS _CREATEMB() +utttuettsisessesnesasssnnsanesesanssnesanssnssanssneranssnesanssnernnsrnernnens 109
7.5.2 OS_PutMail() / OS_PUEMaAIIL() cuenenieiie i e e e 110
7.5.3 OS_PutMailCond() / OS_PutMailCondl() ..ccveeerrerieiinerieinnerieranernnsanernesnnernenns 111
7.5.4 OS_PutMailFront() / OS_PutMailFrontl() ..ocoveiiiiiiii i i 112
7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1() ...covviiiiiiiiiiiiiiiiieiii e 113
7.5.6 OS_GetMail() / OS_GetMailL() ceouieieie i 114
7.5.7 0S_GetMailCond() / OS_GetMailCondl() cvvviriiiiiiiiiii i e 115
7.5.8 (@ ST CT=1u 1 =TT 0 aT=To | () PP 116
7.5.9 L@ ST V= 1 = 11 TP 117

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

7.5.10 (@I O =TT 1] = PP 118
7.5.11 OS_GetMESSAGECNT() +uuveieiii it 119
7.5.12 O DEIEEEMB() ttiutitii ittt ittt et aaeas 120
8 QUEBUES ..ttt e ettt e et ettt e e e e ee b e e e e eeta e aaaees 121
8.1 LA Vs [U= 0 13 PP 122
8.2 = =] [123
8.3 Queues API fUNCLION OVEIVIEW ..iiriiiiiii i st iae s eaaneenans 124
8.3.1 (O S O I O == 1 T () PR 125
8.3.2 (@ 1T @ I U () T PSPPI 126
8.3.3 (O 1T O I 1= o ol (P PP 127
8.3.4 (O S O I C = 4 @ [[() PR 128
8.3.5 (O O I 1= 4w ol I 0 0 1=) I PR 129
8.3.6 (O T O T o0 o [T () PR 130
8.3.7 (O T O O =T 1 () PP 131
8.3.8 0S_Q_GetMESSAGECNE() vrvvrirtireiitiii it ie e ar e are s ar e 132
S T - 1S Q=AY =T £ U 133
9.1 Events API fUNCLION OVEIVIEW ..iiiiiri i v e e e 135
9.1.1 OS _ WaitEVENE() ittt i e 136
9.1.2 OS_WaitSiNgIEEVENE() oottt e e 137
9.1.3 OS_WaitEventTimed () cviee i e e e e e e 138
9.1.4 0OS_WaitSingleEventTimed() .vvviiiiii i i e e e e 139
9.1.5 OS _SIgNAlEVENT() tuiiiiii i i i e e 140
9.1.6 (O 1SI Y= W V7T o) = Tolel 81 o'=Te [() 141
9.1.7 (OIS O =T [Y 7= o =] () 1S 142
O YT o] o] o] =T o £ TR URRPR 143
10.1 Event object API function OVEervieWocoiiiiii i e 145
10.1.1 OS _EVENT _CrEate() «eueretititiiitiitiie et atsae e e ste et et e st ateneaaeanertaananens 146
10.1.2 OS _EVENT _WaaIt() +eueinititieieitiatiitiie et sse st e teata e s e sease e ae e aseneaaeanens 147
10.1.3 OS_EVENT_WaitTimed() coueeeieitiiniitiie i itsie e vt a et e se s ae e s eenaeneaneaaens 148
10.1.4 (O T YA = VN Y= () TP PR PPRPRP 149
10.1.5 OS _EVENT _ RESEE() 1ttt ittt it e e e e ae e 151
10.1.6 OS _EVENT _PUISE() tutitiitiiiiii it e et e e aeean 152
10.1.7 (@I Y4 = AV B =] () PR PPRPRP 153
10.1.8 (@I YA =\ B D=1 =Y =Y) RPN 154
11 Heap type memory ManagemMENT.........couuu i iiiiiaeieie e et e eeie e ea e er e e ean e e eaaaas 155
11.1 Heap type memory manager APl referencecccoiviiiiiiiiiiiiic i 157
12 Fixed block Size MemOry POOIS........ccooiiiiiiiee e 159
12.1 Memory pools API referenCe OVEIrVIEWccviiiiiiii i i e 161
12.1.1 (ORI | =1 @ ¢ <= | Y () PP 162
12.1.2 O S _ MEMF _DIEEE() 1ttt ittt ittt et e ettt 163
12.1.3 (@ IS 1 =2 AN 1T Yol () PP 164
12.1.4 OS_MEMF_AHOCTIMEA() +t ettt ietitateieee e ieste et e e e ae e e e e e e aaeanereannanens 165
12.1.5 (@ IS] =1 o 2= To [U=) T PP 166
12.1.6 OS _MEMF_REICASE() +ututttttieieittasettte et ateatrae e steaaean e e easeneaaeaserrannanens 167
12.1.7 OS _MEMF_Fre@BIOCK() +iueiutitiitiitit it ittt ea et e e eaea e ae e e e e e aeaeenenea 168
12.1.8 OS_MEMF_GEtNUMBIOCKS() 1 ututtriitiitiie it eteinie it testa et e e seaaeaneeeaseneaaeanens 169
12.1.9 OS_MEMF_GEtBIOCKSIZE() 1t uttuetneitiittieieeestaae e e staaesae e ssensaneaneanersaneanens 170
12.1.10 OS_MEMF_GetNUMFIreeBIOCKS()..u ittt it s et et nae e naaneaaens 171
12.1.11 OS_MEMF_GEtMaXUSEA() ttuurreirtitiitiiiiertiiteiiie e siene e eieeenneneaneeneanannanens 172
12.1.12 OS_MEMF_ISINPOOI() tuttititieitiitestaie ettt et et e e e e e et e e e eaeneaaeeeanans 173
IR S - (o &SRS 175
13.1 SYSEEM SEACK 1 e 177
13.2 TASK SEACK c it e 178

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

10

13.3 Interrupt StacCK. ..o e 179
13.4 Stacks API fUNCLION OVEINVIEW .ottt s e e e 180
13.4.1 (O ST =] 0 = 0] 165] o = [0/ () 1P 181
I 1 1 (=T 1] £ PSPPI 183
14.1 TNt rrUPt AN CY v e 185
14.1.1 Causes of interrupt IatenNCies . ..o e 185
14.1.2 Additional causes for interrupt [atenciesccociviiiiiiiii i 185
14.2 Zero interrupt atenCy .o e 187
14.3 High / low priority interrupts....ccooiiii e 188
14.4 Rules for interrupt handlers ..o e 189
14.4.1 1T [T =Y I o U] L= PP 189
14.4.2 Additional rules for preemptive multitaskingcccoviiiiiiiiiiiiii 189
14.5 Calling embOS routines from within an ISR............coiiiii s 190
14.5.1 Interrupts API fUNCLION OVEINVIEW .viiiiiiiiii i e naeeaea s 191
14.5.2 OS _ENterInterrupt() covve i e e 192
14.5.3 (O I =T 1V [o) =T o U] o) () PP 193
14.5.4 0S_LeavelInterruptNOSWITCN() . vriii i e i ae e eaas 194
14.5.5 Example using OS_EnterInterrupt()/0S_Leavelnterrupt().......cooovvvviiiiininnnnns 194
14.6 Enabling / disabling interrupts from Co 195
14.6.1 OS_INCDI() / OS_DECRI() tttuttiutiaeeiuiiantiieianessesiseanesaneaeraneaesaneaernnenneennans 196
14.6.2 OS_DI() / OS_EI() / OS_RESLOFEI() tvuerrirenernenienreneseeseeiesaeseenesiesaeneenesaenees 197
14.7 Definitions of interrupt control macros (in RTOS.h) ..civviiiiiiiiiiiiiiciiee s 198
14.8 Nesting INterrupt FOULINES....c.vi i e 199
14.8.1 OS_EnterNestableINterrupt() cvveeveeiieii i s eneaas 200
14.8.2 0OS_LeaveNestableInterrupt() «ooovveiiiii i e 201
14.8.3 0OS_LeaveNestableInterruptNoSwitch()....ccoviiiiiiii i e 202
14.9 Non-maskable interrupts (NMIS)cviiiiiiiiiiii i i i s ae e e 203
15 CritiCAl REGIONS ..ottt e et e e e e e e e e eeeeeeas 205
15.1 Critical regions API funNCtion OVEIrVIEW......cviiiiiiii i e 207
15.1.1 (OIS = 01 =] o 2 =T e 0] o 1) P 208
15.1.2 OS _LEAVEREGION() .ttt it e i e e 209
16 SyStem VariabIES.........ooeiiiiiie e 211
16.1 BN L g L Z= L 1= o U= PP 213
16.1.1 L@ 1T I 0 = PP 213
16.1.2 L@ TN I 0 =]) G PP 213
16.2 OS internal variables and data-structuresoovviiiiiiiiiii e 214
17 Configuration for your target SYStEMeuuiuueiiiiiiiiie e 215
17.1 Hardware-specifiC rOULINESciiiiiii i e aaeea 217
17.2 Configuration defiNes ..o e 218
17.3 How to change SettingsSco ittt e aeea 219
17.3.1 Setting the system frequency OS_FSYS ... e 219
17.3.2 Using a different timer to generate the tick-interrupts for embOS 219
17.3.3 Using a different UART or baudrate for embOSViewcccvviiiiiiiiiiiiiiininen, 219
17.3.4 Changing the tick freqQUENCYoiiiiiiii e 219
17.4 Using non-standard LiCKSiiiuiiiii i e 221
17.5 STOP / HALT / IDLE MOAES .. ettt st sie s aeese e sesanenneeneennenneans 222
18 TiME MEASUIEIMENTeiiiitiiiiiee e e e e e e e e e e e ettt e s e e e aeeaeaeaaaeeeees 223
18.1 Low-resolution mMeasurEmMent. e e aeeaneans 225
18.2 Low-resolution measurement API function Overview........cooovvviieiiinnieiinnnnnnns 226
18.2.1 L@ ST =] I T 0 1 1= (T PP 227
18.2.2 (@ ST =] N 0 1175 274 () 1S PP 228
18.3 High-resolution measurementoiiiiiii i e e 229
18.4 High-resolution measurement API function overviewcocviiiiiiiiiiin e, 230
18.4.1 (@ ST N 2 1 T 13- () I PP 231

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

18.4.2 L@ TN I 2 11 T] = o o [I 232
18.4.3 OS_TimMING_GEEUS() vrntitiiitiite i s e e s s e aneanens 233
18.4.4 L ST N {2 11 Lo I C =1 @Yol 1] () 234
18.5 XA O e e 235
19 embOSView: Profiling and analyZing ... 237
19.1 L@ A YT 238
19.2 LI 13 S L1 4 o e (o) PP 239
19.3 System variables WinAOWoiieiii i i s e 240
19.4 Sharing the SIO for terminal I/O...cciiiiiiii e 241
19.4.1 Shared SIO API fuNCLION OVEIVIEW....uiiri i i eea s 242
19.4.2 (O ST aTe 15 w g [o () I PP 243
19.4.3 0S_SetRXCallbBaCK() toviiri it e 244
19.5 USING the AP frace ... e e et e e e eeaaens 245
19.6 Trace filter setup fUNCLIONS.. .ot e 247
19.7 Trace filter API fUNCHIONS.....iiiiii e e e 248
19.7.1 (O N I = [ol=] = o T=] o] 1= () T PP 249
19.7.2 O _TraceDisable() e e i i it 250
19.7.3 OS_TraceENabIEAII() et e 251
19.7.4 OS_TraceDisableAl() vuveiie i e e 252
19.7.5 OIS I = [ol<] = g T=] o1 1= Ko [I PP 253
19.7.6 OS_TraceDisableld() cuueeiirei i i e e 254
19.7.7 OS_TraceEnableFilterId() .ce i iii i e e e e e 255
19.7.8 OS_TraceDisableFilterId() c.uue i i i e e e aa s 256
19.8 Trace record fUNCEIONS .. cvi i i e e aea e 257
19.9 Trace record API function OVErVIEWoiviiii i e 258
19.9.1 O ST I = (o) oY Lo () I TP 259
19.9.2 (O ST I = [0l o o () I PP 260
19.9.3 (O N I = [ol<] DI ¢ 1 () I PR 261
19.9.4 OS _TraceDataPlr() «ovviii it e 262
19.9.5 (O ST Il = (oL U 17 =l o () PPN 263
19.10 Application-controlled trace examplecocoviiiiiiii i 264
19.11 User-defined fUNCLIONS ..iiviiiiiii i s s e e naeans 265
P20 B 1= o 18 o o [T PP PP PPPPPPPP 267
20.1 N8 T = =T o e] PP 268
20.2 I E= o) =T o o ol ol Yo 1= 269
21 Performance and rESOUICE USAQE......ccuuuuuuruuuuaaaaaeeaaeaeaeaeeeeeeesssrsnnnaaaaaaaaaaaaaeeeeeeeennes 273
21.1 ol /o o [8 T o o T PP 274
21.2 1T Vo] a VN o =To LU] (=T 0 g 1= o L= 275
21.3 o= o (o o = [L= 276
21.4 BenNChmMaAarKiNg .. 276
21.4.1 Measurement with port pins and 0scilloSCOpe.....ccovviiiiiiiiiiiii e 277
21.4.1.1 Measurement with high-resolution timer ..o 280
22 Supported developmENt tOOISooeiiiiiiiiiiiiie e 281
P22 T IR0 11 7= 1[0} 0 PSPPSR 283
24 Source code of kernel and lIDraryuuuueeioii e 285
24.1 Building embOS libraries. . ..ccoviiiiii 287
24.2 Major compile time SWItChes ...uiiiiii i 288
24.2.1 OS_RR_SUPPORTED ..utttitiitiie sttt e s et eae e sae et aaesesnaan s e neaneneaneanens 288
24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE ...ttt viennenanneeaens 288
2SS AN (o [1 1o g F= U 010 o (1] 1= USPPPPPPSPRR 289
25.1 Keyboard manager: KEYMAN. C. ittt i i e e e neeaaas 290
25.2 Additional libraries and mMOdUlesoviiiiiii e 291

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

12

26 FAQ (frequently asked qQUESLIONS)uvuueuiiiiiiei e eeeee e e e e e e e e e e e e 293
27 GlOSSAIY ...coeeeeeieee ettt ettt e e e e e e e et aaaaaaaaeeaeeea e ——————— 295

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

13

Chapter 1

Introduction to embOS

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

14 CHAPTER 1 Introduction to embQOS

1.1 What is embOS

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum memory
consumption in both RAM and ROM, as well as high speed and versatility.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

15

1.2 Features

Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the realtime operat-
ing system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of the industry. Fully source-compatible RTOS are avail-
able for a variety of microcontrollers, making it well worth the time and effort to
learn how to structure real-time programs with real-time operating systems.

embOS is highly modular. This means that only those functions that are needed are
linked, keeping the ROM size very small. The minimum memory consumption is little
more than 1 Kbyte of ROM and about 30 bytes of RAM (plus memory for stacks). A
couple of files are supplied in source code to make sure that you do not loose any
flexibility by using embOS and that you can customize the system to fully fit your
needs.

The tasks you create can easily and safely communicate with each other using a
complete palette of communication mechanisms such as semaphores, mailboxes, and
events.

Some features of embOS include:

e Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inversion applies.
Round-robin scheduling for tasks with identical priorities.
Preemptions can be disabled for entire tasks or for sections of a program.
Up to 255 priorities.
Every task can have an individual priority => the response of tasks can be pre-
cisely defined according to the requirements of the application.
e Unlimited number of tasks
(limited only by the amount of available memory).
e Unlimited number of semaphores
(limited only by the amount of available memory).
2 types of semaphores: resource and counting.
Unlimited number of mailboxes
(limited only by the amount of available memory).

e Size and number of messages can be freely defined when initializing mailboxes.
e Unlimited number of software timers
(limited only by the amount of available memory).
e 8-bit events for every task.
e Time resolution can be freely selected (default is 1ms).
e Easily accessible time variable.
e Power management.
e Unused calculation time can automatically be spent in halt mode .

power-consumption is minimized.
e Full interrupt support:
Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication instances (mailboxes, semaphores, events).
Very short interrupt disable-time => short interrupt latency time.
Nested interrupts are permitted.
embOS has its own interrupt stack (usage optional).
Frame application for an easy start.
Debug version performs runtime checks, simplifying development.
Profiling and stack check may be implemented by choosing specified libraries.
Monitoring during runtime via UART available (embQOSView).
Very fast and efficient, yet small code.
Minimum RAM usage.
Core written in assembly language.
Interfaces C and/or assembly.
Initialization of microcontroller hardware as sources.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

16 CHAPTER 1 Introduction to embQOS

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

17

Chapter 2

Basic concepts

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

18 CHAPTER 2 Basic concepts

2.1 Tasks

In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely

"owned" the entire CPU. The tasks are scheduled, meaning that the RTOS can
activate and deactivate every task.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

19

2.2 Single-task systems (superloop)

A superloop application is basically a program that runs in an endless loop, calling OS
functions to execute the appropriate operations (task level). No real-time kernel is
used, so interrupt service routines (ISRs) must be used for real-time parts of the
software or critical operations (interrupt level). This type of system is typically used
in small, uncomplex systems or if real-time behavior is not critical.

Task level Interrupt level

Superloop

Time

ISR (nested)

Of course, there are fewer preemption and synchronization problems with a super-
loop application. Also, because no real-time kernel is used, only one stack exists in
ROM, meaning that ROM size is smaller and less RAM is used up for stacks. However,
superloops can become difficult to maintain if the program becomes too large.
Because one software component cannot be interrupted by another component (only
by ISRs), the reaction time of one component depends on the execution time of all
other components in the system. Real-time behavior is therefore poor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

20

2.3 Multitasking systems

CHAPTER 2 Basic concepts

In a multitasking system, there are different scheduling systems in which the calcu-
lation power of the CPU can be distributed among tasks.

2.3.1 Cooperative multitasking

Cooperative multitasking expects cooperation of all tasks. Tasks can only be sus-
pended by calling a function of the operating system. If they do not, the system
"hangs", which means that other tasks have no chance of being executed by the CPU
while the first task is being carried out. This is illustrated in the diagram below. Even
if an ISR makes a higher-priority task ready to run, the interrupted task will be
returned to and finished before the task switch is made.

Time

Low priority task

Executing task is interrupted

ISR
ISR puts high priority
task in READY state

Interrupted task
is completed

User & reference guide for embOS

High priority task

Higher priority task
Is executed

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

21

2.3.2 Preemptives multitasking

Real-time systems like embOS operate with preemptive multitasking only. A real-
time operating system needs a regular timer-interrupt to interrupt tasks at defined
times and to perform task-switches if necessary. The highest-priority task in the
READY state is therefore always executed, whether it is an interrupted task or not. If
an ISR makes a higher priority task ready, a task switch will occur and the task will
be executed before the interrupted task is returned to.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state;
Time task switch occurs

High priority task

Higher priority task
Is executed

Interrupted task
is completed

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

22 CHAPTER 2 Basic concepts

2.4 Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and the other tasks that are
suspended for any reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the program of this task). The task which is currently executing
is referred to as the active task. The main difference between schedulers is in how
they distribute the computation time between the tasks in READY state.

2.4.1 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the active task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time, if the response time is not an issue, or if all
tasks have the same priority. Round-robin scheduling can be illustrated as follows:

All tasks are on the same level; the possession of the CPU changes periodically after
a predefined execution time. This time is called timeslice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For
example, in an application that controls a motor, a keyboard, and a display, the
motor usually requires faster reaction time than the keyboard and display. While the
display is being updated, the motor needs to be controlled. This makes preemptive
multitasking a must. Round-robin might work, but because it cannot guarantee a
specific reaction time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. The order of exe-
cution depends on this priority. The rule is very simple:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known as
critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not have to think about whether one task is more important
than another. Tasks with identical priority cannot block each other for longer than
their timeslices. But round-robin scheduling also costs time if two or more tasks of
identical priority are ready and no task of higher priority is ready, because it will con-
stantly switch between the identical-priority tasks. It is more efficient to assign a dif-
ferent priority to each task, which will avoid unnecessary task switches.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

23

2.4.3 Priority inversion

The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority-task becomes active again and releases the resource.

The other rule is: No rule without exception.

To avoid this kind of situation, the low-priority task that is blocking the highest-prior-
ity task gets assigned the highest priority until it releases the resource, unblocking
the task which originally had highest priority. This is known as priority inversion.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

24 CHAPTER 2 Basic concepts

2.5 Communication between tasks

In a multitasking (multithreaded) program, multiple tasks work completely sepa-
rately. Because they all work in the same application, it will sometimes be necessary
for them to exchange information with each other.

2.5.1 Global variables

The easiest way to do this is by using global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time this
method has various disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation time
and power, and the reaction time depends on how often you poll.

2.5.2 Communication mechanisms

When multiple tasks work with one another, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues

A mailbox is basically a data buffer managed by the RTOS and is used for sending a
message to a task. It works without conflicts even if multiple tasks and interrupts try
to access it simultaneously. embOS also automatically activates any task that is
waiting for a message in a mailbox the moment it receives new data and, if neces-
sary, automatically switches to this task.

A queue works in a similar manner, but handle larger messages than mailboxes, and
every message may have a individual size.

For more information, see Chapter Mailboxes on page 103 and Chapter Queues on
page 121.

2.5.4 Semaphores

Two types of semaphores are used for synchronizing tasks and to manage resources.
The most common are resource semaphores, although counting semaphores are also
used. For details and samples, refer to Chapter Resource semaphores on page 79
and Chapter Counting Semaphores on page 91. Samples can also be found on our
website at www.segger.com.

2.5.5 Events

A task can wait for a particular event without using any calculation time. The idea is
as simple as it is convincing; there is no sense in polling if we can simply activate a
task the moment the event that it is waiting for occurs. This saves a great deal of
calculation power and ensures that the task can respond to the event without delay.
Typical applications for events are those where a task waits for data, a pressed key, a
received command or character, or the pulse of an external real-time clock.

For further details, refer to the Chapter Task events on page 133 and Chapter Event
objects on page 143.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

25

2.6 How task-switching works

A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

e The program code, which usually resides in ROM (though it does not have to)
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate calculation results and register values. Each task can have a different
stack size. More information can be found in chapter Stacks on page 175.

The task control block (TCB) is a data structure assigned to a task when it is created.
It contains status information of the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management
data. This information allows an interrupted task to continue execution exactly where
it left off. TCBs are only accessed by the RTOS.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

26

2.7 Switching stacks

CHAPTER 2 Basic concepts

The following diagram demonstrates the process of switching from one stack to

another.

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's

stack.

Task O

Task Control Stack
block

variables
temp. storage
ret. addresses

CPU
registers

Task n

Task Control Stack
block

variables
temp. storage
ret. addresses
CPU

SP

\ 4

Free Stack
area

registers
SP >

Free Stack
area

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

27

2.8 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY task with
higher priority. Only one task may be active at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task
remains in the the READY state.

The active task may be delayed for or until a specified time; in this case it is put into
the DELAY state (TS_DELAY) and the next highest priority task in the READY state is
activated.

The active task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state and
the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not been
created yet or it has been terminated.

The following illustration shows all possible task states and transitions between

them.
Not existing
CREATETASK() Terminate()
(TS_Ready 4—>[Active task
Delay()
Wait for event, TS_DELAY
mailbox or

semaphore

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

28 CHAPTER 2 Basic concepts

2.9 How the OS gains control

When the CPU is reset, the special-function registers are set to their respective val-
ues. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU). This
start address is usually in a startup module shipped with the C compiler, and is some-
times part of the standard library.

The startup code performs the following:

e Loads the stack pointers with the default values, which is for most CPUs
the end of the defined stack segment(s)

e Initializes all data segments to their respective values

e Calls the main () routine.

In a single-task-program, the main() routine is part of your program which takes
control immediately after the C startup. Normally, embOS works with the standard C
startup module without any modification. If there are any changes required, they are
documented in the startup file which is shipped with embOS.

The main () routine is still part of your application program. Basically, main () creates
one or more tasks and then starts multitasking by calling os_start (). From then on,
the scheduler controls which task is executed.

The main () routine will not be interrupted by any of the created tasks, because those
tasks are executed only after the call to 0s_start (). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. A good practice is to write software in the form
of modules which are (up to a point) reusable. These modules usually have an initial-
ization routine, which creates the required task(s) and/or control structures.

A typical main () looks similar to the following example:

Example

/***
*

* main

*

R R R RS EE S SRS S SR SRR SRS SRS EEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S

*/

void main (void) {
0S_InitKern() ; /* Initialize OS (should be first !) */
OS_InitHW() ; /* Initialize Hardware for OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create
the tasks they need ... (Order of creation may be important) */

MODULELl_Init();

MODULE2_Init () ;

MODULE3_Init () ;

MODULE4_Init () ;

MODULES5_Init () ;

0S_Start () ; /* Start multitasking */
}

With the call to os_start (), the scheduler starts the highest-priority task that has
been created in main ().

Note that os_start () is called only once during the startup process and does not
return.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

29

The flowchart below illustrates the starting procedure:

Reset of
CPU

Init memory

Init
Hardware

Create task
Semaphore

embOS

Scheduler

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

CHAPTER 2 Basic concepts

2.10 Different builds of embOS

embOS comes in different builds, or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release version into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug version of the embOS libraries and make the code a bit
bigger (about 50%) and also slightly slower than the release or stack check version
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack check versions of the libraries), and a safer
(though bigger and slower) version for development which will catch most of the
common application programming errors. Of course, you may also use the release
version of embOS during development, but it will not catch these errors.

2.10.1 Profiling

embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they induce certain overhead such as bigger task control blocks,
additional ROM (approximately 200 bytes) and additional runtime overhead. This
overhead is usually acceptable, but for best performance you may want to use non-
profiling builds of embOS if you do not use this feature.

2.10.2 List of libraries

In your application program, you need to let the compiler know which build of embQOS
you are using. This is done by defining a single identifier prior to including RT0OS.h.

Build Define Description

R: Release OS_LIBMODE_R |Smallest, fastest build
S: Stack check | 0s_LIBMODE_S |Same as release, plus stack checking

SP: Stack check
plus profiling| 0S_LIBMODE_SP

Same as stack check, plus profiling

D: Debug OS_LIBMODE_D |Maximum runtime checking
DP: Elizugrofiling 0S_LIBMODE_DP Maximum runtime checking, plus profiling
DT: Debug
including Maximum runtime checking, plus tracing API
trace, OS_LIBMODE_DT | calls and profiling
profiling

Table 2.1: List of libraries

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

31

Chapter 3

Task routines

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

32 CHAPTER 3 Task routines

A task that should run under embOS needs a task control block (TCB), a stack, and a
normal routine written in C. The following rules apply to task routines:

The task routine cannot take parameters.

The task routine must never be called directly from your application.

The task routine must not return.

The task routine should be implemented as an endless loop, or it must terminate
itself (see examples below).

e The task routine needs to be started from the scheduler, after the task is created
and os_start () is called.

Example of task routine as an endless loop:

/* Example of a task routine as an endless loop */
void Taskl (void) {

while (1) {
DoSomething () /* Do something */
0S_Delay (1) ; /* Give other tasks a chance */

}
}

Example of task routine that terminates itself

/* Example of a task routine that terminates */
void Task2 (void) {
char DoSomeMore;

do {
DoSomeMore = DoSomethingElse() /* Do something */
O0S_Delay (1) ; /* Give other tasks a chance */
} while (DoSomeMore) ;
0OS_Terminate(0) ; /* Terminate yourself */

}

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is fully sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a routine is available allowing "fine-tuning" of all param-
eters. For most applications, at least initially, using the macro as in the sample start
project works fine.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

33

Task routine API function overview

Routine

Description

OS_CREATETASK ()

Creates a task.

0S_CreateTask ()

Creates a task.

OS_CREATETASK_EX ()

Creates a task with parameter.

0S_CreateTaskEx ()

Creates a task with parameter.

0S_Delay ()

Suspends the calling task for a specified period of time.

0S_DelayUntil (

Suspends the calling task until a specified time.

0OS_SetPriority ()

Assigns a specified priority to a specified task.

Returns the priority of a specified task

)
(
0S_GetPriority ()
0S_SetTimeSlice()

Assigns a specified timeslice value to a specified task.

0S_Suspend ()

Suspends the specified task.

OS_Resume ()

Decrements the suspend count of specified task and
resumes the task, if the suspend count reaches zero.

0S_GetSuspendCnt ()

Returns the suspension count.

OS_Terminate ()

Ends (terminates) a task.

0S_WakeTask ()

Ends delay of a task immediately.

0S_TIsTask ()

Determines whether a task control block actually belongs
to a valid task.

0S_GetTaskID()

Returns the ID of the currently running task.

0S_GetpCurrentTask ()

Returns a pointer to the task control block structure of
the currently running task.

Table 3.1: Task routine API list

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

34

CHAPTER 3 Task routines

3.1.1 OS_CREATETASK()

Description
Creates a task.
Prototype
void OS_CREATETASK (OS_TASK* pTask,
char* pName,
void* pRoutine,
unsigned char Priority,
void* pStack) ;
Parameter Description
Task Pointer to a data structure of type os_task which will be used as
P task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task
Priority of the task. Must be within the following range:
Priority 1l <= Priority <=255
Higher values indicate higher priorities.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.

Table 3.2: OS_CREATETASK() parameter list

Additional Information

OS_CREATETASK () is a macro calling an OS library function. It creates a task and
makes it ready for execution by putting it in the READY state. The newly created task
will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed right before it. This macro is normally used for creating a task
instead of the function call 0s_CreateTask (), because it has fewer parameters and is
therefore easier to use.

OS_CREATETASK () can be called at any time, either from main () during initialization
or from any other task. The recommended strategy is to create all tasks during ini-
tialization in main () to keep the structure of your tasks easy to understand.

The absolute value of priority is of no importance, only the value in comparison to
the priorities of other tasks.

OS_CREATETASK () determines the size of the stack automatically, using sizeof. This is
possible only if the memory area has been defined at compile time.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.Most CPUs require
alignment of stack in multiples of bytes. This is automatically done, when the task
stack is defined as an array of integers.

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask (void) {
while (1) {
Delay (100);
}
}

void InitTask (void) {
OS_CREATETASK (&UserTCB, "UserTask", UserTask, 100, UserStack);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

35

3.1.2 OS_CreateTask()

Description

Creates a task.

Prototype
void OS_CreateTask (OS_TASK* pTask,
char* pName,
unsigned char Priority,
voidRoutine* pRoutine,
void* pStack,
unsigned StackSize,
unsigned char TimeSlice) ;)
Parameter Description
Pointer to a data structure of type os_Task which will be used as
pTask the task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
pRoutine Pointer to a routine that should run as task
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the Stack
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
TimeSlice the time in embOS_ timer ticks that the task will run_un_til it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embQOS for efficiency
reasons.

Table 3.3: OS_CreateTask() parameter list

Additional Information

This function works the same way as OS_CREATETASK (), except that all parameters of
the task can be specified.

The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.

Most CPUs require alignment of stack in multiples of bytes. This is automatically
done, when the task stack is defined as an array of integers.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

36

Example

CHAPTER 3 Task routines

/* Demo-program to illustrate the use of 0S_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];

OS_TASK TaskMain, TaskClock;
OS_SEMA SemalCD;

void Clock(void) {
while(1l) {
/* Code to update the clock */
}
}

void Main (void) {
while (1) {
/* Your code */
}
}

void InitTask (void) {
OS_CreateTask (&TaskMain, NULL,
0S_CreateTask (&TaskClock, NULL,
}

User & reference guide for embOS

50,
100,

Main,

Clock, StackClock, sizeof (StackClock), 2)

StackMain, sizeof (StackMain), 2)

7
7

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

37

3.1.3 OS_CREATETASK_EX()

Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CREATETASK_EX (OS_TASK* pTask,
char* pName,
void* pRoutine,
unsigned char Priority,
void* pStack,
void* pContext) ;
Parameter Description
Pointer to a data structure of type os_task which will be used as
pTask task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task.
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
pContext Parameter passed to the created task function.

Table 3.4: OS_CREATETASK_EX() parameter list

Additional Information

OS_CREATETASK_EX () is a macro calling an embOS library function. It works like
OS_CREATETASK (), but allows passing a parameter to the task.

Using a void pointer as additional parameter gives the flexibility to pass any kind of
data to the task function.

Example

The following example is delivered in the samples folder of embOS.

/* __
File : Main_TaskEx.c

Purpose : Sample program for embOS using OC_CREATETASK_EX

————————— END-OF-HEADER ————-——————m— e e e e e %/
#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
0OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/**/

static void TaskEx(void* pData) {
while (1) {
0S_Delay ((OS_TIME) pData);
}
}

/***
*

* main

*
***/

int main(void) {

O0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

OS_CREATETASK_EX (&§TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
OS_CREATETASK_EX (&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
0S_SendString ("Start project will start multitasking !\n");

0S_Start () ; /* Start multitasking */
return 0;

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

38

CHAPTER 3 Task routines

3.1.4 OS_CreateTaskEx()

Description
Creates a task and passes a parameter to the task.
Prototype
void OS_CreateTaskEx (OS_TASK* pTask,
char* pName,
unsigned char Priority,
voidRoutine* pRoutine,
void* pStack,
unsigned StackSize,
unsigned char TimeSlice,
void* pContext) ;)
Parameter Description
Pointer to a data structure of type os_Task which will be used as
pTask the task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
pRoutine Pointer to a routine that should run as task.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the Stack
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
Timeslice the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embQOS for efficiency
reasons.
pContext Parameter passed to the created task.

Table 3.5: OS_Create_Task_Ex() parameter list

Additional Information

This function works the same way as 0S_CreateTask (), except that a parameter is
passed to the task function.
An example of parameter passing to tasks is shown under 0S_CREATETASK_EX().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

39

3.1.5 OS_Delay()

Description
Suspends the calling task for a specified period of time.

Prototype
void OS_Delay (int ms);

Parameter Description
Time interval to delay. Must be within the following range:
ms 1 <=ms <= 2%°-1 = Ox7FFF = 32767 for 8/16-bit CPUs
1 <=ms <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

Table 3.6: OS_Delay() parameter list

Additional Information

The calling task will be put into the TS_DELAY state for the period of time specified.
The task will stay in the delayed state until the specified time has expired. The
parameter ms specifies the precise interval during which the task has to be sus-
pended given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range: ms - 1 <= delay <= ms, depending on
when the interrupt for the scheduler will occur.

After the expiration of a delay, the task is made ready again and activated according
to the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling 0s_wakeTask ().

Example

void Hello() {
printf ("Hello");
printf ("The next output will occur in 5 seconds");
0S_Delay (5000) ;
printf ("Delay is over");

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

40

CHAPTER 3 Task routines

3.1.6 OS_DelayUntil()

Description
Suspends the calling task until a specified time.

Prototype
void 0S_DelayUntil (int t);

Parameter Description

Time to delay until. Must be within the following range:

1 <= (t - 0S_Time) <= 21°-1 = Ox7FFF = 32767 for 8/16-bit
CPUs

1 <= (t - 0s_Time) <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 3.7: OS_DelayUntil() parameter list

Additional Information

The calling task will be put into the TS_DELAY state until the time specified.

The 0s_bDelayUntil () function delays until the value of the time-variable 0s_Time
has reached a certain value. It is very useful if you have to avoid accumulating
delays.

Example

int sec,min;

void TaskShowTime () {
int t0 = OS_GetTime() ;
while (1) {
ShowTime () ; /* Routine to display time */
0S_DelayUntil (tO += 1000);
if (sec < 59) sec++;
else {
sec=0;
min++;
}
}
}

In the example above, the use of 0s_bDelay () could lead to accumulating delays and
would cause the simple "clock" to be slow.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

41

3.1.7 OS_SetPriority()

Description
Assigns a specified priority to a specified task.

Prototype

void OS_SetPriority (OS_TASK* pTask,
unsigned char Priority) ;

Parameter Description

pTask Pointer to a data structure of type 0s_TaASK.

Priority of the task. Must be within the following range:

1 <= priority <= 255 Higher values indicate higher priorities.
Table 3.8: OS_SetPriority() parameter list

Priority

Additional Information

Can be called at any time from any task or software timer. Calling this function might
lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

42

CHAPTER 3 Task routines

3.1.8 OS_GetPriority()

Description
Returns the priority of a specified task.
Prototype
unsigned char OS_GetPriority (OS_TASK* pTask);
Parameter Description
pTask Pointer to a data structure of type 0s_TasK.

Table 3.9: OS_GetPriority() parameter list

Return value
Priority of the specified task as an "unsigned character" (range 1 to 255).
Additional Information

If pTask is the NULL pointer, the function returns the priority of the currently running
task. If prask does not specify a valid task, the debug version of embOS calls
OS_Error (). The release version of embOS cannot check the validity of pTask and
may therefore return invalid values if pTask does not specify a valid task.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

43

3.1.9 OS_SetTimeSlice()

Description

Assigns a specified timeslice value to a specified task.

Prototype
unsigned char 0S_SetTimeSlice (OS_TASK* pTask,
unsigned char TimeSlice);
Parameter Description
pTask Pointer to a data structure of type 0s_TaASK.
New timeslice value for the task. Must be within the following
TimeSlice range:
1 <= TimeSlice <= 255.

Table 3.10: OS_SetTimeSlice() parameter list

Return value
Previous timeslice value of the task as unsigned char.
Additional Information

Can be called at any time from any task or software timer. Setting the timeslice value
only affects the tasks running in round-robin mode. This means another task with the
same priority must exist.

The new timeslice value is interpreted as reload value. It is used after the next acti-
vation of the task. It does not affect the remaining timeslice of a running task.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

44

CHAPTER 3 Task routines

3.1.10 OS_Suspend()

Description
Suspends the specified task.

Prototype
void OS_Suspend (OS_TASK* pTask) ;

Parameter Description
Pointer to a data structure of type os_Task which is used as task
pTask control block (and reference) for the task that should be sus-
pended.

Table 3.11: OS_Suspend() parameter list

Additional Information

If pTask is the NULL pointer, the current task suspends.

If the function succeeds, execution of the specified task is suspended and the task's
suspend count is incremented. The specified task will be suspended immediately. It
can only be restarted by a call of 0S_Resume ().

Every task has a suspend count with a maximum value of 0S_MAX_SUSPEND_CNT. If
the suspend count is greater than zero, the task is suspended.

In debug versions of embOS, calling 0S_Suspend() more often than
0OS_MAX_SUSPEND_CNT times without calling 0s_Resume (), the task's internal suspend
count is not incremented and OS_Error () is called with error

OS_ERR_SUSPEND_TOO_OFTEN.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

45

3.1.11 OS_Resume()

Description

Decrements the suspend count of the specified task and resumes it, if the suspend
count reaches zero.

Prototype
void OS_Resume (OS_TASK* pTask) ;
Parameter Description
Pointer to a data structure of type os_Task which is used as task
pTask control block (and reference) for the task that should be sus-
pended.

Table 3.12: OS_Resume() parameter list

Additional Information

The specified task's suspend count is decremented. If the resulting value is 0, the
execution of the specified task is resumed.

If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the scheduler.
In debug versions of embOS, the 0s_rResume () function checks the suspend count of
the specified task. If the suspend count is 0 when 0S_Resume() is called, the
specified task is not currently suspended and 0S_Error() is called with error
OS_ERR_RESUME_BEFORE_SUSPEND.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

46 CHAPTER 3 Task routines

3.1.12 OS_GetSuspendCnt()

Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used for examining whether a task is suspended by previ-
ous calls of 0S_Suspend ().

Prototype
unsigned char 0S_GetSuspendCnt (OS_TASK* pTask) ;

Parameter Description

pTask Pointer to a data structure of type 0s_TasK.
Table 3.13: OS_GetSuspendCnt() parameter list

Return value

Suspension count of the specified task as unsigned character value.
0: Task is not suspended.
>0: Task is suspended by at least one call of 0S_Suspend ().

Additional Information

If pTask does not specify a valid task, the debug version of embOS calls 0S_Error ().
The release version of embOS can not check the validity of pTrask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, 0s_iIsTask() may be «called prior calling
0S_GetSuspendCnt() to examine whether the task is valid. The remturned value can
be used for resuming a suspended task by calling 0s_Resume () as often as indicated
by the returned value.

Example

/* Demo-function to illustrate the use of 0S_GetSuspendCnt () */

void ResumeTask (OS_TASK* pTask) {
unsigned char SuspendCnt;
SuspendCnt = 0S_GetSuspendCnt (pTask) ;
while (SuspendCnt > 0) {
OS_Resume (pTask); /* May cause a task switch */
SuspendCnt--;
}
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

3.1.13 OS Termi

Description

47

nate()

Ends (terminates) a task.

Prototype
void OS_Terminate (OS_TASK* pTask);
Parameter Description
rask Pointer to a data structure of type 0os_Task which is used as task
pras control block (and reference) for this task.

Table 3.14: OS_Terminate() parameter list

Additional Information

If pTask is the NULL pointer, the current task terminates. The specified task will ter-
minate immediately. The memory used for stack and task control block can be reas-

signed.

Since version 3.26 of embOS, all resources which are held by the terminated task are

released. Any task

may be terminated regardless of its state. This functionality is

default for any 16-bit or 32-bit CPU and may be changed by recompiling embOS
sources. On 8-bit CPUs, terminating tasks that hold any resources is prohibited. To
enable safe termination, the embOS sources have to be recompiled with the compile
time switch 0s_SUPPORT_CLEANUP_ON_TERMINATE activated.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

48 CHAPTER 3 Task routines

3.1.14 OS_WakeTask()

Description
Ends delay of a task immediately.

Prototype
void 0OS_WakeTask (OS_TASK* pTask);

Parameter Description

Pointer to a data structure of type os_Task which is used as task
control block (and reference) for this task.
Table 3.15: OS_WakeTask() parameter list

pTask

Additional Information

Puts the specified task, which is already suspended for a certain amount of time with
OS_Delay () or 0S_DelayUntil () back to the state TS_READY (ready for execution).
The specified task will be activated immediately if it has a higher priority than the
priority of the task that had the highest priority before. If the specified task is not in
the state TS_DELAY (because it has already been activated, or the delay has already
expired, or for some other reason), this command is ignored.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

49

3.1.15 OS_IsTask()

Description
Determines whether a task control block actually belongs to a valid task.

Prototype
char 0S_IsTask (OS_TASK* pTask) ;

Parameter Description

Pointer to a data structure of type 0os_Task which is used as task
control block (and reference) for this task.
Table 3.16: OS_IsTask() parameter list

pTask

Return value

Character value:
0: TCB is not used by any task
1: TCB is used by a task

Additional Information

This function checks if the specified task is still in the internal task list. If the task
was terminated, it is removed from the internal task list. This function may be useful
to determine whether the task control block and stack for the task may be reused for
another task in applications that create and terminate tasks dynamically.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

50 CHAPTER 3 Task routines

3.1.16 OS_GetTasklD()

Description

Returns the ID of the currently running task.

Prototype
OS_TASKID 0OS_GetTaskID (void);

Return value

0S_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates that no
task is executing.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

51

3.1.17 OS_GetpCurrentTask()

Description
Returns a pointer to the task control block structure of the currently running task.
Prototype

OS_TASK* 0OS_GetpCurrentTask (void);

Return value
0S_TASK*: A pointer to the task control block structure.
Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

52 CHAPTER 3 Task routines

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

53

Chapter 4

Software timers

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

54 CHAPTER 4 Software timers

A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the macro
OS_CREATETIMER ().

Timers can be stopped, started and retriggered much like hardware timers. When
defining a timer, you specify any routine that is to be called after the expiration of
the delay. Timer routines are similar to interrupt routines; they have a priority higher
than the priority of all tasks. For that reason they should be kept short just like
interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be inter-
rupted by any hardware interrupt. Generally, timers run in single-shot mode, which
means they expire only once and call their callback routine only once. By calling
0S_RetriggerTimer () from within the callback routine, the timer is restarted with its
initial delay time and therefore works just as a free-running timer.

The state of timers can be checked by the functions 0S_GetTimerStatus(),
0S_GetTimervValue (), and OS_GetTimerPeriod().

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-
bit value on 32-bit CPUs. The comparisons are done as signed comparisons, (because
expired time-outs are permitted). This means that only 15-bits can be used on 8/16
bit CPUs, 31-bits on 32-bit CPUs. Another factor to take into account is the maximum
time spent in critical regions. During critical regions timers may expire, but because
the timer routine can not be called from a critical region (timers are "put on hold"),
the maximum time that the system spends at once in a critical region needs to be
deducted. In most systems, this is no more than a single tick. However, to be safe,
we have assumed that your system spends no more than up to 255 ticks in a row in
a critical region and defined a macro which defines the maximum timeout value. It is
normally 0x7F00 for 8/16-bit systems or 0x7FFFFF00 for 32-bit Systems and defined
in RTOS.h as OS_TIMER_MAX_TIME. If your system spends more than 255 ticks without
break in a critical section (effectively disabling the scheduler during this time ... not
recommended), you have to make sure your application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a paramter to the timer callback function. This
allows usage of one callback function for different software timers.

Since version 3.32m of embOS, the extended timer structure and related extended
timer functions were implemented to allow parameter passing to the callback func-
tion.

Except the different callback function with parameter passing, extended timers
behave exactly the same as normal embOS software timers and may be used in par-
allel with normal software timers.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

55

Software timers API function overview

Routine

Description

OS_CREATETIMER()

Macro that creates and starts a software-timer.

0S_CreateTimer ()

Creates a software timer (but does not start it).

0S_StartTimer ()

Starts a software timer.

OS_StopTimer ()

Stops a software timer.

OS_RetriggerTimer ()

Restarts a software timer with its initial time value.

0S_SetTimerPeriod()

Sets a new timer reload value for a software timer.

0OS_DeleteTimer ()

Stops and deletes a software timer.

O0S_GetTimerPeriod()

Returns the current reload value of a software timer.

0S_GetTimerValue ()

Returns the remaining timer value of a software timer.

OS_GetTimerStatus ()

Returns the current timer status of a software timer.

0S_GetpCurrentTimer ()

Returns a pointer to the data structure of the timer
that just expired.

OS_CREATETIMER_EX()

Macro that creates and starts an extended software-
timer.

OS_CreateTimer_ Ex ()

Creates an extended software timer (but does not
start it).

OS_StartTimer Ex()

Starts an extended timer.

OS_StopTimer_Ex ()

Stops an extended timer.

OS_RetriggerTimer_Ex ()

Restarts an extended timer with its initial time value.

0S_SetTimerPeriod_Ex ()

Sets a new timer reload value for an extended timer.

OS_DeleteTimer_ Ex ()

Stops and deletes an extended timer.

0OS_GetTimerPeriod_Ex ()

Returns the current reload value of an extended timer.

0S_GetTimerValue_ Ex ()

Returns the remaining timer value of an extended
timer.

0S_GetTimerStatus_Ex ()

Returns the current timer status of an extended timer.

0S_GetpCurrentTimerEx ()

Returns a pointer to the data structure of the extended
timer that just expired.

Table 4.1: Software timers API

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

56

CHAPTER 4 Software timers

41.1 OS_CREATETIMER()

Description
Macro that creates and starts a software timer.
Prototype
void OS_CREATETIMER (OS_TIMER* pTimer,
OS_TIMERROUTINE* Callback,
OS_TIME Timeout) ;)
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer .
timer.
Pointer to the callback routine to be called from the RTOS after
e e expiration of the delay. The callback function hast to be a void

function which does not take any parameter and does not return
any value.

Initial timeout in basic embOS time units (nominal ms):

The data type OS_TIME defaults to an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 4.2: OS_CREATETIMER() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This macro uses the functions 0S_CreateTimer () and 0S_StartTimer (). It is sup-
plied for backward compatibility; in newer applications these routines should be
called directly instead.

OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Source of the macro (in RTOS.h):

#define OS_CREATETIMER (pTimer,c,d) \
0S_CreateTimer (pTimer,c,d); \
0S_StartTimer (pTimer) ;

Example

OS_TIMER TIMER100;

void Timerl00 (void) {
LED = LED ? 0 : 1; /* Toggle LED */
OS_RetriggerTimer (&TIMER100); /* Make timer periodical */
}

void InitTask (void) {
/* Create and start Timerl00 */
OS_CREATETIMER (&TIMER100, Timerl100, 100);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

57

41.2 OS_CreateTimer()

Description

Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer (OS_TIMER* pTimer,
OS_TIMERROUTINE* Callback,
OS_TIME Timeout) ;)
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer .
timer.
Pointer to the callback routine to be called from the RTOS after
Callback

expiration of the delay.

Initial timeout in basic embQOS time units (nominal ms):

The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 4.3: OS_CreateTimer() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled). The timer is not automatically started. This has to
be done explicitly by a call of 0s_StartTimer () Oor OS_RetriggerTimer ().
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Source of the macro (in RTOS.h):

#define OS CREATETIMER (pTimer,c,d)
0S CreateTimer (pTimer,c,d);
0S_StartTimer (pTimer) ;

Example

\
\

OS_TIMER TIMER100;

void Timerl100 (void)
LED = LED ? 0 : 1
OS_RetriggerTimer
}

{
; /* Toggle LED */
(&TIMER100) ; /* Make timer periodical */

void InitTask(void) {
/* Create Timerl1l00, start it elsewhere */
0S_CreateTimer (&TIMER100, Timer100, 100);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

58 CHAPTER 4 Software timers

4.1.3 OS_StartTimer()

Description
Starts a software timer.
Prototype
void OS_StartTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer

Table 4.4: OS_StartTimer() parameter list

Additional Information

0S_startTimer () is used for the following reasons:

e Start a timer which was created by 0S_CreateTimer (). The timer will start with
its initial timer value.

e Restart a timer which was stopped by calling 0s_stopTimer (). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use 0S_RetriggerTimer () to restart those timers.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

59

4.1.4 OS_StopTimer()

Description

Stops a software timer.

Prototype
void OS_StopTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer.

Table 4.5: OS_StopTimer() parameter list

Additional Information

The actual value of the timer (the time until expiration) is kept until
0S_startTimer () lets the timer continue.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

60

CHAPTER 4 Software timers

4.1.5 OS_RetriggerTimer()

Description
Restarts a software timer with its initial time value.
Prototype
void OS_RetriggerTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer.

Table 4.6: OS_RetriggerTimer() parameter list

Additional Information

OS_RetriggerTimer () restarts the timer using the initial time value programmed at
creation of the timer or with the function 0s_SetTimerPeriod().

Example

OS_TIMER TIMERCursor;

BOOL CursorOn;

volid TimerCursor (void) {

if (CursorOn)

ToggleCursor () ; /* Invert character at cursor-position */

0S_RetriggerTimer (&TIMERCursor); /* Make timer periodical */

}

void InitTask (void)

{

/* Create and start TimerCursor */
OS_CREATETIMER (&TIMERCursor, TimerCursor, 500);

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

61

41.6 OS_SetTimerPeriod()

Description
Sets a new timer reload value for a software timer.

Prototype

void OS_SetTimerPeriod (OS_TIMER* pTimer,
OS_TIME Period) ;

Parameter Description

Pointer to the os_TIMER data structure containing the data of the
timer.

Timer period in basic embOS time units (nominal ms):

The data type OS_TIME defaults to an integer, therefore valid
et el values are

1 <= Timeout <= 21°5-1
1 <= Timeout <= 231-1
Table 4.7: OS_SetTimerPeriod() parameter list

pTimer

OX7FFF = 32767 for 8/16-bit CPUs
Ox7FFFFFFF for 32-bit CPUs

Additional Information

0S_SetTimerPeriod() sets the initial time value of the specified timer. Period is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS_RetriggerTimer ().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
if TogglePulseOutput () ; /* Toggle output */
0OS_RetriggerTimer (&TIMERCursor); /* Make timer periodical */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse = 500ms */
OS_CREATETIMER (&TIMERPulse, TimerPulse, 500);
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriod (&TIMERPulse, 200);

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

62 CHAPTER 4 Software timers

4.1.7 OS_DeleteTimer()

Description
Stops and deletes a software timer.
Prototype
void OS_DeleteTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer

Table 4.8: OS_DeleteTimer() parameter list

Additional Information

The timer is stopped and therefore removed out of the linked list of running timers.
In debug builds of embQOS, the timer is also marked as invalid.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

63

41.8 OS_GetTimerPeriod()

Description

Returns the current reload value of a software timer.

Prototype
OS_TIME OS_GetTimerPeriod (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer.

Table 4.9: OS_GetTimerPeriod() parameter list

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer set as initial value when the
timer is retriggered by 0S_RetriggerTimer ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

64

CHAPTER 4 Software timers

419 OS_GetTimerValue()

Description
Returns the remaining timer value of a software timer.
Prototype
OS_TIME OS_GetTimerValue (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer.

Table 4.10: OS_GetTimerValue() parameter list

Return value

Type 0s_TIME, which is defined as an integer between

1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

The returned time value is the remaining timer time in embQOS tick units until expira-
tion of the timer.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

4.1.10 OS_GetTimerStatus()

Description

65

Returns the current timer status of a software timer.

Prototype
unsigned char OS_GetTimerStatus (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure containing the data of the
pTimer timer.

Table 4.11: OS_GetTimerStatus parameter list

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

66 CHAPTER 4 Software timers

4.1.11 OS_GetpCurrentTimer()

Description
Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER* OS_GetpCurrentTimer (void);

Return value
OS_TIMER*: A pointer to the control structure of a timer.
Additional Information

The return value of 0S_GetpCurrentTimer () is valid during execution of a timer call-
back function; otherwise it is undetermined. If only one callback function should be
used for multiple timers, this function can be used for examining the timer that
expired.

The example below shows one usage of 0S_GetpCurrentTimer (). Since version
3.32m of embOS, the extended timer structure and functions which come with
embOS may be used to generate and use software timer with individual parameter
for the callback function.

Example

#include "RTOS.H"

/**

*

* Types

*/

typedef struct { /* Timer object with its own user data */
OS_TIMER Timer;
void* pUser;

} TIMER_EX;

/**
*

* Variables

*/

TIMER_EX Timer_ User;
int a;

/**
*

* Local Functions

*/

void CreateTimer (TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
void* pUser) {
timer->pUser = pUser;
0S_CreateTimer ((OS_TIMER*) timer, Callback, Timeout) ;
}

void cb(void) { /* Timer callback function for multiple timers */

TIMER_EX* p = (TIMER_EX*)O0S_GetpCurrentTimer () ;
void* pUser = p->pUser; /* Examine user data */
OS_RetriggerTimer (&p->Timer) ; /* Retrigger timer */

}

/**
*

* main
*/
int main(void) {
0OS_InitKern() ; /* Initialize 0S */
OS_InitHW() ; /* Initialize Hardware for 0S */
CreateTimer (&Timer_User, cb, 100, &a);
0S_Start () ; /* Start multitasking */
return O;

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

67

4.1.12 OS_CREATETIMER_EX()

Description

Macro that creates and starts an extended software timer.

Prototype
void OS_CREATETIMER_EX (OS_TIMER_EX* pTimerEx,
OS_TIMER_EX_ROUTINE* Callback,
OS_TIME Timeout
void* pData)
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx -
the extended software timer.
Pointer to the callback routine to be called from the RTOS after
e expiration of the delay. The callback function hast to be of type

OS_TIMER_EX_ROUTINE Which takes a void pointer as parameter
and does not return any value.

Initial timeout in basic embQOS time units (nominal ms):

The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

A void pointer which is used as parameter for the extended timer
callback function.
Table 4.12: OS_CREATETIMER_EX() parameter list

pData

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This macro uses the functions 0S_CreateTimerEx() and 0S_StartTimerEx().
OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE (void *);

Source of the macro (in RTOS.h):

#define OS_CREATETIMER_EX (pTimerEx,cb, Timeout,pData) \
0OS_CreateTimerEx (pTimerEx, cb, Timeout,pData); \
0OS_StartTimerEx (pTimerEx)

Example

OS_TIMER TIMER100;

OS_TASK TCB_HP;

void Timerl00 (void* pTask) {

LED = LED ? 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK*)pTask) ;
}
OS_RetriggerTimerEx (&TIMER100); /* Make timer periodical */

}

void InitTask(void) {

/* Create and start Timerl1l00 */

OS_CREATETIMER_EX (&TIMER100, Timer100, 100, (void*) &TCB_HP) ;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

68

CHAPTER 4 Software timers

4.1.13 OS_CreateTimerEx()

Description
Creates an extended software timer (but does not start it).
Prototype
void OS_CreateTimerEx (OS_TIMER_EX* pTimerEx,
OS_TIMER_EX_ROUTINE* Callback,
OS_TIME Timeout,
void* pData)
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx -
the extended software timer.
e e Pointer to the callback routine of type 0S_TIMER_EX_ROUTINE to

be called from the RTOS after expiration of the timer.

Initial timeout in basic embOS time units (nominal ms):

The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

A void pointer which is used as parameter for the extended timer

callback function.
Table 4.13: OS_CreateTimerEx() parameter list

pData

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout has expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

The extended software timer is not automatically started. This has to be done explic-
itly by a call of 0s_sStartTimerEx() Or OS_RetriggerTimerEx().

OS_TIMER_EX_ ROUTINE is defined in RTOS.h as follows:
typedef void OS_TIMER_EX ROUTINE (void*) ;

Example

OS_TIMER TIMER1O00;
OS_TASK TCB_HP;

void Timerl00 (void* pTask) {
LED = LED ? 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK*) pTask) ;
}
0S_RetriggerTimerEx (&TIMER100); /* Make timer periodical */
}

void InitTask (void) {
/* Create Timerl1l00, start it elsewhere later on*/
0S_CreateTimerEx (&TIMER100, Timerl100, 100, (void*) & TCB_HP);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

69

4.1.14 OS_StartTimerEx()

Description

Starts an extended software timer.

Prototype
void OS_StartTimerEx (OS_TIMER_EX* pTimerEx) ;
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx -
the extended software timer.

Table 4.14: OS_StartTimereEx() parameter list

Additional Information

0S_StartTimerEx () is used for the following reasons:

e Start an extended software timer which was created by 0S_CreateTimerEx().
The timer will start with its initial timer value.

e Restart a timer which was stopped by calling 0s_stopTimerEx (). In this case,
the timer will continue with the remaining time value which was preserved by
stopping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use 0S_RetriggerTimerEx () to restart those timers.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

70 CHAPTER 4 Software timers

4.1.15 OS_StopTimerEx()

Description

Stops an extended software timer.

Prototype
void OS_StopTimerEx (OS_TIMER_EX* pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure containing the data of
the extended software timer.
Table 4.15: OS_StopTimerEx() parameter list

pTimerEx

Additional Information

The actual time value of the extended software timer (the time until expiration) is
kept until os_startTimerEx () lets the timer continue.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

71

4.1.16 OS_RetriggerTimerEx()

Description
Restarts an extended software timer with its initial time value.

Prototype

void OS_RetriggerTimerEx (OS_TIMER_EX* pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure containing the data of
the extended software timer.
Table 4.16: OS_RetriggerTimerEx() parameter list

pTimerEx

Additional Information

OS_RetriggerTimerEx () restarts the extended software timer using the initial time
value which was programmed at creation of the timer or which was set using the
function 0S_SetTimerPeriodEx ().

Example

OS_TIMER TIMERCursor;
OS_TASK TCB_HP;
BOOL CursorOn;

void TimerCursor (void* pTask) {
if (CursorOn != 0) ToggleCursor(); /* Invert character at cursor-position */
0S_SignalEvent (0x01, (OS_TASK*) pTask);
0OS_RetriggerTimerExX (&TIMERCursor); /* Make timer periodical */

}

void InitTask(void) {

/* Create and start TimerCursor */

OS_CREATETIMER_EX (&TIMERCursor, TimerCursor, 500, (void*)&TCB_HP);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

72

CHAPTER 4 Software timers

4.1.17 OS_SetTimerPeriodEx()

Description
Sets a new timer reload value for an extended software timer.
Prototype
void OS_SetTimerPeriodEx (OS_TIMER_EX* pTimerEx,
OS_TIME Period) ;
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx

the extended software timer.

Timer period in basic embOS time units (nominal ms):

The data type OS_TIME defaults to an integer, therefore valid
Seriod values are

1 <= Timeout <= 21°-1
1 <= Timeout <= 231-1
Table 4.17: OS_SetTimerPeriodEx() parameter list

OX7FFF = 32767 for 8/16-bit CPUs
OX7FFFFFFF for 32-bit CPUs

Additional Information

0S_SetTimerPeriodEx () sets the initial time value of the specified extended soft-
ware timer. Pperiod is the reload value of the timer to be used as initial value when
the timer is retriggered the next time by 0S_RetriggerTimerEx().

A call of 0s_setTimerPeriodEx() does not affect the remaining time period of an
extended software timer.

Example

OS_TIMER_EX TIMERPulse;
OS_TASK TCB_HP;

void TimerPulse(void* pTask) {

0S_SignalEvent (0x01, (OS_TASK*) pTask);

OS_RetriggerTimerEX (&TIMERPulse); /* Make timer periodical */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse == 500ms */
OS_CREATETIMER_EX (&TIMERPulse, TimerPulse, 500, (void*)&TCB_HP) ;
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriodEx (&TIMERPulse, 200);

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

73

4.1.18 OS_DeleteTimerEx()

Description

Stops and deletes an extended software timer.

Prototype
void OS_DeleteTimerEx (OS_TIMER_EX* pTimerEx) ;
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx .
the timer.

Table 4.18: OS_DeleteTimerEx() parameter list

Additional Information

The extended software timer is stopped and therefore removed out of the linked list
of running timers. In debug builds of embOS, the timer is also marked as invalid.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

74

CHAPTER 4 Software timers

4.1.19 OS_GetTimerPeriodEx()

Description
Returns the current reload value of an extended software timer.

Prototype

OS_TIME OS_GetTimerPeriodEx (OS_TIMER_EX* pTimerEX) ;

Parameter Description

Pointer to the os_TIMER_EX data structure containing the data of

pTimerEx the extended timer.

Table 4.19: OS_GetTimerPeriodEx() parameter list

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a «call of
0S_SetTimerPeriodEx (). This reload value will be used as time period when the
timer is is retriggered by 0S_RetriggerTimerEx ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

75

4.1.20 OS_GetTimerValueEx()

Description

Returns the remaining timer value of an extended software timer.

Prototype
OS_TIME OS_GetTimerValueEx (0OS_TIMER_EX* pTimerEx) ;
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx the timer.

Table 4.20: OS_GetTimerValueEx() parameter list

Return value

Type 0s_TIME, which is defined as an integer between

1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

The returned time value is the remaining timer time in embOS tick units until expira-
tion of the extended software timer.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

76

CHA

PTER 4 Software timers

4.1.21 OS_GetTimerStatusEx()

Description
Returns the current timer status of an extended software timer.
Prototype
unsigned char 0S_GetTimerStatusEx (OS_TIMER_EX* pTimerEX) ;
Parameter Description
. Pointer to the os_TIMER_EX data structure containing the data of
pTimerEx K
the extended timer.

Table 4.21: OS_GetTimerStatusEx parameter list

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

77

4.1.22 0OS_GetpCurrentTimerEx()

Description
Returns a pointer to the data structure of the extended timer that just expired.

Prototype

OS_TIMER_EX* 0OS_GetpCurrentTimerEx (void) ;

Return value

OS_TIMER_EX*: A pointer to the control structure of an extended software timer.

Additional Information

The return value of 0S_GetpCurrentTimerEx () is valid during execution of a timer
callback function; otherwise it is undetermined. If one callback function should be
used for multiple extended timers, this function can be used for examining the timer
that expired.

Example

#include "RTOS.H"

OS_TIMER_EX MyTimerEX;

/**
*

* Local Functions

*/

void cbTimerEx (void* pData) { /* Timer callback function for multiple timers */
OS_TIMER_EX* pTimerEX;

pTimerEx = 0OS_GetpCurrentTimerEx() ;
0S_SignalEvent (0x01, (OS_TASK*) pData);
OS_RetriggerTimer (pTimerEx); /* Retrigger timer */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

78 CHAPTER 4 Software timers

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

79

Chapter 5

Resource semaphores

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

80

CHAPTER 5 Resource semaphores

Resource semaphores are used for managing resources by avoiding conflicts caused
by simultaneous use of a resource. The resource managed can be of any kind: a part
of the program that is not reentrant, a piece of hardware like the display, a flash
prom that can only be written to by a single task at a time, a motor in a CNC control
that can only be controlled by one task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the 0S_Use() or 0S_Request ()
routines of embOS. If the resource is available, the program execution of the task
continues, but the resource is blocked for other tasks. If a second task now tries to
use the same resource while it is in use by the first task, this second task is sus-
pended until the first task releases the resource. However, if the first task that uses
the resource calls 0s_use () again for that resource, it is not suspended because the
resource is blocked only for other tasks.

The following diagram illustrates the process of using a resource:

USE()

v

Access resource

v

UNUSE()

A resource semaphore contains a counter that keeps track of how many times the
resource has been claimed by calling 0S_Request () or 0S_Use () by a particular task.
It is released when that counter reaches 0, which means the 0s_unuse () routine has
to be called exactly the same number of times as 0S_Use () or 0S_Request (). If it is
not, the resource remains blocked for other tasks.

On the other hand, a task cannot release a resource that it does not own by calling
0S_Unuse (). In the debug version of embOS, a call of 0s_unuse () for a semaphore
that is not owned by this task will result in a call to the error handler 0S_Error ().

Example of using resource semaphores

Here, two tasks access an LC display completely independently from each other. The
LCD is a resource that needs to be protected with a resource semaphore. One task
may not interrupt another task which is writing to the LCD, because otherwise the
following might occur:

e Task A positions the cursor
e Task B interrupts Task A and repositions the cursor
e Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every the LCD must be accessed by a task, it is first
claimed by a call to 0s_use() (and is automatically waited for if the resource is
blocked). After the LCD has been written to, it is released by a call to 0s_Unuse ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

81

/*

* demo program to illustrate the use of resource semaphores
*/

OS_STACKPTR int StackMain[100], StackClock[50];

OS_TASK TaskMain, TaskClock;

OS_SEMA SemalCD;

void TaskClock (void) {

char t=-1;

char s[] = "00:00";

while (1) {
while (TimeSec==t) Delay (10);
t= TimeSec;
s[4] = TimeSec%10+'0"';
s[3] TimeSec/10+'0"';
s[1] TimeMin%10+'0"';
s[0] TimeMin/10+'0"';
0S_Use (&SemaLCD) ; /* Make sure nobody else uses LCD */
LCD Write(10,0,s);
0S_Unuse (&SemalCD) ; /* Release LCD */

}
}

void TaskMain (void) {
signed char pos ;
LCD_Write (0,0, "Software tools by Segger ! ")
0S_Delay (2000) ;
while (1) {

for (pos=14 ; pos >=0 ; pos--) {
0S_Use (&SemalLCD) ; /* Make sure nobody else uses LCD */
LCD_Write(pos,1l, "train "); /* Draw train */
0S_Unuse (&SemaLCD) ; /* Release LCD */
0S_Delay (500) ;
}
0S_Use (&SemaLlCD) ; /* Make sure nobody else uses LCD */
LCD_Write(0,1," ")
0S_Unuse (&Semal.CD) ; /* Release LCD */

}
}

void InitTask (void) {
OS_CREATERSEMA (&Semal.CD) ; /* Creates resource semaphore */
OS_CREATETASK (&TaskMain, 0, Main, 50, StackMain) ;
OS_CREATETASK (&TaskClock, 0, Clock, 100, StackClock);

}

In most applications, the routines that access a resource should automatically call
0S_Use () and 0S_unuse () so that when using the resource you do not have to worry
about it and can use it just as you would in a single-task system. The following is an
example of how to implement a resource into the routines that actually access the

display:

/*

* Simple example when accessing single line dot matrix LCD

*/

OS_RSEMA RDisp; /* Define resource semaphore */

void UseDisp() { /* Simple routine to be called before using display */
0S_Use (&RDisp) ;

}

void UnuseDisp() { /* Simple routine to be called after using display */

0S_Unuse (&RDisp) ;
}

void DispCharAt (char ¢, char x) {
UseDisp() ;
LCDGoto (x, V) ;
LCDWritel (ASCII2LCD(c)) ;
UnuseDisp () ;

}
void DISPInit (void) {

OS_CREATERSEMA (&RDisp) ;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

82

CHAPTER 5 Resource semaphores

5.1 Resource semaphores API function overview

Routine Description
OS_CREATERSEMA () Macro that creates a resource semaphore.
0S_Use () Claims a resource and blocks it for other tasks.
0S_Unuse () Releases a semaphore currently in use by a task.

OS_Request ()

Requests a specified semaphore, blocks it for other tasks
if it is available. Continues execution in any case.

0S_GetSemaValue ()

Returns the value of the usage counter of a specified
resource semaphore.

0S_GetResourceOwner ()

Returns a pointer to the task that is currently using
(blocking) a resource.

0S_DeleteRSema ()

Deletes a specified resource semaphore.

Table 5.1: Resource semaphore API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

83

51.1 OS_CREATERSEMA()

Description

Macro that creates a resource semaphore.

Prototype
void OS_CREATERSEMA (OS_RSEMA* pRSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.2: OS_CREATESEMA() parameter list

Additional Information

After creation, the resource is not blocked; the value of the counter is 0.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

84 CHAPTER 5 Resource semaphores

5.1.2 0OS_Use()

Description
Claims a resource and blocks it for other tasks.

Prototype
int OS_Use (OS_RSEMA* pRSema) ;

Parameter Description

PRSema Pointer to the data structure for a resource semaphore.
Table 5.3: OS_Use() parameter list

Return value

The counter value of the semaphore.

A value larger than 1 means the resource was already locked by the calling task.
Additional Information

The following situations are possible:

e Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is 0, the resource will be blocked for other tasks by incrementing the counter and
writing a unique code for the task that uses it into the semahore.

e (Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program continues
without a break.

e (Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher pri-
ority than the task blocking the semaphore, the blocking task is assigned the pri-
ority of the task requesting the resource semaphore. This is called priority
inversion. Priority inversion can only temporarily increase the priority of a task,
never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource, the task with the
highest priority will get access to the resource and can continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

85

The following diagram illustrates how the 0s_use () routine works:

Yes, by this task

h 4

OS_Use(...)

Resource
in use?

Yes, by Wait for resource
other task to be released

Mark current task
as owner

v

Increase Usage
counter

Usage counter = 1

return

User & reference guide for embOS

return

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

86

CHAPTER 5 Resource semaphores

5.1.3 0OS_Unuse()

Description
Releases a semaphore currently in use by a task.
Prototype
void OS_Unuse (OS_RSEMA* pRSema)
Parameter Description
pPRSema Pointer to the data structure for a resource semaphore.

Table 5.4: OS_Unuse() parameter list

Additional Information

0S_Unuse () may be used on a resource semaphore only after that semaphore has
been used by calling 0S_Use () or 0S_Request (). 0S_Unuse () decrements the usage
counter of the semaphore which must never become negative. If this counter
becomes negative, the debug version will call the embOS error handler.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

5.1.4 OS_Request()

Description

87

Requests a specified semaphore and blocks it for other tasks if it is available. Contin-

ues execution in any case.
Prototype
char OS_Request (OS_RSEMA* pRSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.5: O0S-Request() parameter list

Return value

1: Resource was available, now in use by calling task
0: Resource was not available.

Additional Information

The following diagram illustrates how 0S_Request () works:

OS_Request (RSEMA*ps)

Resource in use by other task ?

No

In use by this task ?

Yes

v

Inc Usage counter

Example
if (!0S_Request (&RSEMA_LCD)) {
LED_LCDBUSY = 1; /*
/*
0S_Use (&RSEMA_LCD) ; /*
LED_LCDBUSY = 0; /*
}
DispTime () ; /¥
0S_Unuse (&RSEMA_LCD) ; /*

User & reference guide for

embOS

Mark current task
as owner

Usage counter = 1

Indicate that task is waiting for */
resource */
Wait for resource */
Indicate task is no longer waiting */
Access the resource LCD */
Resource LCD is no longer needed */

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

88 CHAPTER 5 Resource semaphores

5.1.5 OS_GetSemaValue()

Description

Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (OS_SEMA* pSema) ;
Parameter Description
pPRSema Pointer to the data structure for a resource semaphore.

Table 5.6: OS_GetSemaValue() parameter list

Return value

The counter of the semaphore.
A value of 0 means the resource is available.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

89

5.1.6 0OS_GetResourceOwner()

Description

Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* 0OS_GetResourceOwner (OS_RSEMA* pSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.7: OS_GetResourceOwner() parameter list

Return value

Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

90

CHAPTER 5 Resource semaphores

5.1.7 OS_DeleteRSema()

Description

Deletes a specified resource semaphore. The memory of that semaphore may be
reused for other purposes or may be used for creating another resources semaphore
using the same memory.

Prototype
void OS_DeleteRSema (OS_RSEMA* pRSema) ;

Parameter Description
pPRSema Pointer to a data structure of type 0S_RSEMA.

Table 5.8: OS_DeleteRSema parameter list

Additional Information

Before deleting a resource semaphore, make sure that no task is claiming the
resources semaphore. The debug version of embOS will call os_Error(), if a
resources semaphore is deleted when it is already used. In systems with dynamic
creation of resource semaphores, it is required to delete a resource semaphore,
before re-creating it. Otherwise the semaphore handling will not work correctly.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

91

Chapter 6

Counting Semaphores

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

92 CHAPTER 6 Counting Semaphores

Counting semaphores are counters that are managed by embOS. They are not as
widely used as resource semaphores, events or mailboxes, but they can be very
useful sometimes. They are used in situations where a task needs to wait for
something that can be signaled one or more times. The semaphores can be accessed
from any point, any task, or any interrupt in any way.

Example of using counting semaphores

OS_STACKPTR int Stack0[96], Stackl[64]; /* Task stacks */
OS_TASK TCBO, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void Task0 (void) {
Loop:
Disp("Task0 will wait for task 1 to signal");
0S_WaitCSema (&SEMALCD) ;
Disp("Taskl has signaled !!");
0S_Delay (100) ;
goto Loop;
}

void Taskl (void) {

Loop:
0S_Delay (5000) ;
0S_SignalCSema (&SEMALCD) ;
goto Loop;

}

void InitTask (void) {

OS_CREATECSEMA (&SEMALCD) ; /* Create Semaphore */
OS_CREATETASK (&TCBO, NULL, TaskO, 100, StackO); /* Create TaskO */
OS_CREATETASK (&TCB1, NULL, Taskl, 50, Stackl); /* Create Taskl */

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

93

6.1 Counting semaphores API function overview

Routine

Description

OS_CREATECSEMA ()

Macro that creates a counting semaphore with an initial
count value of zero.

0S_CreateCSema ()

Creates a counting semaphore with a specified initial
count value.

0S_SignalCSema ()

Increments the counter of a semaphore.

0S_SignalCSemaMax

Increments the counter of a semaphore up to a specified
maximum value.

OS_WaitCSema ()

Decrements the counter of a semaphore.

0S_CSemaRequest ()

Decrements the counter of a semaphore, if available.

0S_WaitCSemaTimed

Decrements a semaphore counter if the semaphore is
available within a specified time.

0S_GetCSemaValue ()

Returns the counter value of a specified semaphore.

0S_SetCSemaValue ()

Sets the counter value of a specified semaphore.

0S_DeleteCSema ()

Deletes a specified semaphore.

Table 6.1: Counting semaphores API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

94

CHAPTER 6 Counting Semaphores

6.1.1 OS_CREATECSEMA()

Description
Macro that creates a counting semaphore with an initial count value of zero.
Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.2: OS_CREATECSEMA() parameter list

Additional Information

To create a counting semaphore, a data structure of the type 0s_CSEMA needs to be
defined in memory and initialized using 0S_CREATECSEMA (). The value of a sema-
phore created using this macro is zero. If, for any reason, you have to create a sema-
phore with an initial counting value above zero, use the function 0s_CreateCSema ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

95

6.1.2 OS_CreateCSema()

Description
Creates a counting semaphore with a specified initial count value.
Prototype
void OS_CreateCSema (0OS_CSEMA* pCSema,
OS_UINT Initvalue) ;
Parameter Description

pCSema Pointer to a data structure of type 0s_CSEMA.

Initial count value of the semaphore:
InitvValue 0 <= Initvalue <= 216 = OXFFFF for 8/16-bit CPUs

0 <= Initvalue <= 232 = OxFFFFFFFF for 32-bit CPUs

Table 6.3: OS_CreateCSema() parameter list

Additional Information

To create a counting semaphore, a data structure of the type 0s_cSEMA needs to be
defined in memory and initialized using 0S_CreateCSema (). If the value of the cre-
ated semaphore should be zero, the macro 0s_CREATECSEMA () should be used.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

96 CHAPTER 6 Counting Semaphores

6.1.3 OS_SignalCSema()

Description
Increments the counter of a semaphore.
Prototype
void OS_SignalCSema (OS_CSEMA * pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.4: OS_SignalCSema() parameter list

Additional Information

0S_SignalCSema () signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the task
that has the highest priority will become the active task. The counter can have a
maximum value of OxFFFF for 8/16-bit CPUs / OxFFFFFFFF for 32-bit CPUs. It is the
responsibility of the application to make sure that this limit will not be exceeded.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

97

6.1.4 OS_SignalCSemaMax()

Description
Increments the counter of a semaphore up to a specified maximum value.
Prototype
void OS_SignalCSemaMax (OS_CSEMA* pCSema,
OS_UINT MaxValue) ;
Parameter Description

pCSema Pointer to a data structure of type 0s_CSEMA.

Limit of semaphore count value.
MaxValue 1 <= Maxvalue <= 21® = OxFFFF for 8/16-bit CPUs

1 <= Maxvalue <= 232 = OxFFFFFFFF for 32-bit CPUs

Table 6.5: OS_SignalCSemaMax() parameter list

Additional Information

As long as current value of the semaphore counter is below the specified maximum
value, 0S_SignalCSemaMax () Sighals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this sema-
phore, the tasks are put into ready state and the task that has the highest priority
will become the active task. Calling 0s_signalCSemaMax () with a Maxvalue of 1 han-
dles a counting semaphore as a binary semaphore.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

98

CHAPTER 6 Counting Semaphores

6.1.5 OS_WaitCSema()

Description

Decrements the counter of a semaphore.

Prototype

void OS_WaitCSema

(OS_CSEMA* pCSema) ;

Parameter

Description

pCSema

Pointer to a data structure of type 0s_CSEMA.

Table 6.6: OS_WaitCSema() parameter list

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.

If the counter is 0, waitCSema () waits until the counter is incremented by another
task, a timer or an interrupt handler via a call to 0s_signalCSema (). The counter is
then decremented and program execution continues.

An unlimited number of tasks can wait for a semaphore. According to the rules of the
scheduler, of all the tasks waiting for the semaphore, the task with the highest
priority will continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

99

6.1.6 OS_WaitCSemaTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified

time.
Prototype
int OS_WaitCSemaTimed (OS_CSEMA* pCSema,
int TimeOut) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.
TimeOut Maximum time until semaphore should be available

Table 6.7: OS_WaitCSemaTimed parameter list

Return value

Integer value:
0: Failed, semaphore not available before timeout.
1: OK, semaphore was available and counter decremented.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues. If the counter is 0, WaitCSemaTimed () waits until the sema-
phore is signaled by another task, a timer, or an interrupt handler via a call to
0S_SignalCSema (). The counter is then decremented and program execution contin-
ues. If the semaphore was not signaled within the specified time, the program execu-
tion continues but returns a value of 0. An unlimited number of tasks can wait for a
semaphore. According to the rules of the scheduler, of all the tasks waiting for the
semaphore, the task with the highest priority will continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

100 CHAPTER 6 Counting Semaphores

6.1.7 0OS_CSemaRequest()

Description
Decrements the counter of a semaphore, if it is signaled.
Prototype
char 0S_CSemaRequest (OS_CSEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.8: OS_CSemaRequest() parameter list

Return value

Integer value:
0: Failed, semaphore was not signaled.
1: OK, semaphore was available and counter was decremented once.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.

If the counter is 0, 0S_CSemaRequest () does not wait and does not modify the sema-
phore counter. The function returns with error state.

Because this function never blocks a calling task, this function may be called from an
interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

101

6.1.8 0OS_GetCSemaValue()

Description

Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (OS_SEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.9: OS_GetCSemaValue() parameter list

Return value

The counter value of the semaphore.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

102 CHAPTER 6 Counting Semaphores

6.1.9 OS_SetCSemaValue()

Description

Sets the counter value of a specified semaphore.

Prototype
0S_U8 0S_SetCSemaValue (OS_SEMA* pCSema,
OS_UINT Value) ;
Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.
Count value of the semaphore:
value 0 <= Initvalue <= 216 = OXFFFF for 8/16-bit CPUs
0 <= Initvalue <= 232 = OxFFFFFFFF for 32-bit CPUs

Table 6.10: OS_SetCSemaValue() parameter list

Return value

== 0: If the value could be set.
I= 0: In case of error.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

103

6.1.10 OS_DeleteCSema()

Description

Returns the counter value of a specified semaphore.

Prototype
void OS_DeleteCSema (OS_CSEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.

Table 6.11: OS_DeleteCSema() parameter list

Additional Information

Before deleting a semaphore, make sure that no task is waiting for it and that no
task will signal that semaphore at a later point.
The debug version of embOS will reflect an error if a deleted semaphore is signaled.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

103

Chapter 7

Mailboxes

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

104

7.1

CHAPTER 7 Mailboxes

Why mailboxes?

In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to another.
If we need to transfer data between tasks via a buffer for example, we could use a
resource semaphore every time we accessed the buffer. But doing so would make the
program less efficient. Another major disadvantage would be that we could not
access the buffer from an interrupt handler, because the interrupt handler is not
allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would have to
disable interrupts every time and in every place that we accessed these variables.
This is possible, but it is a path full of pitfalls. It is also not easy for a task to wait for
a character to be placed in a buffer without polling the global variable that contains
the number of characters in the buffer. Again, there is a way out - the task could be
notified by an event signaled to the task every time a character is placed in the
buffer. That is why there is an easier way to do this with a real-time OS:

The use of mailboxes.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

105

7.2 Basics

A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can put something (called a message) in and
retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a message that
is put in first will usually be retrieved first. "Message" might sound abstract, but very
simply just means "item of data". It will become clearer in the typical applications
explained in the following section.

The number of mailboxes is limited only by the amount of available memory.
Message size: 1 <= x <= 127 bytes.

Number of messages: 1 <= x <= 32767.

These limitations have been placed on mailboxes to guarantee efficient coding and
also to ensure efficient management. The limitations are normally not a problem.
For handling messages larger than 127 bytes, you may use queues. For more infor-
mation, refer to Chapter Queues on page 121.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

106 CHAPTER 7 Mailboxes

7.3 Typical applications
A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt handler to
check the keyboard. When detected that a key has been pressed, that key is put into
a mailbox that is used as a keyboard buffer. The message is then retrieved by the
task that handles the keyboard input. The message in this case is typically a single
byte that holds the key code; the message size is therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you do not
have to worry about it, because it is reliable, proven code and you have a type-ahead
buffer at no extra cost. On top of that, a task can easily wait for a key to be pressed
without having to poll the buffer. It simply calls the 0s_GetMail () routine for that
particular mailbox. The number of keys that can be stored in the type-ahead buffer
depends only on the size of the mailbox buffer, which you define when creating the
mailbox.

A buffer for serial I/O

In most cases, serial I/0 is done with the help of interrupt handlers. The communica-
tion to these interrupt handlers is very easy with mailboxes. Both your task programs
and your interrupt handlers store or retrieve data to/from the same mailboxes. As
with a keyboard buffer, the message size is 1 character.

For interrupt-driven sending, the task places the character(s) in the mailbox using
OS_PutMail () Or 0S_PutMailCond(); the interrupt handler that is activated when a
new character can be sent retrieves this character with 0s_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using 0s_putMailCond(); the task
receives it using 0S_GetMail () Or OS_GetMailCond().

A buffer for commands sent to a task

Assume you have one task controlling a motor, as you might have in applications that
control a machine. A simple way to give commands to this task would be to define a
structure for commands. The message size would then be the size of this structure.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

107

7.4 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer
single-byte messages. This is the case, for example, with a mailbox that takes the
character received or sent via serial interface, or normally with a mailbox used as
keyboard buffer. In some of these cases, time is very critical, especially if a lot of
data is transferred in short periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions 0S_PutMail (), OS_PutMailCond (), 0S_GetMail (), and 0S_GetMailCond () can
transfer messages of sizes between 1 and 127 bytes each. Their single-byte equiva-
lents 0S_PutMaill(), OS_PutMailCondl (), OS_GetMaill (), and 0S_GetMailCondl ()
work the same way with the exception that they execute much faster because man-
agement is simpler. It is recommended to use the single-byte versions if you transfer
a lot of single byte-data via mailboxes.

The routines 0S_PutMaill(), 0S_PutMailCondl (), 0S_GetMaill(), and
0S_GetMailCondl () work exactly the same way as their more universal equivalents
and are therefore not described separately. The only difference is that they can only
be used for single-byte mailboxes.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

CHAPTER 7 Mailboxes

Mailboxes API function overview

Routine

Explanation

OS_CREATEMB ()

Macro that creates a new mailbox.

0S_PutMail ()

Stores a new message of a predefined size in a mailbox.

OS_PutMaill ()

Stores a new message of a predefined size in a mailbox.

OS_PutMailCond ()

Stores a new message of a predefined size in a mailbox,
if the mailbox is able to accept one more message.

0S_PutMailCondl ()

Stores a new message of a predefined size in a mailbox,
if the mailbox is able to accept one more message.

0S_PutMailFront ()

Stores a new message of a predefined size into a mailbox
in front of all other messages. This new message will be
retrieved first.

OS_PutMailFrontl ()

Stores a new message of a predefined size into a mailbox
in front of all other messages. This new message will be
retrieved first.

O0S_PutMailFrontCond ()

Stores a new message of a predefined size into a mailbox
in front of all other messages, if the mailbox is able to
accept one more message.

0S_PutMailFrontCondl ()

Stores a new message of a predefined size into a mailbox
in front of all other messages, if the mailbox is able to
accept one more message.

0S_GetMail ()

Retrieves a new message of a predefined size from a
mailbox.

0S_GetMaill ()

Retrieves a new message of a predefined size from a
mailbox.

0S_GetMailCond()

Retrieves a new message of a predefined size from a
mailbox, if a message is available.

0S_GetMailCondl ()

Retrieves a new message of a predefined size from a
mailbox, if a message is available.

0S_GetMailTimed ()

Retrieves a new message of a predefined size from a
mailbox, if a message is available within a given time.

0S_WaitMail ()

Waits until a mail is available, but does not retrieve the
message from the mailbox.

0S_ClearMB ()

Clears all messages in a specified mailbox.

0S_GetMessageCnt ()

Returns number of messages currently in a specified
mailbox.

0OS_DeleteMB ()

Deletes a specified mailbox.

Table 7.1: Mailboxes API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

109

7.51 OS_CREATEMB()

Description
Macro that creates a new mailbox.

Prototype

void OS_CREATEMB (OS_MAILBOX* PMB,
unsigned char sizeofMsg,
unsigned int maxnofMsg,

void* pMsg) ;)
Parameter Description
MEB Pointer to a data structure of type 0s_MAILBOX reserved for man-

p aging the mailbox.

sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 127)

maxnoMsg Maximum number of messages. (1 <= MaxnofMsg <= 65535)
Pointer to a memory area used as buffer. The buffer has to be big

pMsg enough to hold the given number of messages of the specified
Size: sizeofMsg * maxnoMsg bytes.

Table 7.2: OS_CREATEMB() parameter list

Example

Mailbox used as keyboard buffer:

0S MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan (void) {
/* Create mailbox, functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used for transfering complex commands from one task to another:

/*
* Example of mailbox used for transfering commands to a task
* that controls 2 motors
*/
typedef struct {
char Cmd;
int Speed[2];
int Position([2];
} MOTORCMD ;

OS_MATILBOX MBMotor;
#define MOTORCMD_SIZE 4
char BufferMotor[sizeof (MOTORCMD) *MOTORCMD_SIZE];
void MOTOR_Init (void) {
/* Create mailbox that holds commands messages */

OS_CREATEMB (&MBMotor, sizeof (MOTORCMD), MOTORCMD_SIZE, &BufferMotor);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

110

CHAPTER 7 Mailboxes

7.5.2 OS_PutMail() / OS_PutMail1()

Description

Stores a new message of a predefined size in a mailbox.
Prototype

void OS_PutMail (OS_MAILBOX* pMB,

void* pMail) ;
void OS_PutMaill (OS_MAILBOX* pMB,
const char* pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.3: OS_PutMail() / OS_PutMaill() parameter list

Additional Information

If the mailbox is full, the calling task is suspended.

Because this routine might require a suspension, it must not be called from an inter-
rupt routine. Use 0S_PutMailCond()/0S_PutMailCondl () instead if you have to
store data in a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.
Example

Single-byte mailbox as keyboard buffer:

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey (char k) {
0OS_PutMaill (&MBKey, &k); /* Store key, wait if no space in buffer */
}

void KEYMAN_ Init (void) {
/* Create mailbox functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

111

7.5.3 OS_PutMailCond() / OS_PutMailCond1()

Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able to
accept one more message.

Prototype

char OS_PutMailCond (OS_MAILBOX* pMB,
void* pMail) ;

char OS_PutMailCondl (OS_MAILBOX* pMB,
const char* pMail) ;)

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.4: OS_PutMailCond() / OS_PutMailCond1() overview

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from an
interrupt routine.

Example

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
return OS_PutMailCondl (&MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mail-
box as keyboard buffer.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

112

CHAPTER 7 Mailboxes

7.5.4 OS_PutMailFront() / OS_PutMailFront1()

Description

Stores a new message of a predefined size at the beginning of a mailbox in front of
all other messages. This new message will be retrieved first.

Prototype

void OS_PutMailFront (OS_MAILBOX* pMB,
void* pMail) ;
void OS_PutMailFrontl (OS_MAILBOX* pMB,
const char* pMail) ;

Parameter

Description

pMB
pMail

Pointer to the mailbox.

Pointer to the message to store.

Table 7.5: OS_PutMailFront() / OS_PutMailFront1() parameter list

Additional Information

If the mailbox is full, the calling task is suspended. Because this routine might
require a suspension, it must not be
0S_PutMailFrontCond()/0S_PutMailFrontCondl () instead if you have to store data
in @ mailbox from within an ISR.
This function is useful to store "emergency" messages into a mailbox which have to

be handled quick.

called from an interrupt routine. Use

It may also be used in general instead of 0s_pPutMail () to change the FIFO structure
of a mailbox into a LIFO structure.

Important

This function may not be called from within an interrupt handler.

Example

Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBCmd;

char MBCmdBuffer[6];

void KEYMAN_ StoreCommand (char k) {

0S_PutMailFrontl (&MBCmd, &k);

}

void KEYMAN_ Init (void) {
/* Create mailbox for command buffer */
OS_CREATEMB (&MBCmd, 1, sizeof (MBCmdBuffer), &MBCmdBuffer);

}

User & reference guide for embOS

/* Store command, wait if no space in buffer*/

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

113

7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()

Description

Stores a new message of a predefined size into a mailbox in front of all other mes-
sages, if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype

char OS_PutMailFrontCond (OS_MAILBOX* pMB,
void* pMail) ;

char OS_PutMailFrontCondl (OS_MAILBOX* pMB,
const char* pMail) ;)

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.6: OS_PutMailFrontCond() / OS_PutMailFrontCond1() parameter list

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored. This function never suspends the
calling task. It may therefore be called from an interrupt routine. This function is
useful to store "emergency" messages into a mailbox which have to be handled
quick. It may also be used in general instead of 0s_putMail() to change the FIFO
structure of a mailbox into a LIFO structure.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

114

CHAPTER 7 Mailboxes

7.5.6 0OS_GetMail() / OS_GetMail1()

Description

Retrieves a new message of a predefined size from a mailbox.
Prototype

void OS_GetMail (OS_MAILBOX* pMB,

void* pDest) ;
void 0S_GetMaill (OS_MAILBOX* pMB,
char* pDest) ;

Parameter Description

PMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.7: OS_GetMail() / OS_GetMaill() parameter list

pDest

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it may not be called from an
interrupt routine. Use 0S_GetMailCond/OS_GetMailCondl instead if you have to
retrieve data from a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

OS_MATILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey (void) {
char c;
0S_GetMaill (&MBKey, &c);
return c;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

115

7.5.7 0OS_GetMailCond() / OS_GetMailCond1()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype

char 0S_GetMailCond (OS_MAILBOX * pMB,
void* pDest) ;

char 0S_GetMailCondl (OS_MAILBOX * pMB,
char* pDhest) ;

Parameter Description

PMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.8: OS_GetMailCond() / OS_GetMailCond1() parameter list

pDest

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, but the program execution contin-
ues.

This function never suspends the calling task. It may therefore also be called from an
interrupt routine.

Important
This function may not be called from within an interrupt handler.

Example

OS_MATILBOX MBKey;
char MBKeyBuffer[6];

/*

* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.

* Otherwise, 0 is returned.

*/

char GetKey(void) {
char ¢ =0;
0S_GetMailCondl (&MBKey, &c)
return c;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

116 CHAPTER 7 Mailboxes

7.5.8 OS_GetMailTimed()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is avail-
able within a given time.
Prototype
char 0S_GetMailTimed (OS_MAILBOX* pMB,
void* pDest,
OS_TIME Timeout) ;

Parameter Description

pMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) has been defined upon creation of the mailbox.

Maximum time in timer ticks until the requested mail has to be
available. The data type os_TIME defaults to an integer, therefore
Timeout valid values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 7.9: OS_GetMailTimed() parameter list

pDest

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a mail is available within the given timeout, or after the timeout value has
expired.

Important
This function may not be called from within an interrupt handler.

Example

OS_MATILBOX MBKey;
char MBKeyBuffer[6];

/*

* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.

* Otherwise, 0 is returned.

*/

char GetKey(void) {
char ¢ =0;
0S_GetMailTimed (&MBKey, &c, 10) /* Wait for 10 timer ticks */
return c;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

117

7.5.9 OS_WaitMail()

Description

Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
void 0S_WaitMail (OS_MAILBOX* pMB) ;

Parameter Description
PMB Pointer to the mailbox.

Table 7.10: OS_WaitMail() parameter list

Additional Information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the
task continues.

The task continues execution, according to the rules of the scheduler, as soon as a
mail is available, but the mail is not retrieved from the mailbox.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

118

CHAPTER 7 Mailboxes

7.5.10 OS_ClearMB()

Description
Clears all messages in a specified mailbox.
Prototype
void 0S_ClearMB (OS_MAILBOX* pMB) ;
Parameter Description
PMB Pointer to the mailbox.

Table 7.11: OS_ClearMB() parameter list

Example

OS_MAILBOX MBKey;

char MBKeyBuffer[6];

/*

* Clear keyboard type ahead buffer

*/

void ClearKeyBuffer (void) {
0S_ClearMB (&MBKey) ;

}

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

119

7.5.11 OS_GetMessageCnt()

Description
Returns the number of messages currently available in a specified mailbox.

Prototype

unsigned int OS_GetMessageCnt (OS_MAILBOX* pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 7.12: OS_GetMessageCnt() parameter list

Return value
The number of messages in the mailbox.

Example

char GetKey (void) {
if (OS_GetMessageCnt (&MBKey)) return WaitKey () ;
return O;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

120 CHAPTER 7 Mailboxes

7.5.12 OS_DeleteMB()

Description
Deletes a specified mailbox.

Prototype
void OS_DeleteMB (OS_MAILBOX* pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 7.13: OS_DeleteMB() parameter list

Additional Information

To keep the system fully dynamic, it is essential that mailboxes can be created
dynamically. This also means there has to be a way to delete a mailbox when it is no
longer needed. The memory that has been used by the mailbox for the control struc-
ture and the buffer can then be reused or reallocated.

It is the programmer's responsibility to:

e make sure that the program no longer uses the mailbox to be deleted
e make sure that the mailbox to be deleted actually exists (i.e. has been created
first).

Example

OS_MAILBOX MBSerIn;
char MBSerInBuffer[6];

void Cleanup (void) {
OS_DeleteMB (MBSerIn) ;
return O;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

121

Chapter 8

Queues

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

122 CHAPTER 8 Queues

8.1 Why queues?

In the preceding chapter, intertask communication using mailboxes was described.
Mailboxes can handle small messages with fixed data size only.

Queues enable intertask communication with larger messages or with messages of
various sizes.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

123

8.2 Basics

A queue consists of a data buffer and a control structure that is managed by the real-
time operating system. The queue behaves like a normal buffer; you can put
something (called a message) in and retrieve it later. Queues work as FIFO: first in,
first out. So a message that is put in first will be retrieved first.

There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a
pointer to the message and its size. This enhances performance because the data
is copied only once, when the message is written into the queue.

3. The retrieving function has to delete every message after processing it.

Both the number and size of queues is limited only by the amount of available
memory. Any data structure can be written into a queue. The message size is not
fixed.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

124

CHAPTER 8 Queues

8.3 Queues API function overview

Routine

Description

0S_Q_ Create()

Creates and initializes a message queue.

0S_Q_Put ()

Stores a new message of given size in a queue.

0S_Q_GetPtr ()

Retrieves a message from a queue.

0S_Q GetPtrCond()

Retrieves a message from a queue, if one message is
available or returns without suspension.

0S_Q_GetPtrTimed()

Retrieves a message from a queue within a specified
time, if one message is available.

0S_Q_Purge ()

Deletes the last retrieved message in a queue.

0S_Q Clear ()

Deletes all message in a queue.

0S_Q_GetMessageCnt ()

Returns the number of messages currently in a queue.

Table 8.1: Queues API

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

125

8.3.1 0OS_Q_Create()

Description

Creates and initializes a message queue.

Prototype
void 0S_Q_Create (0S_Q* pQ,
void*pData,
OS_UINT Size);
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Table 8.2: OS_Q_Create() parameter list

Example

#define MEMORY_QSIZE 10000;
static 0S_Q _MemoryQ;
static char _acMemQBuffer [MEMORY_QSIZE];

void MEMORY_Init (void) {

0S_Q_Create (&_MemoryQ, &_acMemQBuffer, sizeof (_acMemQBuffer));
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

126 CHAPTER 8 Queues

8.3.2 0S_Q_Put()

Description
Stores a new message of given size in a queue.

Prototype

int O0S_Q_Put (0S_Q* pQ,
const void* pSrc,
OS_UINT Size);

Parameter Description
Pointer to a data structure of type 0s_qQ reserved for the manage-
po ment of the message queue.
pSrc Pointer to the message to store
Size Size of the message to store

Table 8.3: OS_Q_Put() parameter list

Return value

0: Success; message stored.
1: Message could not be stored (queue is full).

Additional Information

If the queue is full, the function returns a value unequal to 0.
This routine never suspends the calling task. It may therefore also be called from an
interrupt routine.

Example

char MEMORY Write (char* pData, int Len) {
return 0OS_Q_ Put (& MemoryQ, pData, Len));
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

127

8.3.3 0S_Q_GetPtr()

Description
Retrieves a message from a queue.

Prototype

int OS_Q_ GetPtr (0S_Q* pQ,
void** ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 8.4: 0S_Q_GetPtr() parameter list

Return value

The size of the retrieved message.
Sets the pointer to the message that should be retrieved.

Additional Information

If the queue is empty, the calling task is suspended until the queue receives a new
message. Because this routine might require a suspension, it must not be called from
an interrupt routine. Use 0S_GetPtrCond() instead. The retrieved message is not
removed from the queue. This has to be done by a call of 0s_@Q_Purge() after the
message was processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;

while (1) {

Len = 0S_Q_ GetPtr (& MemoryQ, &pData) ; /* Get message */
Memory_WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

128 CHAPTER 8 Queues

8.3.4 0S_Q_GetPtrCond()

Description
Retrieves a message from a queue, if one message is available.

Prototype

int OS_Q_GetPtrCond (0S_Q* pQ,
void** ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 8.5: 0S_Q_GetPtrCond() parameter list

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Additional Information

If the queue is empty, the function returns 0. The value of pppata is undefined. This
function never suspends the calling task. It may therefore also be called from an
interrupt routine. If a message could be retrieved, it is not removed from the queue.
This has to be done by a call of 0s_Q_pPurge () after the message was processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;
while (1) {

Len = 0S_Q_GetPtrCond (& MemoryQ, &pData) ; /* Check message */
if (Len > 0) {

Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */

0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else {

DoSomethingElse () ;

}
}
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

129

8.3.5 0OS_Q_GetPtrTimed()

Description
Retrieves a message from a queue within a specified time if a message is available.

Prototype

int 0OS_Q_GetPtrTimed (0OS_Q* pQ,
void** ppData,
OS_TIME Timeout) ;

Parameter Description
PO Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.
Maximum time in timer ticks until the requested message has to
be available. The data type OS_TIME defaults to an integer,
Timeout therefore valid values are
1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 8.6: 0S_Q_GetPtrCond() parameter list

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Additional Information

If the queue is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a message is available within the given timeout, or after the timeout value
has expired.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = 0S_Q_GetPtrTimed (& MemoryQ, &pData, 10); /* Check message */
if (Len > 0) {
Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else { /* Timeout */
DoSomethingElse () ;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

130 CHAPTER 8 Queues

8.3.6 0OS_Q_Purge()

Description
Deletes the last retrieved message in a queue.

Prototype
void 0S_Q_Purge (0S_Q* pQ);

Parameter Description

pQ Pointer to the queue.
Table 8.7: OS_Q_Purge() parameter list

Additional Information

This routine should be called by the task that retrieved the last message from the
queue, after the message is processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;

while (1) {

Len = 0S_Q_GetPtr (& MemoryQ, &pData); /* Get message */
Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

8.3.7 0S_Q_Clear()

Description

Deletes all message in a queue.

Prototype

void 0OS_Q_Clear

(0S_Q* pQ) ;

131

Parameter

Description

PO

Pointer to the queue.

Table 8.8: 0S_Q_Clear() parameter list

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

132 CHAPTER 8 Queues

8.3.8 0OS_Q_GetMessageCnt()

Description

Returns the number of messages currently in a queue.

Prototype
int OS_Q_GetMessageCnt (0S_Q* pQ);

Parameter Description
pQ Pointer to the queue.

Table 8.9: 0OS_Q_GetMessageCnt() parameter list

Return value

The number of messages in the queue.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

133

Chapter 9

Task events

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

134 CHAPTER 9 Task events

Task events are another way of communication between tasks. In contrast to sema-
phores and mailboxes, task events are messages to a single, specified recipient. In
other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is sig-
naled by another task, a S/W timer or an interrupt handler. The event can consist of
anything that the software has been made aware of in any way. For example, the
change of an input signal, the expiration of a timer, a key press, the reception of a
character, or a complete command.

Every task has a 1-byte (8-bit) mask, which means that 8 different events can be
signaled to and distinguished by every task. By calling 0s_waitEvent (), a task waits
for one of the events specified as a bitmask. As soon as one of the events occurs, this
task must be signaled by calling 0s_signalEvent (). The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the
scheduler as soon as it becomes the task with the highest priority of all the tasks in
the READY state.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

135

9.1 Events API function overview

Routine

Description

OS_WaitEvent ()

Waits for one of the events specified in the bitmask
and clears the event memory after an event occurs.

OS_WaitSingleEvent ()

Waits for one of the events specified as bitmask and
clears only that event after it occurs.

0S_WaitEventTimed ()

Waits for the specified events for a given time, and
clears the event memory after an event occurs.

O0S_WaitSingleEventTimed ()

Waits for the specified events for a given time; after
an event occurs, only that event is cleared.

0S_SignalEvent ()

Signals event(s) to a specified task.

0S_GetEventsOccurred ()

Returns a list of events that have occurred for a
specified task.

0S_ClearEvents ()

Returns the actual state of events and then clears
the events of a specified task.

Table 9.1: Events API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

136

CHAPTER 9 Task events

9.1.1 OS_WaitEvent()

Description

Waits for one of the events specified in the bitmask and clears the event memory
after an event occurs.

Prototype
char O0S_WaitEvent (char EventMask) ;

Parameter Description
EventMask The events that the task will be waiting for.

Table 9.2: OS_WaitEvent() parameter list

Return value
All events that have actually occurred.
Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event.

Example
0S_WaitEvent (3) ; /* Wait for event 1 or 2 to be signaled */

For a further example, see 0S_SignalEvent ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

137

9.1.2 OS_WaitSingleEvent()

Description

Waits for one of the events specified by the bitmask and clears only that event after

it occurs.
Prototype
char O0S_WaitSingleEvent (char EventMask) ;
Parameter Description
EventMask The events that the task will be waiting for.

Table 9.3: OS_WaitSingleEvent() parameter list

Return value
All masked events that have actually occurred.
Additional Information

If none of the specified events are signhaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer, or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event. All unmasked events remain unchanged.

Example

OS_WaitSingleEvent (3) ; /* Wait for event 1 or 2 to be signaled */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

138 CHAPTER 9 Task events

9.1.3 OS_WaitEventTimed()

Description

Waits for the specified events for a given time, and clears the event memory after an
event occurs.

Prototype

char 0S_WaitEventTimed (char EventMask,
OS_TIME TimeOut) ;

Parameter Description
EventMask The events that the task will be waiting for.

Maximum time in timer ticks until the events have to be signaled.
The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 9.4: OS_WaitEventTimed() parameter list

Return value

The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer, or an interrupt handler within the specified TimeoOut time.

If no event is signaled, the task is activated after the specified timeout and all actual
events are returned and then cleared. Any bit in the 8-bit event mask may enable the
corresponding event.

Example

OS_WaitEventTimed (3, 10); /* Wait for event 1 or 2 to be signaled within 10 ms */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

139

9.1.4 OS_WaitSingleEventTimed()
Description

Waits for the specified events for a given time; after an event occurs, only that event
is cleared.

Prototype

char O0S_WaitSingleEventTimed (char EventMask,
OS_TIME TimeOut) ;

Parameter Description
EventMask The events that the task will be waiting for.
Maximum time in timer ticks until the events have to be signaled.
The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are
1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 9.5: OS_WaitSingleEventTimed() parameter list

Return value

The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer or an interrupt handler within the specified Timeout time.
If no event is signaled, the task is activated after the specified timeout and the
function returns zero. Any bit in the 8-bit event mask may enable the corresponding
event. All unmasked events remain unchanged.

Example

0S_WaitSingleEventTimed (3, 10); /* Wait for event 1 or 2 to be
signaled within 10 ms */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

140 CHAPTER 9 Task events

9.1.5 OS_SignalEvent()

Description
Signals event(s) to a specified task.

Prototype

void 0OS_SignalEvent (char Event,
OS_TASK* pTask) ;

Parameter Description

The event(s) to signal:
1 means event 1

2 means event 2

4 means event 3
Event
128 means event 8.

Multiple events can be signaled as the sum of the single events
(for example, 6 will signal events 2 & 3).

pTask Task that the events are sent to.

Table 9.6: OS_SignalEvent() parameter list

Additional Information

If the specified task is waiting for one of these events, it will be put in the READY
state and activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be
received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* Just a small demo for events
*/

#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

OS_STACKPTR int Stack0[96], Stackl[64]; /* Task stacks */
OS_TASK TCBO, TCB1; /* Data area for tasks (task control blocks) */

void TaskO (void) {
0S_U8 MyEvent;
while (1)
MyEvent = 0OS_WaitEvent (EVENT_KEYPRESSED | EVENT_SERIN)
if (MyEvent & EVENT_ KEYPRESSED) {
/* handle key press *x/
}
if (MyEvent & EVENT_SERIN) {
/* Handle serial reception */
}
}
}

void TimerKey (void) {

/* More code to find out if key has been pressed */

0S_SignalEvent (EVENT_SERIN, &TCBO); /* Notify Task that key was pressed */
}

void InitTask (void) {
OS_CREATETASK (&TCBO, 0, TaskO, 100, StackO0); /* Create Task0 */
}

If the task was only waiting for a key to be pressed, 0S_GetMail () could simply be
called. The task would then be deactivated until a key is pressed. If the task has to
handle multiple mailboxes, as in this case, events are a good option.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

141

9.1.6 OS_GetEventsOccurred()

Description
Returns a list of events that have occurred for a specified task.

Prototype
char 0S_GetEventsOccurred (0OS_TASK* pTask) ;

Parameter Description

The task who's event mask is to be returned,
NULL means current task.
Table 9.7: OS_getEventsOccured() parameter list

pTask

Return value
The event mask of the events that have actually occurred.
Additional Information

By calling this function, the actual events remain signaled. The event memory is not
cleared. This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are available.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

142 CHAPTER 9 Task events

9.1.7 OS_ClearEvents()
Description
Returns the actual state of events and then clears the events of a specified task.

Prototype
char 0S_ClearEvents (0OS_TASK* pTask) ;

Parameter Description

The task who's event mask is to be returned,
NULL means current task.
Table 9.8: OS_ClearEvents() parameter list

pTask

Return value

The events that were actually signaled before clearing.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

143

Chapter 10

Event objects

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

144 CHAPTER 10 Event objects

Event objects are another type of communication and synchronization objects. In
contrast to task-events, event objects are standalone objects which are not owned by
any task.

The purpose of an event object is to enable one or multiple tasks to wait for a partic-
ular event to occur. The tasks can be kept suspended until the event is set by another
task, a S/W timer, or an interrupt handler. The event can be anything that the soft-
ware is made aware of in any way. Examples include the change of an input signal,
the expiration of a timer, a key press, the reception of a character, or a complete
command.

Compared to a task event, the signalling function does not need to know which task
is waiting for the event to occur.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

145

10.1 Event object API function overview

Routine

Description

OS_EVENT_ Create()

Creates an event object. Has to be called before the
event object can be used.

OS_EVENT_Wait ()

Waits for an event and resets the event after it occurs.

OS_EVENT_WaitTimed ()

Waits for an event with timeout and resets the event
after it occurs.

OS_EVENT_Set ()

Sets the events, or resumes waiting tasks.

OS_EVENT_Reset ()

Clears for example resets the event to un-signaled state.

OS_EVENT_Pulse()

Sets the event, resumes waiting tasks, if any, and then
resets the event.

OS_EVENT_Get ()

Returns the state of an event object.

OS_EVENT Delete()

Deletes the specified event object.

Table 10.1: Event object API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

146 CHAPTER 10 Event objects

10.1.1 OS_EVENT _Create()

Description
Creates an event object and resets the event.
Prototype
void OS_EVENT_Create (OS_EVENT* pEvent)
Parameter Description
pEvent Pointer to an event object data structure.

Table 10.2: OS_EVENT_Create() parameter list

Additional Information

Before the event object can be used, it has to be created once by a call of
OS_EVENT_Create (). On creation, the event is set in non-signaled state, and the list
of waiting tasks is deleted. Therefore, 0S_EVENT_Create() must not be called for an
event object which was already created before. The debug version of embOS checks
whether the specified event object was already created and calls 0s_Error() with
error code OS_ERR_2USE_EVENTOBJ, if the event object was already created before the
call of OS_EVENT_Create().

Example

OS_EVENT _HW_Event;
OS_EVENT_Create (&HW_Event) ; /* Create and initialize event object */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

147

10.1.2 OS_EVENT_Wait()

Description
Waits for an event and suspends the calling task as long as the event is not signaled.

Prototype
void OS_EVENT Wait (OS_EVENT* pEvent)

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Table 10.3: OS_EVENT_Wait() parameter list

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled. pEvent has to address an existing event
object, which has to be created before the call of 0S_EVENT_wait (). The debug ver-
sion of embOS will check whether pEvent addresses a valid event object and will call
0OS_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.
Example

OS_EVENT_Wait (& _HW_Event) ; /* Wait for event object */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

148 CHAPTER 10 Event objects

10.1.3 OS_EVENT_WaitTimed()

Description

Waits for an event and suspends the calling task for a specified time as long as the
event is not signaled.

Prototype

char OS_EVENT_WaitTimed (OS_EVENT* pEvent, OS_TIME Timeout)

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Maximum time in timer ticks until the event have to be signaled.
The data type os_TIME defaults to an integer, therefore valid val-
Timeout ues are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 10.4: OS_EVENT_Wait() parameter list

Return value

0 success, the event was signhaled within the specified time.
1 if the event was not signaled and a timeout occured.

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled or the timeout time has expired.

pEvent has to address an existing event object, which has to be created before the
call of 0OS_EVENT_WaitTimed (). The debug version of embOS will check whether
pEvent addresses a valid event object and will call os_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.
Example

if (OS_EVENT_WaitTimed (&_HW_Event, 10) == 0) {

/* event was signaled within tim out time, handle event */
} else {
/* event was not signaled within tim out time, handle timeout */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

149

10.1.4 OS_EVENT Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the
event object.

Prototype
void OS_EVENT_Set (OS_EVENT* pEvent)
Parameter Description
pEvent Pointer to the event object which should be set to signaled state.

Table 10.5: OS_EVENT_Set() parameter list

Additional Information

If no tasks are waiting at the event object, the event object is set to signaled state.
If at least one task is already waiting at the event object, all waiting tasks are
resumed and the event object is not set to the signaled state. peEvent has to address
an existing event object, which has to be created before by a call of of
OS_EVENT_Create(). The debug version of embOS will check whether pEevent
addresses a valid event object and will call o0s_grror() with error code
OS_ERR_EVENT_INVALID in case of an error.

Example

The following printout shows an example using event objects to synchronize tasks to
a hardware initilization function. This sample application can be found in
MAIN_Event.c, which is delivered in the samples subdirectory of the embOS start
folder.

/**

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
hAhkhkh kA hkhhhkhkhhkhhkhrhkhhkhkhhhkhkhAhkhhkhkhkhkhkhkhkhkhkhkhkhkhhkkhkhkhhkhkhkhkhkhkkhhkrhkhkkhkhkhkhkkhkhkhrhkkkxkx*

File : Main EVENT.c
Purpose : Sample program for embOS using EVENT object
————————— END-OF-HEADER —=—=————————————m—m %/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/*************************k***/

/****** Interface to HW module **************************************/

void HW Wait (void);
void HW Free (void);
void HW Init(void);

/**/

/****** HW module ***/

OS_STACKPTR int _StackHW[128]; /* Task stack */
OS _TASK _TCBHW; /* Task-control-block */

/****** local data **/

static OS_EVENT HW Event;

/****** local functions **k***/

static void HWTask (void) {
/* Initialize HW functionallity */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

150 CHAPTER 10 Event objects

0S Delay(100);
/* Init done, send broadcast to waiting tasks */
HW Free();
while (1) {
OS Delay (40);
}

/****** global functions **/
void HW Wait (void) {

OS_EVENT Wait (& HW Event);
}

void HW Free(void) {
OS _EVENT Set (& HW Event);

void HW Init(void) {
OS CREATETASK (& TCBHW, "HWTask", _HWTaSk, 25, _StackHW);
OS EVENT Create (& HW Event);

}

/**/

/**/

static void HPTask (void) {
HW Wait () ; /* Wait until HW module is set up */
while (1) {
0S _Delay (50);
}

static void LPTask (void) {
HW Wait(); /* Wait until HW module is set up */
while (1) {
0S Delay (200);
}

/***

*

* main
**/

int main (void) {

OS_IncDI(); /* Initially disable interrupts */
OS_InitKern(); /* Initialize OS */
OS_InitHW(); /* Initialize Hardware for OS */
HW Init(); /* Initialize HW module */

/* You need to create at least one task before calling OS Start() */
057CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);

OS CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);
OS_SendString("Start project will start multitasking !\n");
0S_Start(); /* Start multitasking */
return 0;

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

151

10.1.5 OS_EVENT_Reset()

Description
Resets the specified event object to non-signaled state.
Prototype
void OS_EVENT Reset (OS_EVENT* pEvent)
Parameter Description
pEvent Eg?(:c.er to the event object which should be reset to non-signaled

Table 10.6: OS_EVENT_Reset() parameter list

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

Example

OS_EVENT_Reset (& _HW_Event); /* Reset event object to non-signaled state */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

152 CHAPTER 10 Event objects

10.1.6 OS_EVENT Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to
non-signaled state.

Prototype
void OS_EVENT_Pulse (OS_EVENT* pEvent) ;
Parameter Description
pEvent Pointer to the event object which should be pulsed.

Table 10.7: OS_EVENT_Pulse() parameter list

Additional Information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains un-signaled. The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

153

10.1.7 OS_EVENT Get()

Description
Returns the state of an event object.

Prototype
unsigned char OS_EVENT_Get (OS_EVENT* pEvent) ;

Parameter Description

pEvent Pointer to an event object who's state should be examined.
Table 10.8: OS_EVENT_Get() parameter list

Return value

0: Event object is not set to signaled state
1: Event object is set to signaled state.

Additional Information

By calling this function, the actual state of the event object remains unchanged.
pEvent has to address an existing event object, which has been created before by a
call of 0S_EVENT_cCreate(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call o0s_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

154 CHAPTER 10 Event objects

10.1.8 OS_EVENT Delete()

Description
Deletes an event object.

Prototype
void OS_EVENT_Delete (OS_EVENT* pEvent) ;

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 10.9: OS_EVENT_Delete() parameter list

Additional Information

To keep the system fully dynamic, it is essential that event objects can be created
dynamically. This also means there has to be a way to delete an event object when it
is no longer needed. The memory that has been used by the event object’s control
structure can then be reused or reallocated.

It is your responsibility to make sure that:

e the program no longer uses the event object to be deleted
e the event object to be deleted actually exists (has been created first)
e no tasks are waiting at the event object when it is deleted.

pEvent has to address an existing event object, which has been created before by a
call of 0S_EVENT_cCreate(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with error code
OS_ERR_EVENT_INVALID in case of an error. If any task is waiting at the event object
which is deleted, the debug version of embOS calls 0s_Error() with error code
OS_ERR_EVENT_DELETE. To avoid any problems, an event object should not be deleted
in @ normal application.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

155

Chapter 11

Heap type memory management

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

156 CHAPTER 11 Heap type memory management

ANSI C offers some basic dynamic memory management functions. These are mal-
loc, free, and realloc.

Unfortunately, these routines are not thread-safe, unless a special thread-safe imple-
mentation exists in the compiler specific runtime libraries; they can only be used
from one task or by multiple tasks if they are called sequentially. Therefore, embQOS
offer task-safe variants of these routines. These variants have the same names as
their ANSI counterparts, but are prefixed o0s_; they are called 0S_malloc(),
0S_free(), OS_realloc (). The thread-safe variants that embOS offers use the stan-
dard ANSI routines, but they guarantee that the calls are serialized using a resource
semaphore.

If heap memory management is not supported by the standard C-libraries for a spe-
cific CPU, embOS heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use any
resources if it is not referenced by the application (that is, if the application does not
use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory used
for the functions (known as heap) may fragment. This can lead to a situation where
the total amount of memory is sufficient, but there is not enough memory available
in a single block to satisfy an allocation request.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

11.1 Heap type memory manager API reference

157

API routine

Description

0S_malloc () Allocates a block of memory on the heap.
0S_free() Frees a block of memory previously allocated.
0S_realloc() Changes allocation size.

Table 11.1: Heap type memory manager API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

158 CHAPTER 11 Heap type memory management

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

159

Chapter 12

Fixed block size memory pools

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

160 CHAPTER 12 Fixed block size memory pools

Fixed block size memory pools contain a specific number of fixed-size blocks of mem-
ory. The location in memory of the pool, the size of each block, and the number of
blocks are set at runtime by the application via a call to the 0s_MEMF_CREATE () func-
tion. The advantage of fixed memory pools is that a block of memory can be allo-
cated from within any task in a very short, determined period of time.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

161

12.1 Memory pools API reference overview

All API functions for fixed block size memory pools are prefixed 0S_MEMF_.

API routine

Description

Create / Delete

OS_MEMF_Create

Creates fixed block memory pool.

OS_MEMF_Delete

Deletes fixed block memory pool.

Allocation

OS_MEMF_Alloc

Allocates memory block from a given memory pool.
Wait indefinitely if no block is available.

OS_MEMF_AllocTimed

Allocates memory block from a given memory pool.
Wait no longer than given timelimit if no block is avail-
able.

OS_MEMF_Request

Allocates block from a given memory pool, if available.
Non-blocking.

Release

OS_MEMF_Release

Releases memory block from a given memory pool.

OS_MEMF_FreeBlock

Releases memory block from any pool.

Info

OS_MEMF_GetNumFreeBlocks

Returns the number of available blocks in a pool.

OS_MEMF_IsInPool

Returns !'=0 if block is in memory pool.

OS_MEMF_GetMaxUsed

Returns the maximum number of blocks in a pool
which have been used at a time.

OS_MEMF_GetNumBlocks

Returns the number of blocks in a pool.

OS_MEMF_GetBlockSize

Returns the size of one block of a given pool.

Table 12.1: Memory pools API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

162 CHAPTER 12 Fixed block size memory pools

12.1.1 OS_MEMF_Create()

Description
Creates and initializes a fixed block size memory pool.

Prototype

void OS_MEMF_Create (OS_MEMF* pMEMF,
void* pPool,
0S_Ul6 NumBlocks,
0S_Ul6 BlockSize);

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pPoO1 Pointer to memory to be used for the memory pool. Required size

is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).
Pointer to memory to be used for the memory pool. Required size
is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).

BlockSize Size in bytes of one block.
Table 12.2: OS_MEMF_Create() parameter list

NumBlocks

Additional Information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for control and
debug purposes. It is guaranteed to be 0 in release or stack check builds. Before
using any memory pool, it has to be created. The debug version of libraries keeps
track of created and deleted memory pools. The release and stack check versions do
not.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

163

12.1.2 OS_MEMF_Delete()

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory
blocks inside this pool can no longer be used.

Prototype
void OS_MEMF_Delete (OS_MEMF* pMEMF) ;

Parameter Description

PMEMF Pointer to the control data structure of memory pool.
Table 12.3: OS_MEMF_Delete() parameter list

Additional Information

This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory pools.
Most applications prefer to have a static memory pool design; memory pools are
created at startup (before calling os_start ()) and will never be deleted.

The debug version of libraries mark the memory pool as deleted.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

164 CHAPTER 12 Fixed block size memory pools

12.1.3 OS_MEMF_Alloc()

Description
Requests allocation of a memory block. Waits until a block of memory is available.
Prototype
void* OS_MEMF_Alloc (OS_MEMF* pMEMF,
int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purpose only. Its
PUrbose value has no effect on program execution, but may be remem-
Bl bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.4: OS_MEMF_Alloc() parameter list

Return value
Pointer to the allocated block.
Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available. The retrieved pointer must be delivered to
OS_MEMF_Release () as a parameter to free the memory block. The pointer must not
be modified.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

165

12.1.4 OS_MEMF_AllocTimed()

Description

Requests allocation of a memory block. Waits until a block of memory is available or
the timeout has expired.

Prototype

void* OS_MEMF_AllocTimed (OS_MEMF* pMEMF,
int Timeout,
int Purpose) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
. Timelimit before timeout, given in ticks. 0 or negative values are
Timeout -
permitted.

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.5: 0OS_MEMF_Alloc_Timed()

Purpose

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired. The retrieved pointer
must be delivered to 0S_MEMF_Release() as parameter to free the memory block.
The pointer must not be modified.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

166 CHAPTER 12 Fixed block size memory pools

12.1.5 OS_MEMF_Request()

Description
Requests allocation of a memory block. Continues execution in any case.
Prototype
void* OS_MEMF_Request (OS_MEMF* pMEMF,
int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purpose only. Its
PUrbose value has no effect on program execution, but may be remem-
Bl bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.6: OS_MEMF_Request() parameter list

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

The calling task is never suspended by calling 0Ss_MEMF_Request (). The retrieved
pointer must be delivered to 0S_MEMF_Release () as parameter to free the memory
block. The pointer must not be modified.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

167

12.1.6 OS_MEMF_Release()

Description
Releases a memory block that was previously allocated.

Prototype

void OS_MEMF_Release (OS_MEMF* pMEMF,
void* pMemBlock) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Table 12.7: OS_MEMF_Release() parameter list

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrival func-
tion described above. The pointer must not be modified between allocation and
release. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

168 CHAPTER 12 Fixed block size memory pools

12.1.7 OS_MEMF_FreeBlock()

Description

Releases a memory block that was previously allocated. The memory pool does not
need to be denoted.

Prototype
void OS_MEMF_FreeBlock (void* pMemBlock) ;

Parameter Description
pMemBlock Pointer to the memory block to free.

Table 12.8: OS_MEMF_FreeBlock() parameter list

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. This function may be used instead of 0S_MEMF_Release (). It has the advan-
tage that only one parameter is needed. embOS itself will find the associated mem-
ory pool. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

169

12.1.8 OS_MEMF_GetNumBlocks()

Description

Information routine to examine the total number of available memory blocks in the
pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (0OS_MEMF* pMEMF) ;

Parameter Description

PMEMF Pointer to the control data structure of memory pool.
Table 12.9: 0S_MEMF_GetNumBlocks() parameter list

Return value

Returns the number of blocks in the specified memory pool. This is the value that
was given as parameter during creation of the memory pool.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

170 CHAPTER 12 Fixed block size memory pools

12.1.9 OS_MEMF_GetBlockSize()

Description
Information routine to examine the size of one memory block in the pool.
Prototype
int OS_MEMF_GetBlockSize (OS_MEMF* pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 12.10: OS_MEMF_GetBlockSize() parameter list

Return value

Size in bytes of one memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

171

12.1.10 OS_MEMF_GetNumFreeBlocks()

Description
Information routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (0OS_MEMF* pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 12.11: OS_MEMF_GetNumFreeBlocks() parameter list

Return value

The number of free blocks actually available in the specified memory pool.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

172

CHAPTER 12 Fixed block size memory pools

12.1.11 OS_MEMF_GetMaxUsed()

Description

Information routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype

int OS_MEMF_GetMaxUsed (OS_MEMF* pMEMF) ;

Parameter

Description

PMEMF

Pointer to the control data structure of memory pool.

Table 12.12: OS_MEMF_GetMaxUsed() parameter list

Return value

Maximum number of blocks in the specified memory pool that were used concurrently
since the pool was created.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

173

12.1.12 0S_MEMF_IsInPool()

Description

Information routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype

char OS_MEMF_IsInPool (OS_MEMF* pMEMF,
void* pMemBlock) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block that should be checked

Table 12.13: OS_MEMF_IsInPool() parameter list

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

174 CHAPTER 12 Fixed block size memory pools

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

175

Chapter 13
Stacks

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

176 CHAPTER 13 Stacks

The stack is the memory area used for storing the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt routines
also use the stack to save the return address and flag registers, except in cases
where the CPU has a separate stack for interrupt functions. Refer to the CPU &
Compiler Specifics manual of embOS documentation for details on your processor's
stack. A "normal" single-task program needs exactly one stack. In a multitasking
system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of
the memory that is not reserved for the stack will be overwritten, and a serious pro-
gram failure is most likely to occur. embOS monitors the stack size (and, if available,
also interrupt stack size in the debug version), and calls the failure routine
OS_Error () if it detects a stack overflow. However, embOS cannot reliably detect a
stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a waist
of memory. To detect a stack overflow, the debug and stack check builds of embQOS
fill the stack with control characters when it is created and check these characters
every time the task is deactivated. If an overflow is detected, 0s_Error () is called.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

177

13.1 System stack

Before embOS takes over control (before the call to 0os_start()), a program does
use the so-called system stack. This is the same stack that a non-embOS program for
this CPU would use. After transferring control to the embOS scheduler by calling
0S_start (), the system stack is used only when no task is executed for the follow-
ing:

e embOS scheduler

¢ embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

178 CHAPTER 13 Stacks

13.2 Task stack

Each embOS task has a separate stack. The location and size of this stack is defined
when creating the task. The minimum size of a task stack pretty much depends on
the CPU and the compiler. For details, see the CPU & Compiler Specifics manual of

embOS documentation.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

179

13.3 Interrupt stack

To reduce stack size in a multitasking environment, some processors use a specific
stack area for interrupt service routines (called a hardware interrupt stack). If there
is no interrupt stack, you will have to add stack requirements of your interrupt ser-
vice routines to each task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may support a
separate stack for interrupts by calling the function 0s_EnterIntStack() at begin-
ning of an interrupt service routine and 0S_LeaveIntStack () atits very end. In case
the CPU already supports hardware interrupt stacks or if a separate interrupt stack is
not supported at all, these function calls are implemented as empty macros.

We recommend using 0S_EnterIntStack() and 0S_LeaveIntStack() even if there is
currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embQOS with support for
an interrupt stack for your CPU. For details about interrupt stacks, see the CPU &
Compiler Specifics manual of embOS documentation.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

180 CHAPTER 13 Stacks

13.4 Stacks API function overview

Routine Description

0S_GetStackSpace () Returns the unused portion of a task stack.
Table 13.1: Stacks API overview

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

181

13.4.1 OS_GetStackSpace()

Description
Returns the unused portion of a task stack.

Prototype
int OS_GetStackSpace (0OS_TCB* pTask) ;

Parameter Description

The task who's stack space is to be checked.
NULL means current task.
Table 13.2: OS_GetStackSpace() parameter list

pTask

Return value
The unused portion of the task stack in bytes.
Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.

However, the required stack size can be calculated using the function
0S_GetStackSpace (), which returns the number of unused bytes on the stack. If
there is a lot of space left, you can reduce the size of this stack and vice versa.

This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSpace (void) {
printf ("Unused Stack[0] %d", 0OS_GetStackSpace (&TCB[0]) ;
0S_Delay (1000) ;
printf ("Unused Stack[1] %d", 0OS_GetStackSpace (&TCB[1]);
0S_Delay (1000) ;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

182 CHAPTER 13 Stacks

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

183

Chapter 14

Interrupts

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

184

CHAPTER 14 Interrupts

In this chapter, you will find a very basic description about using interrupt service
routines (ISRs) in cooperation with embOS. Specific details for your CPU and
compiler may be found in the CPU & Compiler Specifics manual of the embOS docu-
mentation.

Interrupts are interruptions of a program caused by hardware. When an interrupt
occurs, the CPU saves its registers and executes a subroutine called an interrupt
service routine, or ISR. After the ISR is completed, the program returns to the
highest-priority task in the READY state. Normal interrupts are maskable; they can
occur at any time unless they are disabled with the CPU's "disable interrupt" instruc-
tion. ISRs are also nestable - they can be recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very
quickly to external events such as the status change on an input, the expiration of a
hardware timer, reception or completion of transmission of a character via serial
interface, or other types of events. Interrupts effectively allow events to be pro-
cessed as they occur.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

14.1

185

Interrupt latency

Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the interrupt service routine.

Every computer system has an interrupt latency. The latency depends on various fac-
tors and differs even on the same computer system. The value that one is typically
interested in is the worst case interrupt latency.

The interrupt latency is the sum of a lot of different smaller delays explained below.

14.1.1 Causes of interrupt latencies

The first delay is typically in the hardware: The interrupt request signal needs to
be synchronized to the CPU clock. Depending on the synchronization logic, typi-
cally up to 3 CPU cycles can be lost before the interrupt request has reached the
CPU core.

The CPU will typically complete the current instruction. This instruction can take
a lot of cycles; on most systems, divide, push-multiple, or memory-copy instruc-
tions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for mem-
ory access. In an ARM7 system, the instruction sTMDB SP!, {R0O-R11,LR}; (Push
parameters and perm. register) is typically the worst case instruction. It stores
13 32-bit registers on the stack. The CPU requires 15 clock cycles.

The memory system may require additional cycles for wait states.

After the current instruction is completet, the CPU performs a mode switch or
pushes registers (typically, PC and flag registers) on the stack. In general, mod-
ern CPUs (such as ARM) perform a mode switch, which requires less CPU cycles
than saving registers.

Pipeline fill

Most modern CPUs are pipelined. Execution of an instruction happens in various
stages of the pipeline. An instruction is executed when it has reached its final
stage of the pipeline. Because the mode switch has flushed the pipeline, a few
extra cycles are required to refill the pipeline.

14.1.2 Additional causes for interrupt latencies

There can be additional causes for interrupt latencies.
These depend on the type of system used, but we list a few of them.

Latencies caused by cache line fill.

If the memory system has one or multiple caches, these may not contain the
required data. In this case, not only the required data is loaded from memory,
but in a lot of cases a complete line fill needs to be performed, reading multiple
words from memory.

Latencies caused by cache write back.

A cache miss may cause a line to be replaced. If this line is marked as dirty, it
needs to be written back to main memory, causing an additional delay.

Latencies caused by MMU translation table walks.

Translation table walks can take a considerable amount of time, especially as
they involve potentially slow main memory accesses. In real-time interrupt han-
dlers, translation table walks caused by the TLB not containing translations for
the handler and/or the data it accesses can increase interrupt latency signifi-
cantly.

Application program.

Of course, the application program can cause additional latencies by disabling
interrupts. This can make sense in some situations, but of course causes add.
latencies.

Interrupt routines.

On most systems, one interrupt disables further interrupts. Even if the interrupts
are re-enabled in the ISR, this takes a few instructions, causing add. latency.
RTOS (Real-time Operating system).

An RTOS also needs to temporarily disable the interrupts which can call API-func-
tions of the RTOS. Some RTOSes disable all interrupts, effectively increasing

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

186 CHAPTER 14 Interrupts

interrupt latencies for all interrupts, some (like embOS) disable only low-priority
interrupts and do thereby not affect the latency of high priority interrupts.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

187

14.2 Zero interrupt latency

Zero interrupt latency in the strict sense is not possible as explained above. What we
mean when we say "Zero interrupt latency" is that the latency of high-priority inter-
rupts is not affected by the RTOS; a system using embOS will have the same worst-
case interrupt latency for high priority interrupts as a system running without
embOS.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

188 CHAPTER 14 Interrupts

14.3 High / low priority interrupts

Most CPUs support interrupts with different priorities. Different priorities have two
effects:

e If different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and its ISR is executed first.

e Interrupts can never be interrupted by other interrupts of the same or lower level
of priority.

How many different levels of interrupts there are depend on the CPU and the inter-

rupt controller. Details are explained in the CPU/MCU/SOC manuals and the CPU &

Compiler Specifics manual of embOS. embOS distinguishes two different levels of

interrupts: High / Low priority interrupts. The embOS port specific documentation

explains where "the line is drawn", which interrupts are considered high and which

interrupts are considered low priority. In general, the differences are:

Low priority interrupts

e May call embOS API functions

e Latencies caused by embOS

High priority interrupts

e May not call embOS API functions

e No Latencies caused by embOS (Zero latency)
Example of different interrupt priority levels

M16C CPUs support 8 interrupt priority levels. With embOS, the 3 highest priority
levels are treated as “High priority interrupts”. ARM CPUs support normal interrupts
(IRQ) and fast interrupt (FIQ). Using embOS, the FIQ is treated as “High priority
interrupt”.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

189

14.4 Rules for interrupt handlers

14.4.1 General rules

There are some general rules for interrupt handlers. These rules apply to both single-
task programming as well as to multitask programming using embOS.

e Interrupt handlers preserve all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make sure
that all registers modified during interrupt execution are saved at the beginning
and restored at the end of the interrupt routine

e Interrupt handlers have to be finished quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt han-
dler should only be used for storing a received value or to trigger an operation in
the regular program (task). It should not wait in any form or perform a polling
operation.

14.4.2 Additional rules for preemptive multitasking

A preemptive multitasking system like embOS needs to know if the program that is
executing is part of the current task or an interrupt handler. This is because embOS
cannot perform a task switch during the execution of an interrupt handler; it can only
do so at the end of an interrupt handler.

If a task switch were to occur during the execution of an ISR, the ISR would continue
as soon as the interrupted task became the current task again. This is not a problem
for interrupt handlers that do not allow further interruptions (which do not enable
interrupts) and that do not call any embOS functions.

This leads us to the following rule:

e Interrupt functions that re-enable interrupts or use any embOS function need to
call 0s_EnterInterrupt() at the beginning, before executing any other com-
mand, and before they return, call either 0S_LeaveInterrupt() or
0S_LeavelInterruptNoSwitch () as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in the
routine 0s_LeaveInterrupt (). The end of the ISR is executed at a later point, when
the interrupted task is made ready again. If you debug an interrupt routine, do not
be confused. This has proven to be the most efficient way of initiating a task switch
from within an interrupt service routine.

If fast task-activation at the end of an interrupt service routine is not required,
0S_LeaveInterruptNoSwitch () can be used instead.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

190 CHAPTER 14 Interrupts

14.5 Calling embOS routines from within an ISR

Before calling any embOS function from within an ISR, embOS has to be informed
that an interrupt service routine is running.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

191

14.5.1 Interrupts API function overview

Routine

Description

OS_EnterInterrupt ()

Informs embOS that interrupt code is
executing.

0S_LeavelInterrupt ()

Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

0S_LeavelInterruptNoSwitch ()

Informs embQOS that the end of the inter-
rupt routine has been reached but does
not execute task switching within ISR.

Increments the interrupt disable counter

0S_IncDI() (os_bpicnt) and disables interrupts.
0S. DecRI () !Decrement_s the counter and enables
- interrupts if the counter reaches 0.
0S. DI () !Disables in_terrupts. Does not change the
interrupt disable counter.
OS_EI() Unconditionally enables Interrupt.

OS_Restorel ()

Restores the status of the interrupt flag,
based on the interrupt disable counter.

OS_EnterNestableInterrupt ()

Re-enables interrupts and increments the
embOS internal critical region counter,
thus disabling further task switches.

0S_LeaveNestableInterrupt ()

Disables further interrupts.

0S_LeaveNestableInterruptNoSwitch ()

Disables further interrupts, informs
embOS that the end of ISR is reached,

but does not perform a task switch.

Table 14.1: Interrupt API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

192 CHAPTER 14 Interrupts

14.5.2 OS_Enterinterrupt()

Description
Informs embOS that interrupt code is executing.

Prototype

void OS_EnterInterrupt (void);

Additional Information

If 0S_EnterInterrupt () is used, it should be the first function to be called in the
interrupt handler. It must be used with either 0S_LeaveInterrupt() or
0S_LeavelInterruptNoSwitch () as the last function called.

The use of this function has the following effects, it:

e disables task switches
e keeps interrupts in internal routines disabled.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

193

14.5.3 OS_Leavelnterrupt()

Description

Informs embOS that the end of the interrupt routine has been reached; executes
task switching within ISR.

Prototype

void OS_LeavelInterrupt (void);

Additional Information

If 0S_LeaveInterrupt () is used, it should be the last function to be called in the
interrupt handler. If the interrupt has caused a task switch, it will be executed
(unless the program which was interrupted was in a critical region).

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

194 CHAPTER 14 Interrupts

14.5.4 OS_LeavelnterruptNoSwitch()

Description

Informs embOS that the end of the interrupt routine has been reached but does not
execute task switching within ISR.

Prototype

void 0OS_LeavelInterruptNoSwitch (void) ;

Additional Information

If 0S_LeaveInterruptNoSwitch () is used, it should be the last function to be called
in the interrupt handler. If the interrupt has caused a task switch, it is not executed
from within the ISR, but at the next possible occasion. This will be the next call of an
embOS function or the scheduler interrupt if the program is not in a critical region.

14.5.5 Example using OS_Enterinterrupt()/OS_Leavelnterrupt()

Interrupt routine using 0S_EnterInterrupt()/0S_LeaveInterrupt ():

__interrupt void ISR_Timer (void) {
OS_EnterInterrupt() ;
0S_SignalEvent (1,&Task);/* Any functionality could be here */
0S_LeavelInterrupt () ;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

195

14.6 Enabling / disabling interrupts from C

During the execution of a task, maskable interrupts are normally enabled. In certain
sections of the program, however, it can be necessary to disable interrupts for short
periods of time to make a section of the program an atomic operation that cannot be
interrupted. An example would be the access to a global volatile variable of type long
on an 8/16-bit CPU. To make sure that the value does not change between the two or
more accesses that are needed, the interrupts have to be temporarily disabled:

Bad example:

volatile long lvar;

void routine (void) {
lvar ++;

}

The problem with disabling and re-enabling interrupts is that functions that disable/
enable the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended to use the functions that
embOS offers (to be precise, they only look like functions, but are macros in reality).
If you do not use these recommended embOS functions, you may run into a problem
if routines which require a portion of the code to run with disabled interrupts are
nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also,
you should not call routines when interrupts are disabled, because this could lead to
long interrupt latency times (the longer interrupts are disabled, the higher the inter-
rupt latency). As long as you only call embOS functions with interrupts enabled, you
may also safely use the compiler-provided intrinsics to disable interrupts.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

196 CHAPTER 14 Interrupts

14.6.1 OS_IncDI()/ OS_DecRI()

The following functions are actually macros defined in RT0S.h, so they execute very
quickly and are very efficient. It is important that they are used as a pair: first
0S_IncDI(), then 0S_DecRI().

OS_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable
counter (0s_bpicnt) and disables interrupts.

0S_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and
enables interrupts if the counter reaches 0.

Example

volatile long lvar;

void routine (void) {
0S_IncDI();
lvar ++;
0OS_DecRI () ;

}

0S_IncDI () increments the interrupt disable counter which is used for the entire OS
and is therefore consistent with the rest of the program in that any routine can be
called and the interrupts will not be switched on before the matching 0s_becR1 () has
been executed.

If you need to disable interrupts for a short moment only where no routine is called,
as in the example above, you could also use the pair 0s_DI() and 0S_RestoreI().
These are a bit more efficient because the interrupt disable counter 0s_bpicnt is not
modified twice, but only checked once. They have the disadvantage that they do not
work with routines because the status of 0s_bicnt is not actually changed, and they
should therefore be used with great care. In case of doubt, use 0S_IncDI() and
OS_DecRI ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

197

14.6.2 OS_DI() / OS_EI() / OS_Restorel()
0S_DI()

Short for Disable Interrupts. Disables interrupts. Does not change the interrupt
disable counter.

OS_EK()

Short for Enable Interrupts. Refrain from using this function directly unless you are
sure that the interrupt enable count has the value zero, because it does not take the
interrupt disable counter into account.

OS_Restorel()

Short for Restore Interrupts. Restores the status of the interrupt flag, based on the
interrupt disable counter.

Example

volatile long lvar;

void routine (void) {
O0S_DI();
lvar++;
OS_RestoreI();

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

198 CHAPTER 14 Interrupts

14.7 Definitions of interrupt control macros (in RTOS.h)

#define 0S_IncDI () { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT _DICnt(); if (--0S_DICnt==0) OS_EI(); }
#define OS_RestorelI () { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); 1}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

199

14.8 Nesting interrupt routines

By default, interrupts are disabled in an ISR because the CPU disables interrupts with
the execution of the interrupt handler. Re-enabling interrupts in an interrupt handler
allows the execution of further interrupts with equal or higher priority than that of
the current interrupt. These are known as nested interrupts, illustrated in the dia-
gram below:

Task ISR1 ISR2 ISR3

< Interrupt 1

< Interrupt 2

Interrupt 3

Time

ID

For applications requiring short interrupt latency, you may re-enable interrupts inside
an ISR by using 0S_EnterNestableInterrupt () and 0S_LeaveNestableInterrupt ()
within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is not
really recommended to enable interrupts within an interrupt handler. As it is impor-
tant that embOS keeps track of the status of the interrupt enable/disable flag, the
enabling and disabling of interrupts from within an ISR has to be done using the
functions that embOS offers for this purpose.

The routine 0S_EnterNestableInterrupt() enables interrupts within an ISR and
prevents further task switches; 0S_LeaveNestableInterrupt () disables interrupts
right before ending the interrupt routine again, thus restores the default condition.
Re-enabling interrupts will make it possible for an embOS scheduler interrupt to
shortly interrupt this ISR. In this case, embOS needs to know that another ISR is still
active and that it may not perform a task switch.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

200 CHAPTER 14 Interrupts

14.8.1 OS_EnterNestablelnterrupt()

Description

Re-enables interrupts and increments the embOS internal critical region counter,
thus disabling further task switches.

Prototype

void OS_EnterNestableInterrupt (void) ;

Additional Information

This function should be the first call inside an interrupt handler when nested inter-
rupts are required. The function 0S_EnterNestableInterrupt () is implemented as a
macro and offers the same functionality as 0S_EnterInterrupt () in combination
with 0s_DecR1I (), but is more efficient, resulting in smaller and faster code.

Example

Refer to the example for 0S_LeaveNestableInterrupt ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

201

14.8.2 OS_LeaveNestablelnterrupt()

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype

void OS_LeaveNestableInterrupt (void);

Additional Information

This function is the counterpart of 0S_EnterNestableInterrupt (), and has to be the
last function call inside an interrupt handler when nested interrupts have earlier been
enabled by 0S_EnterNestableInterrupt ().

The function 0S_LeaveNestableInterrupt () is implemented as a macro and offers
the same functionality as 0S_LeaveInterrupt() in combination with 0S_IncDI(),
but is more efficient, resulting in smaller and faster code.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

202 CHAPTER 14 Interrupts

14.8.3 OS_LeaveNestablelnterruptNoSwitch()

Description

Disables further interrupts, informs embOS that the end of the ISR is reached, but
does not perform a task switch.

Prototype

void 0OS_LeaveNestableInterruptNoSwitch (void) ;

Additional Information

If 0S_LeaveNestableInterruptNoSwitch() is used, it should be the last function to
be called in the interrupt handler. If the interrupt has caused a task switch, it is not
executed from within the ISR, but at the next possible occasion. This will be the next
call of an embOS function or the scheduler interrupt if the program is not in a critical
region.

Example

__interrupt void ISR_Timer (void) {
OS_EnterNestableInterrupt(); /* Enable interrupts, but disable task switch*/
/*
* Any code legal for interrupt-routines can be placed here
*/
IntHandler () ;
0S_LeaveNestableInterrupt(); /* Disable interrupts, allow task switch */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

203

14.9 Non-maskable interrupts (NMIs)

embOS performs atomic operations by disabling interrupts. However, a non-maskable
interrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations.
Therefore, NMIs should be used with great care and may under no circumstances call
any embOS routines.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

204 CHAPTER 14 Interrupts

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

205

Chapter 15

Critical Regions

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

206 CHAPTER 15 Critical Regions

Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed except
in situations where the active task has to wait. Effectively, preemptions are switched
off.

A typical example for a critical region would be the execution of a program section
that handles a time-critical hardware access (for example writing multiple bytes into
an EEPROM where the bytes have to be written in a certain amount of time), or a
section that writes data into global variables used by a different task and therefore
needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outermost
loop is left. Interrupts are still legal in a critical region. Software timers and inter-
rupts are executed as critical regions anyhow, so it does not hurt but does not do any
good either to declare them as such. If a task switch becomes due during the execu-
tion of a critical region, it will be performed right after the region is left.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

207

15.1 Critical regions API function overview

Routine Description
OS_EnterRegion () Indicates to the OS the beginning of a critical region.
0S_LeaveRegion () Indicates to the OS the end of a critical region.

Table 15.1: Critical regions API overview

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

208 CHAPTER 15 Critical Regions

15.1.1 OS_EnterRegion()

Description
Indicates to the OS the beginning of a critical region.

Prototype

void OS_EnterRegion (void);

Additional Information

OS_EnterRegion () is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Using the macro indicates to embQOS
the beginning of a critical region. A critical region counter (0S_RegionCnt), which is 0
by default, is incremented so that the routine can be nested. The counter will be dec-
remented by a call to the routine 0s_LeaveRegion (). If this counter reaches 0 again,
the critical region ends. Interrupts are not disabled using 0S_EnterRegion(); how-
ever, disabling interrupts will disable preemptive task switches.

Example

void SubRoutine (void) {
OS_EnterRegion() ;
/* this code will not be interrupted by the 0S */
0S_LeaveRegion() ;

}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

209

15.1.2 OS_LeaveRegion()

Description
Indicates to the OS the end of a critical region.

Prototype

void OS_LeaveRegion (void) ;

Additional Information

0S_LeaveRegion () is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Usage of the macro indicates to
embOS the end of a critical region. A critical region counter (0S_RegionCnt), which is
0 by default, is decremented. If this counter reaches 0 again, the critical region ends.

Example

Refer to the example for 0S_EnterRegion () .

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

210 CHAPTER 15 Critical Regions

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

211

Chapter 16

System variables

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

212 CHAPTER 16 System variables

The system variables are described here for a deeper understanding of how the OS
works and to make debugging easier.

Note: Do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should only be
altered by functions of embOS. However, some of these variables can be very useful,
especially the time variables.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

213

16.1 Time variables
16.1.1 OS Time

Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Prototyp

extern volatile 0OS_I32 OS_Time;

Additional Information

The time variable has a resolution of one time unit, which is normally 1/1000 sec
(1 ms) and is normally the time between two successive calls to the embQOS interrupt
handler. Instead of accessing this variable directly, use 0S_GetTime() or
0S_GetTime32 () as explained in Chapter Time measurement on page 223.

16.1.2 OS_TimeDex

Basically, for internal use only. Contains the time at which the next task switch or
timer activation is due. If ((int) (0S_Time - 0S_TimeDex)) >= 0, the task list and
timer list will be checked for a task or timer to activate. After activation, 0s_TimeDex
will be assigned the time stamp of the next task or timer to be activated.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

214 CHAPTER 16 System variables

16.2 OS internal variables and data-structures

embOS internal variables are not explained here as they are in no way required to
use embOS. Your application should not rely on any of the internal variables, as only
the documented API functions are guaranteed to remain unchanged in future
versions of embOS.

Important

Do not alter any system variables.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

215

Chapter 17

Configuration for your target
system

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

216 CHAPTER 17 Configuration for your target system

You do not have to configure anything to get started with embOS. The start project
supplied will execute on your system. Small changes in the configuration will be nec-
essary at a later point for system frequency or for the UART used for communication
with the optional embOSView.

The file RTOSInit.c is provided in source code and can be modified to match your
target hardware needs. It is compiled and linked with your application program.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

217

17.1 Hardware-specific routines

Routine Description

Initializes the hardware timer used for generating inter-
rupts. embOS needs a timer-interrupt to determine when
OS_InitHW() to activate tasks that wait for the expiration of a delay,
when to call a software timer, and to keep the time vari-
able up-to-date.

The idle loop is always executed whenever no other task

0s_Tdle() (and no interrupt service routine) is ready for execution.
Reads the timestamp in cycles. Cycle length depends on

0S_GetTime_Cycles () the system. This function is used for system information
sent to embOSView.

0S_ConvertCycles2us () | Converts cycles into us (used with profiling only).

Initializes communication for embOSView

(used with embOSView only).

The embOS timer-interrupt handler. When using a differ-
ent timer, always check the specified interrupt vector.

Rx Interrupt service handler for embOSView

(used with embOSView only).

Tx Interrupt service handler for embOSView

(used with embOSView only).

Send 1 byte via a UART (used with embOSView only).

Do not call this function from your application.
Table 17.1: Hardware specific routines

0S_COM_1Init ()

OS_ISR_Tick()

OS_ISR_rx()

OS_ISR_tx()

0S_COM_Sendl ()

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

218 CHAPTER 17 Configuration for your target system

17.2 Configuration defines

For most embedded systems, configuration is done by simply modifying the following
defines, located at the top of the rRTOSInit.c file:

Define Description
System frequency (in Hz).
Example: 20000000 for 20MHz.

Selection of UART to be used with embOSView
(-1 will disable communication),

OS_ BAUDRATE Selection of baudrate for communication with embOSView.
Table 17.2: Configuration defines overview

OS_FSYS

OS_UART

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

219

17.3 How to change settings

The only file which you may need to change is RTOSInit.c. This file contains all
hardware-specific routines. The one exception is that some ports of embOS require
an additional interrupt vector table file (details can be found in the CPU & Compiler
Specifics manual of embOS documentation).

17.3.1 Setting the system frequency OS_FSYS

Relevant defines

OS_FSYS

Relevant routines

0S_ConvertCycles2us () (used with profiling only)

For most systems it should be sufficient to change the 0s_rsys define at the top of
RTOSInit.c. When using profiling, certain values may require a change in
0S_ConvertCycles2us (). The RTOSInit.c file contains more information about in
which cases this is necessary and what needs to be done.

17.3.2 Using a different timer to generate the tick-interrupts for
embOS

Relevant routines
0S_ InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or tick,
normally equal to 1 ms. This is done by a timer initialized in the routine
0S_InitHW (). If you have to use a different timer for your application, you must
modify 0s_InitHwW () to initialize the appropriate timer. For details about initialization,
read the comments in RTOSInit.c.

17.3.3 Using a different UART or baudrate for embOSView

Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_1Init ()
0OS_COM_Sendl ()
OS_TISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define os_uarT. Refer to the con-
tents of the RTOSInit.c file for more information about which UARTS that are sup-
ported for your CPU.

17.3.4 Changing the tick frequency

Relevant defines
OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. os_rsys defines the
clock frequency of your system in Hz (times per second). The value of 0S_FsYs is
used for calculating the desired reload counter value for the system timer for 1000
interrupts/sec. The interrupt frequency is therefore normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable 0s_Time will no longer
be equivalent to multiples of 1 ms. However, if you use a multiple of 1 ms as tick

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

220 CHAPTER 17 Configuration for your target system

time, the basic time unit can be made 1 ms by using the (optional) configuration
macro OS_CONFIG() (see upbelow). The basic time unit does not have to be 1 ms; it

might just as well be 100 ps or 10 ms or any other value. For most applications, 1 ms
is a convenient value.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

221

17.4 Using non-standard ticks

OS_CONFIG() can be used for configuration of embQOS in situations where the basic
timer-interrupt interval (tick) is a multiple of 1 ms and the time values for delays still
should use 1 ms as the time base. 0S_CONFIG() tells embOS how many system time
units expire per embOS tick and what the system frequency is.

Examples
1. The following will increment the time variable 0s_Time by 1 per RTOS timer-
interrupt. This is the default for embOS, so usage of 0S_CONFIG() is not
required.
OS _CONFIG(8000000,8000) ; /* Configure OS : System-frequency, ticks/int */
2. The following will increment the time variable OS_Time by 2 per embQOS timer-
interrupt.
OS _CONFIG(8000000,16000); /* Configure OS : System-frequency, ticks/int */

If, for example, the basic timer was initialized to 500 Hz, which would result in an
embOS timer-interrupt every 2 ms, a call of 0s_Delay(10) would result in a delay of
20 ms, because all timing values are interpreted as ticks. A call of 0S_CONFIG() with
the parameter shown in example 2 would compensate for the difference, resulting in
a delay of 10 ms when calling 0s_Delay (10).

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

222 CHAPTER 17 Configuration for your target system

17.5 STOP /HALT /IDLE modes

Most CPUs support power-saving STOP, HALT, or IDLE modes. Using these types of
modes is one possible way to save power consumption during idle times. As long as
the timer-interrupt will wake up the system with every embOS tick, or as long as
other interrupts will activate tasks, these modes may be used for saving power con-
sumption.

If required, you may modify the 0s_1dle() routine, which is part of the hardware-
dependant module rRTOSInit.c, to switch the CPU to power-saving mode during idle
times. Refer to the CPU & Compiler Specifics manual of embOS documentation for
details about your processor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

223

Chapter 18

Time measurement

embOS supports 2 types of time measurement:

e Low resolution (using a time variable)
e High resolution (using a hardware timer)

Both are explained in this chapter.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

224 CHAPTER 18 Time measurement

embOS supports two basic types of run-time measurement which may be used for
calculating the execution time of any section of user code. Low-resolution measure-
ments use a time base of ticks, while high-resolution measurements are based on a
time unit called a cycle. The length of a cycle depends on the timer clock frequency.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

225

18.1 Low-resolution measurement

The system time variable 0s_Time is measured in ticks, or ms. The low-resolution
functions 0S_GetTime () and 0S_GetTime32 () are used for returning the current con-
tents of this variable. The basic idea behind low-resolution measurement is quite
simple: The system time is returned once before the section of code to be timed and
once after, and the first value is subtracted from the second to obtain the time it took
for the code to execute.

The term low-resolution is used because the time values returned are measured in
completed ticks. Consider the following: with a normal tick of 1 ms, the variable
0S_Time is incremented with every tick-interrupt, or once every ms. This means that
the actual system time can potentially be more than what a low-resolution function
will return (for example, if an interrupt actually occurs at 1.4 ticks, the system will
still have measured only 1 tick as having elapsed). The problem becomes even
greater with runtime measurement, because the system time must be measured
twice. Each measurement can potentially be up to 1 tick less than the actual time, so
the difference between two measurements could theoretically be inaccurate by up to
two ticks.

The following diagram illustrates how low-resolution measurement works. We can see
that the section of code actually begins at 0.5 ms and ends at 5.2 ms, which means
that its actual execution time is (5.2 - 0.5) = 4.7 ms. However with a tick of 1 ms,
the first call to 0s_GetTime () returns 0, and the second call returns 5. The measured
execution time of the code would therefore result in (5 - 0) = 5 ms.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS_Tlme 0.5ms 5.2ms

0O ms 1 ms 2ms 3ms 4ms 5 ms 6 ms

For many applications, low-resolution measurement may be fully sufficient for your
needs. In some cases, it may be more desirable than high-resolution measurement
due to its ease of use and faster computation time.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

226 CHAPTER 18 Time measurement

18.2 Low-resolution measurement API function over-
view

Routine Description
0S_GetTime () Returns the current system time in ticks.
0S5 GetTime32 () \F/{aeItLLIJerns the current system time in ticks as a 32-bit

Table 18.1: Low-resolution measurement API overview

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

227

18.2.1 OS_GetTime()

Description
Returns the current system time in ticks.

Prototype

int OS_GetTime (void);

Return value
The system variable 0s_Time as a 16- or 32-bit integer value.
Additional Information

This function returns the system time as a 16-bit value on 8/16-bit CPUs, and as a
32-bit value on 32-bit CPUs. The 0s_Time variable is a 32-bit value. Therefore, if the
return value is 32-bit, it is simply the entire contents of the 0s_Time variable. If the
return value is 16-bit, it is the lower 16 bits of the 0s_Time variable.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

228 CHAPTER 18 Time measurement

18.2.2 OS_GetTime32()

Description

Returns the current system time in ticks as a 32-bit value.

Prototype
U332 0S_GetTime32 (void);

Return value
The system variable 0s_Time as a 32-bit integer value.
Additional Information

This function always returns the system time as a 32-bit value. Because the 0S_Time
variable is also a 32-bit value, the return value is simply the entire contents of the
0S_Time variable.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

229

18.3 High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling
builds of embQOS, allowing for fine-tuning of time measurement. While system resolu-
tion depends on the CPU used, it is typically about 1 ps, making high-resolution mea-
surement about 1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the illustra-
tion below, which measures the execution time of the same code used in the low-res-
olution calculation. For this example, we assume that the CPU has a timer running at
10 MHz and is counting up. The number of cycles per tick is therefore (10 MHz / 1
kHz) = 10,000. This means that with each tick-interrupt, the timer restarts at 0 and
counts up to 10,000.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS—T"ne 0.5ms 5.2ms

0O ms 1 ms 2 ms 3ms 4ms 5 ms 6 ms

The call to os_Timing_Start () calculates the starting value at 5,000 cycles, while
the call to os_Timing_End() calculates the ending value at 52,000 cycles (both val-
ues are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 - 5,000) = 47,000 cycles, which corresponds to
4.7 ms.

Although the function 0s_Timing_GetCycles () may be used for returning the execu-
tion time in cycles as above, it is typically more common to use the function
0S_Timing_Getus (), which returns the value in microseconds (us). In the above
example, the return value would be 4,700 ps.

Data structure

All high-resolution routines take as parameter a pointer to a data structure of type
0S_TIMING, defined as follows:

#define OS_TIMING OS_U32

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

230

CHAPTER 18 Time measurement

18.4 High-resolution measurement API function over-

view

Routine

Description

OS_TimingStart ()

Marks the beginning of a code section to be timed.

OS_TimingEnd ()

Marks the end of a code section to be timed.

OS_Timing Getus|()

Returns the execution time of the code between
0S_Timing_Start () and 0S_Timing_ End () in microsec-

onds.

OS_Timing GetCycles ()

Returns the execution time of the code between
0S_Timing_Start () and O0S_Timing_End() in cycles.

Table 18.2: High-resolution measurement API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

231

18.4.1 OS_TimingStart()

Description

Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start (OS_TIMING* pCycle);

Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 18.3: OS_TimingStart() parameter list

Additional Information

This function must be used with 0s_Timing End().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

232 CHAPTER 18 Time measurement

18.4.2 OS_TimingEnd()

Description

Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End (OS_TIMING* pCycle) ;

Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 18.4: OS_TimingEnd() parameter list

Additional Information

This function must be used with 0s_Timing_Start ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

233

18.4.3 OS_Timing_Getus()

Description

Returns the execution time of the code between 0S_Timing Start() and
0S_Timing_End() in microseconds.

Prototype
0S_U32 0S_Timing_Getus (OS_TIMING* pCycle);

Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 18.5: OS_Timing_Getus() parameter list

Additional Information

The execution time in microseconds (Js) as a 32-bit integer value.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

234 CHAPTER 18 Time measurement

18.4.4 OS_Timing_GetCycles()

Description
Returns the execution time of the code between 0S_Timing Start() and
0S_Timing_End() in cycles.
Prototype
0S_U32 0S_Timing_GetCycles (OS_TIMING* pCycle) ;
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 18.6: OS_Timing_GetCycles() parameter list

Return value
The execution time in cycles as a 32-bit integer.
Additional Information

Cycle length depends on the timer clock frequency.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

235

18.5 Example

The following sample demonstrates the use of low-resolution and high-resolution
measurement to return the execution time of a section of code:

/**

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
EE R S I I R R R I S I I R S I R I S S I R S I I I R R S i

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
—————————————— END-OF -HEADER-——-—————————————— e _% /

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode (void) {

for (Dummy=0; Dummy < 11000; Dummy++) ; /* Burn some time */
}
/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes (void) {
int t;
t = 0S_GetTime();
UserCode () ; /* Execute the user code to be benchmarked */
t = 0S_GetTime() - t;
return t;
}
/*
* Measure the execution time with hi resolution and return it in us
*/
0S_U32 BenchmarkHiRes (void) {
0S_U32 t;
OS_Timing_Start (&t) ;
UserCode () ; /* Execute the user code to be benchmarked */

OS_Timing_End(&t) ;
return 0OS_Timing_Getus (&t) ;
}

void Task(void) {
int tLo;
0S_U32 tHi;
char ac[807];
while (1) {
tLo = BenchmarkLoRes () ;
tHi = BenchmarkHiRes () ;
sprintf (ac, "LoRes: %d ms\n", tLo);
0S_SendString(ac) ;
sprintf (ac, "HiRes: %d us\n", tHi);
0S_SendString(ac) ;
}
}

/**
*

* main

*
**/

void main(void) {

0OS_InitKern() ; /* Initialize OS */
OS_InitHW() ; /* Initialize Hardware for OS */
/* You need to create at least one task here ! */
OS_CREATETASK (&TCB, "HP Task", Task, 100, Stack);

0S_Start () ; /* Start multitasking */

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

236 CHAPTER 18 Time measurement

The output of the sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

237

Chapter 19

embOSView: Profiling and analyz-
ing

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

238 CHAPTER 19 embOSView: Profiling and analyzing

19.1 Overview

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used for communication with the target. The hardware-
dependent routines and defines and defines available for communication with
embOSView are located in RTOSInit.c. This file has to be configured properly. For
details on how to configure this file, refer the CPU & Compiler Specifics manual of
embOS documentation. The embOSView utility is shipped as embOSvView.exe with
embOS and runs under Windows 9x / NT / 2000. The latest version is available on
our website at www.segger.com

o emb0S Viewer ¥3.06

File “iew Options Trace MWindow 7

T ask list

Priol Id | Mame | Statuz | Datal Timeoutl Stackl EPULoadl Context... | Found... |
120 2982 MainTask Delay 0(E0544] 115/812E0:2102 324% 19378 0/2
119 29 TaskO(RR) Ready A0/51 2(30x23b2 3.73% 11969 0/2
119 2406 Taskl [RR) Ready 40/51 2(30x2502 37 11503 0/2
119 2430 TaskZ [RR) Ready A0/51 2(30x27h2 3327 12402 0/2

T System variables

Mame

05_YERSION

CPU

Libkdode NT
05_Time E0502
05_MumT azks 4
05_Statuz 0k,
05_pactiveT ask 29dc
05_pCurrentT ask 29dc
SysStack 75/ 2560303541
IntStack 1141280=0x3641
TraceBuffer RO0/500 [

o Trace

Trace | Time I Taskld | TazkMame | APIM ame

1] 367BE 2406 Task1 [RA] Task deactivated

1 367BE 29DC Task0O [RR] Task activated

2 36757 29DC Task0O [RR] Task deactivated

3 367EY 29B2 MainT ask Task activated

4 3E757 2982 MainT azk 05_Delay(3)

5 367EY 29B2 MainT ask Task deactivated

E 36757 29DC Task0O [RR] Task activated

7 36758 29DC Task0O [RR] Task deactivated

8 367H8 2430 Task2 [RR] Task activated

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760 29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated

158 36762 29DC Task0O [RR] Task activated LI
Bytes: 10497 / 23097 Packets: 785 /634 38400 baud on COM 1 i

embOSView is a very helpful tool for analysis of the running target application.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

19.2 Task list window

embOSView shows the state of every created task of the target application in the
Task list window. The information shown depends on the library used in your

239

application.
Iltem Description Builds
Prio Current priority of task. All
Task ID, which is the address of the task control
Id All
block.
Name Name assigned during creation. All
Status Current state of ta_15k (ready, executing, delay, All
reson for suspension).
Data Depends on status. All
Timeout Time of next activation. All
Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Cor_|text Number of activations since reset. SP, DP, DT
Switches

Table 19.1: Task list window overview

The Task list window is helpful in analysis of stack usage and

running task.

User & reference guide for embOS

CPU load for every

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

240 CHAPTER 19 embOSView: Profiling and analyzing

19.3 System variables window

embOSView shows the actual state of major system variables in the System vari-
ables window. The information shown also depends on the library used in your

application:
Item Description Builds
OS_VERSION Current version of embOS. All
CPU Target CPU and compiler. All
LibMode Library mode used for target application. All
OS_Time Current system time in timer ticks. All
OS_NUM_TASKS Current number of defined tasks. All
OS_Status Current error code (or O.K.). All

OS_pActiveTask

Active task that should be running.

SP, D, DP, DT

OS_pCurrentTask

Actual currently running task.

SP, D, DP, DT

Used size/max. size/location of system

SysStack stack. SP, DP, DT

IntStack Used size/max. size/location of system SP, DP, DT
stack.

TraceBuffer Current count/maximum size and current All trace builds

state of trace buffer.

Table 19.2: System variables window overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

241

19.4 Sharing the SIO for terminal I/O

The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be used
for outputting debug messages. Input and output is done via the Terminal window,
which can be shown by selecting View/Terminal from the menu.

To ensure communication via the Terminal window in parallel with the viewer
functions, the application uses the function 0s_sendstring () for sending a string to
the Terminal window and the function 0S_setRxCallback() to hook a recep-
tion routine that receives one byte.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

242

CHAPTER 19 embOSView: Profiling and analyzing

19.4.1 Shared SIO API function overview

Routine

Description

0S_SendString ()

Sends a string over SIO to the Terminal window.

0S_SetRxCallback ()

Sets a callback hook to a routine for receiving one char-

acter.

Table 19.3: Shared SIO API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

19.4.2 OS_SendString()

Description

Sends a string over SIO to the Terminal window.

Prototype

void OS_SendString (const char* s);

243

Parameter

Description

S

Pointer to a zero-terminated string that should be sent to the

Terminal window.

Table 19.4: OS_SendString() parameter list

Additional Information
This function uses 0s_coM_Sendl () which is defined in RTOSInit.c.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

244 CHAPTER 19 embOSView: Profiling and analyzing

19.4.3 OS_SetRxCallback()

Description

Sets a callback hook to a routine for receiving one character.

Prototype

typedef void OS_RX_CALLBACK (0S_U8 Data)
OS_RX_CALLBACK* 0OS_SetRxCallback (OS_RX_CALLBACK* cb);

Parameter Description

Pointer to the application routine that should be called when one
character is received over the serial interface.
Table 19.5: OS_SetRxCallback() parameter list

cb

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback function that
was hooked before the call.

Additional Information

The user function is called from embOS. The received character is passed as parame-
ter. See the example below.

Example

void GUI_X_ OnRx(0S_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_TInit (void) {
0S_SetRxCallback(&GUI_X_ OnRx) ;
}

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

245

19.5 Using the API trace

embOS versions 3.06 or higher contain a trace feature for API calls. This requires the
use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls
can be started and stopped from embOSView via the Trace menu, or from within the
application by using the functions 0S_TraceEnable() and 0S_TraceDiasable().
Individual filters may be defined to determine which API calls should be traced for
different tasks or from within interrupt or timer routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is peri-
odically read by embOSView. The result is shown in the Trace window:

Trace | Time I Taskld | T askMame | APIM ame ;I
1] 367BE 2406 Task1 [RA] Task deactivated iy
1 367BE 29DC Task0O [RR] Task activated

2 36757 29DC Task0O [RR] Task deactivated

3 367EY 29B2 MainT ask Task activated

4 3E757 2982 MainT azk 05_Delay(3)

5 367EY 29B2 MainT ask Task deactivated

E 36757 29DC Task0O [RR] Task activated

7 36758 29DC Task0O [RR] Task deactivated

8 367H8 2430 Task2 [RR] Task activated

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760 29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated -
1 I

Every entry in the Trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID (TaskId) and task name (TaskName) (lim-
ited to 15 characters) are also recorded. Parameters of API calls are recorded if pos-
sible, and are shown as part of the APIName column. In the example above, this
can be seen with 0s_bpelay(3). Once the trace buffer is full, trace is automatically
stopped. The Trace list and buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set
up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As
the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that
occur outside a running task. These calls may come from the idle loop or during
startup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.
Options EHE

Eommunicationl General Trace |EIF'U Viewl Log I

— Filter

Task Mame [Filter 2 to 4]

—I MainTask [Filter 4 Enable

7| " Filter 3 Enable
‘7| ™ Filter 2 Enable
‘ e

ISR or 5W/-Timer ¥ Filter 1 Enable

Any Task [+ Filter 0 Enable
IL 1l Task deactivated -
|11 T ask activated
1101 Timer callback
02 b5
05_Delaylintil
05_SetPriority
05_WakeTask Select all |
05_CreateT ask
05_Teminate
05 Wil vent =] Deselectal

QK I Cancel | Apply |

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

246

CHAPTER 19 embOSView: Profiling and analyzing

To enable or disable a filter, simply check or uncheck the corresponding checkboxes
labeled Filter 4 Enable to Filter O Enable.

For any of these five filters, individual API functions can be enabled or disabled by
checking or unchecking the corresponding checkboxes in the list. To speed up the
process, there are two buttons available:

e Select all - enables trace of all API functions for the currently enabled (checked)
filters.

e Deselect all - disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name
can therefore be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of 0s_Delay () from the task called MainTask. After the set-
tings are saved (via the Apply or OK button), the new settings are sent to the target
application.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

247

19.6 Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOSView. By
default, trace is initially disabled in an application program. It may be very helpful to
control the recording of trace events directly from the application, using the following

functions.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

248

CHAPTER 19 embOSView: Profiling and analyzing

19.7 Trace filter API functions

Routine

Description

0S_TraceEnable ()

Enables tracing of filtered API calls.

OS_TraceDisable ()

Disables tracing of API and user function calls.

OS_TraceEnableAll ()

Sets up Filter 0 (any task), enables tracing of all API
calls and then enables the trace function.

OS_TraceDisableAll ()

Sets up Filter 0 (any task), disables tracing of all
API calls and also disables trace.

0OS_TraceEnableId()

Sets the specified ID value in Filter 0 (any task),
thus enabling trace of the specified function, but
does not start trace.

OS_TraceDisableId()

Resets the specified ID value in Filter 0 (any task),
thus disabling trace of the specified function, but
does not stop trace.

OS_TraceEnableFilterId()

Sets the specified ID value in the specified trace fil-
ter, thus enabling trace of the specified function,
but does not start trace.

OS_TraceDisableFilterId()

Resets the specified ID value in the specified trace
filter, thus disabling trace of the specified function,
but does not stop trace.

Table 19.6: Trace filter API overview

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

249

19.7.1 OS_TraceEnable()

Description
Enables tracing of filtered API calls.

Prototype

void OS_TraceEnable (void) ;

Additional Information

The trace filter conditions should have been set up before calling this function. This
functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

250 CHAPTER 19 embOSView: Profiling and analyzing

19.7.2 OS_TraceDisable()
Description
Disables tracing of API and user function calls.
Prototype

void OS_TraceDisable (void);

Additional Information

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

251

19.7.3 OS_TraceEnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype

void OS_TraceEnableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

252 CHAPTER 19 embOSView: Profiling and analyzing

19.7.4 OS_TraceDisableAll()

Description
Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype

void OS_TraceDisableaAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected, but tracing is

stopped.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

253

19.7.5 OS_TraceEnableld()

Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified
function, but does not start trace.

Prototype
void OS_TraceEnableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.7: OS_TraceEnabled() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 1d value.
These values are defined as symbolic constants in RT0OS.h.

This function may also enable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

254 CHAPTER 19 embOSView: Profiling and analyzing

19.7.6 OS_TraceDisableld()

Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the speci-
fied function, but does not stop trace.

Prototype
void OS_TraceDisableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <=127
Values from 0 to 99 are reserved for embOS.

Table 19.8: OS_TraceDisabledld() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct 1d value.
These values are defined as symbolic constants in RTOS.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

255

19.7.7 OS_TraceEnableFilterld()

Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId (0S_U8 FilterIndex,
0S_U8 Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

Id

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
0 <=1d <= 127

Values from 0 to 99 are reserved for embOS.

Table 19.9: OS_TraceEnabledFilterId() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 14 value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for enabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

256 CHAPTER 19 embOSView: Profiling and analyzing

19.7.8 OS_TraceDisableFilterld()

Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId (0S_U8 FilterIndex,
0S_U8 Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0 <=1Id<=127

Values from 0 to 99 are reserved for embOS.

Table 19.10: OS_TraceDisableFilterId() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

257

19.8 Trace record functions

The following functions are used for writing (recording) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used internally
by the trace build libraries. If, for some reason, you want to trace your own functions
with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

To record data, trace must be enabled.

An ID value in the range from 100 to 127 must be used as the Id parameter. ID
values from 0 to 99 are internally reserved for embOS.

The events specified as Id have to be enabled in any of the trace filters.

Active system time and the current task are automatically recorded together with
the specified event.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

258 CHAPTER 19 embOSView: Profiling and analyzing

19.9 Trace record API function overview

Routine Description

Writes an entry identified only by its ID into the trace
buffer.

Writes an entry with ID and a pointer as parameter into
the trace buffer.

Writes an entry with ID and an integer as parameter into
the trace buffer.

Writes an entry with ID, an integer, and a pointer as
parameter into the trace buffer.

Writes an entry with ID, a 32-bit unsigned integer, and a

pointer as parameter into the trace buffer.
Table 19.11: Trace record API overview

0OS_TraceVoid/()

OS_TracePtr ()

OS_TraceData ()

OS_TraceDataPtr ()

0S_TraceU32Ptr ()

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

259

19.9.1 OS_TraceVoid()

Description
Writes an entry identified only by its ID into the trace buffer.

Prototype
void OS_TraceVoid (0S_U8 Id);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <= 127
Values from 0 to 99 are reserved for embOS.

Table 19.12: OS_TraceVoid() parameter list

Additional Information

This functionality is available in trace builds only, and the API call is not removed by
the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

260

CHAPTER 19 embOSView: Profiling and analyzing

19.9.2 OS_TracePtr()

Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype

void OS_TracePtr

(0s_us 1d,
void* p);

Parameter

Description

Id

b

ID value of API call that should be enabled for trace:

0 <=1d <= 127

Values from 0 to 99 are reserved for embOS.
Any void pointer that should be recorded as parameter.

Table 19.13: OS_TracePtr() parameter list

Additional Information

The pointer passed as parameter will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

261

19.9.3 OS_TraceData()

Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (0S_U8 Id,
int V) ;
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d<=127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.

Table 19.14: OS_TraceData() parameter list

Additional Information

The value passed as parameter will be displayed in the trace list window of
embOSView.This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

262 CHAPTER 19 embOSView: Profiling and analyzing

19.9.4 OS_TraceDataPtr()

Description
Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
void OS_TraceDataPtr (0S_U8 1Id,
int v,
void* p);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=14 <= 127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Table 19.15: OS_TraceDataPtr() parameter list

Additional Information

The values passed as parameters will be displayed in the trace list window of embOS-
View. This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

263

19.9.5 OS_TraceU32Ptr()

Description

Writes an entry with ID, a 32-bit unsigned integer, and a pointer as parameter into
the trace buffer.

Prototype
void OS_TraceU32Ptr (0S_U8 1Id,
0S_U32 po0,
void* pl);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1a <= 127
Values from 0 to 99 are reserved for embOS.
o Any unsigned 32-bit value that should be recorded as parameter.
pl Any void pointer that should be recorded as parameter.

Table 19.16: OS_TraceU32Ptr() parameter list

Additional Information

This function may be used for recording two pointers. The values passed as parame-
ters will be displayed in the trace list window of embOSView. This functionality is
available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

264 CHAPTER 19 embOSView: Profiling and analyzing

19.10 Application-controlled trace example

As described in the previous section, the user application can enable and set up the
trace conditions without a connection or command from embOSView. The trace
record functions can also be called from any user function to write data into the trace
buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing API and user
functions just after starting the application, when the communication to embOSView
is not yet available or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The
function 0S_TraceEnableID() sets the trace filter 0 which affects calls from any
running task. Therefore, the first call to setstate() in the example would not be
traced because there is no task running at that moment. The additional filter setup
routine 0S_TraceEnableFilterId() is called with filter 1, which results in tracing
calls from outside running tasks.

Example code

#include "RTOS.h"

#ifndef OS_TRACE_FROM_START
#define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;
/* Sample of application routine with trace */

void SetState(char* pState, char Value) {
#if OS_TRACE
OS_TraceDataPtr (APP_TRACE_ID_SETSTATE, Value, pState);
#endif
* pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
from start */
void main (void) {
0S_InitKern();

OS_InitHW() ;

#if (OS_TRACE && OS_TRACE_FROM_START)
/* OS_TRACE is defined in trace builds of the library */
OS_TraceDisableAll () ; /* Disable all API trace calls */
0OS_TraceEnableId (APP_TRACE_ID_ SETSTATE) ; /* User trace */
OS_TraceEnableFilterId (APP_TRACE_ID_SETSTATE); /* TUser trace */
OS_TraceEnable () ;

#endif

/* Application specific initilisation */
SetState(&MainState, 1);
OS_CREATETASK (&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack) ;
0S_Start () ; /* Start multitasking -> MainTask() */
}

By default, embOSView lists all user function traces in the trace list window as Rou-
tine, followed by the specified ID and two parameters as hexadecimal values. The
example above would result in the following:

Routinel00 (0Oxabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr ().

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

265

19.11 User-defined functions

To use the built-in trace (available in trace builds of embOS) for application program
user functions, embOSView can be customized. This customization is done in the
setup file emb0S.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see
an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number,
the function name and the type of two optional parameters that can be traced. The
format is explained in the following sample emb0S. ini file:

Example code

File: embOS.ini
embOSView Setup file

embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.

Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

H o

Every parameter has to be preceeded by a colon.

#

Define add. API functions.

Syntax: API(<Index>, <Routinename> [parameters])

Index: Integer, between 100 and 127

Routinename: Identifier for the routine. Should be no more than 32 characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:

int

ptr

#

#

API(100, "RoutinelOO0")
API(101, "RoutinelOl", int)
API(102, "RoutinelO2", int, ptr)

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

266 CHAPTER 19 embOSView: Profiling and analyzing

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

267

Chapter 20
Debugging

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

268

CHAPTER 20 Debugging

20.1 Runtime errors

Some error conditions can be detected during runtime. These are:

Usage of uninitialized data structures

Invalid pointers

Unused resource that has not been used by this task before
0S_LeaveRegion () called more often than 0S_EnterRegion()
Stack overflow (this feature is not available for some processors)

Which runtime errors that can be detected depend on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (it is not that
significant, but there is a difference). If embOS detects a runtime error, it calls the
following routine:

void OS_Error (int ErrCode) ;

This routine is shipped as source code as part of the module 0s_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops forever as
follows:

Example
/*
Run time error reaction
*/
void OS_Error (int ErrCode) {
OS_EnterRegion() ; /* Avoid further task switches */
0S_DICnt =0; /* Allow interrupts so we can communicate */
OS_EI();

0OS_Status = ErrCode;
while (0S_Status);
}

If you are using embOSView, you can see the value and meaning of 0s_status in the
system variable window.

When using an emulator, you should set a breakpoint at the beginning of this routine
or simply stop the program after a failure. The error code is passed to the function as
parameter.

You can modify the routine to accommodate your own hardware; this could mean
that your target hardware sets an error-indicating LED or shows a little message on
the display.

Note: When modifying the OS_Error() routine, the first statement needs
to be the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the 0s_Error () routine, you will see that it is more complicated than
necessary. The actual error code is assigned to the global variable 0s_status. The
program then waits for this variable to be reset. Simply reset this variable to 0 using
your in circuit-emulator, and you can easily step back to the program sequence
causing the problem. Most of the time, looking at this part of the program will make
the problem clear.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

269

20.2 List of error codes

Value Define Explanation
120 0S_ERR_STACK Stack overflow or invalid stack.
128 0S_ERR INV TASK Task control bI_ock invalid, not initial-
ized or overwritten.
Timer control block invalid, not initial-
129 0S_ERR_INV_TIMER . :
ized or overwritten.
Mailbox control block invalid, not ini-
130 0OS_ERR_INV_MAILBOX L .
tialized or overwritten.
132 0S_ERR_TNV_CSEMA _Cont_rol bIoc_k _fqr ;ountlng sema_phore
invalid, not initialized or overwritten.
133 0S.ERR_INV. RSEMA Control block for resource semaphore

invalid, not initialized or overwritten.

One of the following 1-byte mailbox
functions has been used on a multi-
byte mailbox:

135 0S_ERR_MAILBOX_NOT1 0S_PutMaill ()

0S_PutMailCondl

()OS_GetMaill ()
0S_GetMailCondl () .

0S_DeleteMB () was called on a mail-

136 OS_ERR_MAILBOX_DELETE box with waiting tasks.
0S_DeleteCSema () was called on a
137 OS_ERR_CSEMA_DELETE counting semaphore with waiting
tasks.
OS_DeleteRSema () was called on a
138 OS_ERR_RSEMA_DELETE resource semaphore which is claimed
by a task.
The mailbox is not in the list of mail-
140 0S_ERR MATLEOX NOT IN LIST boxes as expected. I_Dossible reasons
may be that one mailbox data struc-
ture was overwritten.
142 OS_ERR_TASKLIST_ CORRUPT The OS internal tasklist is destroyed.
150 0S_ ERR_UNUSE_BEFORE_USE 0S_Unuse () has been called before
O0S_Use().
151 OS_ERR_LEAVEREGION_BEFORE_ENTE | 0S_LeaveRegion () has been called
RREGION before 0S_EnterRegion() .
152 OS_ERR_LEAVEINT Error in 0S_LeaveInterrupt ().
The interrupt disable counter
(os_bpicnt) is out of range (0-15). The
counter is affected by the following API
153 OS_ERR_DICNT calls:
OS_IncDI ()
OS_DecRI ()

OS_EnterInterrupt ()
O0S_LeavelInterrupt ()

0S_Delay () or0S_DelayUntil () called
154 OS_ERR_INTERRUPT_DISABLED from inside a critical region with inter-
rupts disabled.

Illegal function call in an interrupt ser-
vice routine:A routine that may not be
called from within an ISR has been
called from within an ISR.

160 OS_ERR_ILLEGAL_IN_ISR

Table 20.1: Error code list

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

270

CHAPTER 20

Debugging

Value

Define

Explanation

161

OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in an interrupt ser-
vice routine:A routine that may not be
called from within a software timer
has been called from within a timer.

162

OS_ERR_ILLEGAL_OUT_ISR

embOS timer tick handler or UART han-
dler for embOSView was called without
a call of 0S_EnterInterrupt().

170

OS_ERR_2USE_TASK

Task control block has been initialized
by calling a create function twice.

171

OS_ERR_2USE_TIMER

Timer control block has been initialized
by calling a create function twice.

172

OS_ERR_2USE_MAILBOX

Mailbox control block has been initial-
ized by calling a create function twice.

173

OS_ERR_2USE_BSEMA

Binary semaphore has been initialized
by calling a create function twice.

174

OS_ERR_2USE_CSEMA

Counting semaphore has been initial-
ized by calling a create function twice.

175

OS_ERR_2USE_RSEMA

Resource semaphore has been initial-
ized by calling a create function twice.

176

OS_ERR_2USE_MEMF

Fixed size memory pool has been ini-
tialized by calling a create function
twice.

180

OS_ERR_NESTED_RX_INT

0S_Rx interrupt handler for embQOS-
View is nested. Disable nestable inter-
rupts.

190

OS_ERR_MEMF_INV

Fixed size memory block control struc-
ture not created before use.

191

OS_ERR_MEMF_INV_PTR

Pointer to memory block does not
belong to memory pool on Release

192

OS_ERR_MEMF_PTR_FREE

Pointer to memory block is already free
when calling 0Ss_MEMF_Release (). Pos-
sibly, same pointer was released twice.

193

OS_ERR_MEMF_RELEASE

OS_MEMF_Release () was called for a
memory pool, that had no memory
block allocated (all available blocks
were already free before).

194

OS_ERR_POOLADDR

OS_MEMF_Create () was called with a
memory pool base address which is not
located at a word aligned base address

195

OS_ERR_BLOCKSIZE

OS_MEMF_Create () was called with a
data block size which is not a multiple
of processors word size.

200

OS_ERR_SUSPEND_TOO_OFTEN

Nested call of 0S_Suspend () exceeded
0S_MAX_SUSPEND_CNT

201

OS_ERR_RESUME_BEFORE_SUSPEND

0S_Resume () called on a task that was
not suspended.

202

OS_ERR_TASK_PRIORITY

0S_CreateTask () was called with a
task priority which is already assigned
to another task. This error can only
occur when embOS was compiled with-
out round robin support.

Table 20.1: Error code list (Continued)

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

271

Value Define Explanation
An OS_EVENT object was used before it
210 OS_ERR_EVENT_INVALID
was created.
211 OS_ERR_2USE_EVENTOBJ An OS_EVENT object was created twice.
212 0S ERR EVENT DELETE An OS_EVENT object was deleted with
- = - waiting tasks

Table 20.1: Error code list (Continued)

The latest version of the defined error table is part of the comment just before the
0S_Error () function declaration in the source file 0S_Error.c.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

272 CHAPTER 20 Debugging

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

273

Chapter 21

Performance and resource usage

This chapter covers thre performance and resource usage of embOS. It contains a
explanation how to benchmark embOS and information about the memory require-

ments in typical systems which can be used to obtain sufficient estimates for most
target systems.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

274 CHAPTER 21 Performance and resource usage

21.1 Introduction

High performance combined with low resource usage has always been a major design
consideration. embOS runs on 8/16/32-bit CPUs. Depending on which features are
being used, even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM
can be supported by embOS. The actual performance and resource usage depends on
many factors (CPU, compiler, memory model, optimization, configuration, etc.).

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

275

21.2 Memory requirements

The memory requirements of embOS (RAM and ROM) differs in dependence of the
used features of the library. The following table shows the memory requirements by
the different modules.

Module Memory type Memory requirements
embOS kernel ROM 1100 - 1600 bytes *
embOS kernel RAM 18 - 25 bytes *
Mailbox RAM 9 - 15 bytes *
Binary and counting semaphores RAM 3 bytes
Recource semaphore RAM 4 - 5 bytes *
Timer RAM 9 - 11 bytes *
Event RAM 0 bytes

Table 21.1: embOS memory requirements

* Depends on CPU, compiler and library model used

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

276 CHAPTER 21 Performance and resource usage

21.3 Performance

The following section shows how to benchmark embOS with the supplied example
programs.

21.4 Benchmarking

embOS is designed to perform fast context switches. This section describes two dif-
ferent methods to calculate the execution time of a context switch from a task with
lower priority to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method
uses the high-resolution measurement functions. Example programs for both meth-
ods are supplied in the \sample directory of your embOS shipment.

Segger uses these programs to benchmark the embOS performance. You can use
these examples to evaluate the benchmark results. Note, that the actual perfor-
mance depends on many factors (CPU, clock speed, toolchain, memory model, opti-
mization, configuration, etc.).

The following table gives an overview about the variations of the context switch time
depending on the memory type and the CPU mode:

Target OS version Memory CPU mode Time
2$g|1EéAM75256 3.32p Flash Thumb 8.92 us
,§$SI;41IE§AM78256 3.32p Flash ARM 9.32 us
ﬁwg_Awszse 3.32p RAM ARM 6.28 us
2$g|1E§AM75256 3.32p RAM Thumb 7.12 us

Table 21.2: embOS context switch times
All named example performance values in the following section are determined with
the following system configuration:

ATMEL AT91SAM7S256 running with 48 MHz clock speed. All sources are compiled
with IAR Embedded Workbench version 4.41A using thumb mode with high optimiza-
tion level. The example program is running out of flash memory.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

277

21.4.1 Measurement with port pins and oscilloscope

The example fileMeasureCST_Scope.c uses the LED.c module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope.

The following source code is excerpt from MeasureCST_Scope.c:

#include "RTOS.h"
#include "LED.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks

/***

*

* HPTask
*/
static void HPTask(void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
LED_ClrLEDO () ; // Stop measurement
}
}

/***

*

* LPTask

*/

static void LPTask (void) {
while (1) {

0S_Delay (100) ; // Syncronize to tick to avoid jitter
//

// Display measurement overhead

//

LED_SetLEDO () ;
LED_ClrLEDO () ;

//

// Perform measurement

//

LED_SetLEDO () ; // Start measurement

OS_Resume (&TCBHP) ; // Resume high priority task to force task switch
}
}

/***

*

* main

*/

int main(void) {
0S_IncDI(); // Initially disable interrupts
0S_InitKern () ; // Initialize OS
OS_InitHW() ; // Initialize Hardware for OS
LED _Init(); // Initialize LED ports

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 99, StackLP);
0S_Start () ; // Start multitasking
return O;

}

The context switch time is the time between switching the LED on and off. If the LED
is switched on with an active high signal, the context switch time is the time between
rising and falling edge of the signal. If the LED is switched on with an active low sig-
nal, the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead
of switching the LED on and off. The time of this overhead is also displayed on the
oscilloscope as a small peak right before the task switch time display and has to be
subtracted from the displayed context switch time.

The following oscilloscope screenshots show the output of the MeasureCST_Scope.c
example running on an AT91SAM7S256 processor with 48MHz clock speed.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

278 CHAPTER 21 Performance and resource usage

The small peak in the screenshot below shows the overhead which has to subtracted
from the context switch time. The time between the first falling edge and the first ris-
ing edge is the measurement overhead, in the example screenshot T1 = 320 ns.

0 200v/]] & 80002 2000% Trigd t 1.90V

ary

AX = 320.000ns | 1/AX = 3.1250MHz | AY{1)=10.0V |
~ [Mode ~ Source X Y 2 Xl X2 X1 X2
Normal 1 v 0.0s 320.000ns

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

279

The screenshot below shows the context switch time. The period between the second
falling edge and the second rising edge is the context switch time and includes the
measurement overhead which has to be substracted. The measured value is T2 =
9.24 us.

0 200w/ 8] & 80002 2000¢ Trigd t 1.90V

AX =9.240000us | 1/AX = 108.23kHz | AY{1)=10.0V |

~ Mode ~ Source X Y X1 K2 X1 X2
Normal 1 v 720.000ns 9.96000us

The time which is required for the pure context switch is:
T=T2-T1 =9240 ns - 320 ns = 8920 ns = 8.92 us

Note: The measured performance of your target system may depart from the
above named values. The performance of a system depends on many factors (CPU,
compiler, memory model, optimization, configuration, etc.).

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

280 CHAPTER 21 Performance and resource usage

21.4.1.1 Measurement with high-resolution timer

The context switch time may be measured with the high-resolution timer. Refer to
section High-resolution measurement on page 229 for detailed information about the
embOS high-resolution measurement.

The example MeasureCST_HRTimer_embOSView.c uses a high resolution timer to
measure the context switch time from a low priority task to a high priority task and
display the results on embOSView.

#include "RTOS.h"
#include "stdio.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static 0S_U32 _Time; // Timer values

/***
*

* HPTask
*/
static void HPTask (void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
0S_Timing_End (&_Time) ; // Stop measurement
}
}

/*‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k’k*********‘k*‘k*‘k******’k*’k*‘k***‘k*‘k**’k*’k*’k*’k*‘k*
*

* LPTask
*/
static void LPTask (void) ({
char acBuffer[100]; // Output buffer
0S_U32 MeasureOverhead; // Time for Measure Overhead
0S_U32 v;
//

// Measure Overhead for time measurement so we can take
// this into account by subtracting it

//

0S_Timing_ Start (&MeasureOverhead) ;

0S_Timing_End (&MeasureOverhead) ;

//
// Perform measurements in endless loop
//
while (1) {
0S_Delay (100) ; // Sync. to tick to avoid jitter
OS_Timing_Start (& Time) ; // Start measurement
0S_Resume (&TCBHP) ; // Resume high priority task to force task switch
v = 0S_Timing_GetCycles (& _Time) - OS_Timing GetCycles (&MeasureOverhead) ;
v = 0OS_ConvertCycles2us (1000 * v); // Convert cycles to nano-seconds

sprintf (acBuffer, "Context switch time: %u.%.3u usec\r", v / 1000, v % 1000);
0S_SendString (acBuffer) ;
}
}

The example program calculates and subtracts the measurement overhead itself, so
there is no need to do this. The results will be transmitted to embOSView, so the
example runs on every target that supports UART communication to embOSView.

The example program MeasureCST_HRTimer_Printf.c is equal to the example pro-
gram MeasureCST_HRTimer_embOSView.c but displays the results with the printf ()
function for those debugger which supports terminal output emulation.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

281

Chapter 22

Supported development tools

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

282

CHAPTER 22 Supported development tools

embOS has been developed with and for a specific C compiler version for the selected
target processor. Check the file RELEASE.HTML for details. It works with the specified
C compiler only, because other compilers may use different calling conventions
(incompatible object file formats) and therefore might be incompatible. However, if
you prefer to use a different C compiler, contact us and we will do our best to satisfy
your needs in the shortest possible time.

Reentrance

All routines that can be used from different tasks at the same time have to be fully
reentrant. A routine is in use from the moment it is called until it returns or the task
that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for
some reason you need to have non-reentrant routines in your program that can be
used from more than one task, it is recommended to use a resource semaphore to
avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the com-
piler may have options that force it to generate non-reentrant code. It is recom-
mended not to use these options, although it is possible to do so under certain
circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are
fully reentrant. Everything else has to be thought about carefully.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

283

Chapter 23

Limitations

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

284

CHAPTER 23 Limitations

The following limitations exist for embOS:

Max.
Max.
Max.
Max.
Max.
Max.
Max.
Task specific Event flags :

no.
no.
no.
no.
no.

of tasks:

of priorities:

of semaphores:
of mailboxes:
of queues:

size. of queues:

no.

of timers

limited by available RAM only
255

limited by available RAM only
limited by available RAM only
limited by available RAM only
limited by available RAM only
limited by available RAM only
8 bits / task

We appreciate your feedback regarding possible additional functions and we will do
our best to implement these functions if they fit into the concept.

Do not hesitate to contact us. If you need to make changes to embOS, the full source
code is available.

User & reference guide for embOS

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

285

Chapter 24

Source code of kernel and library

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

286 CHAPTER 24 Source code of kernel and library

embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are
not explained in detail. The object version offers the full functionality of embOS
including all supported memory models of the compiler, the debug libraries as
described and the source code for idle task and hardware initialization. However, the
object version does not allow source-level debugging of the library routines and the
kernel.

The full source version gives you the ultimate options: embOS can be recompiled for
different data sizes; different compile options give you full control of the generated
code, making it possible to optimize the system for versatility or minimum memory
requirements. You can debug the entire system and even modify it for new memory
models or other CPUs.

The source code distribution of embOS contains the following additional files:

e The cpu folder contains all CPU and compiler specific source code and header
files used for building the embOS libraries. It also contains the sample start
project, workspace, and source files for the embOS demo project delivered in the
Start folder. Normally, you should not modify any of the files in the cpu folder.

e The Genossrc folder contains all embOS sources and a batch file used for compil-
ing all of them in batch mode as described in the following section.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

287

24.1 Building embOS libraries

The embOS libraries can only be built if you have purchased a source code version of
embOS.

In the root path of embOS, you will find a DOS batch file PrREP.BAT, which needs to
be modified to match the installation directory of your C compiler. Once this is done,
you can call the batch file Mm.BAT to build all embQOS libraries for your CPU.

Note: Rebuilding the embOS libraries using the M.bat file will delete and
rebuild the entire Start folder. If you made any modifications or built own
projects in the Start folder, make a copy of your start folder before rebuild-
ing embOS.

The build process should run without any error or warning message. If the build
process reports any problem, check the following:

e Are you using the same compiler version as mentioned in the file RELEASE . HTML?

e Can you compile a simple test file after running PREP.BAT and does it really use
the compiler version you have specified?

e Is there anything mentioned about possible compiler warnings in the
RELEASE . HTML?

If you still have a problem, let us know.

The whole build process is controlled with a few amount of batch files which are
located in the root directory of your source code distribution:

e Prep.bat: Sets up the environment for the compiler, assembler, and linker.
Ensure, that this file sets the path and additional include directories which are
needed for your compiler. Normally, this batch file is the only one which might
have to be modified to build the embOS libraries. Normally, this file is called from
M.bat during the build process of all libraries.

e Clean.bat: Deletes the whole output of the embOS library build process. It is
called automatically during the build process, before new libraries are generated.
Normally it deletes the start folder. Therefore, be careful not to call this batch
file accidentally. Normally, this file is called initially by M.bat during the build
process of all libraries.

e cc.bat: This batch file calls the compiler and is used for compiling one embQOS
source file without debug information output. Most compiler options are defined
in this file and should normally not be modified. For your purposes, you might
activate debug output and may also modify the optimization level. All modifica-
tions should be done with care. Normally, this file is called from the embOS inter-
nal batch file cc_os.bat and can not be called directly.

e ccd.bat: This batch file calls the compiler and is used for compiling 0s_Global.c
which contains all global variables. All compiler settings are equal to those used
in cc.bat, except debug output is activated to enable debugging of global vari-
ables when using embOS libraries. Normally, this file is called from the embOS
internal batch file cc_os.bat and can not be called directly.

e asm.bat: This batch file calls the assembler and is used for assembling the
assembly part of embOS which normally contains the task switch functionality.
Normally this file is called from the embOS internal batch file cc_os.bat and can
not be called directly.

e MakeH.bat: Builds the embOS header file RTOS.h which is composed from the
CPU/compiler-specific part 0s_chip.h and the generic part 0s_raw.h. Normally,
RTOS.h is output in the subfolder start\Inc.

e Ml.bat: This batch file is called from M.bat and is used for building one specific
embOS library, it can not be called directly.

e M.bat: This batch file has to be called to generate all embQOS libraries. It initially
calls clean.bat and therefore deletes the whole start folder. The generated
libraries are then placed in a new start folder which contains start projects,
libraries, header, and sample start programs.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

288 CHAPTER 24 Source code of kernel and library

24.2 Major compile time switches

Many features of embOS may be modified by compile-time switches. All of them are
predefined to reasonable values in the distribution of embOS. The compile-time
switches must not be changed in rRT0S.h. When the compile-time switches should be
modified to alter any of the embOS features, the modification has to be done in
OS_RAW.h or has to be passed as parameters during the library build process. embOS
sources have to be recompiled and RTOS.h has to be rebuilt with the modified
switches.

24.2.1 OS_RR_SUPPORTED

This switch defines whether round robin scheduling algorithm is supported. All
embOS versions enable round robin scheduling by default. If you never use round
robin scheduling and all of your tasks run on different individual priorities, you may
disable round robin scheduling by defining this switch to 0. This will save RAM and
ROM and will also speed up the task-switching process. Ensure that none of your
tasks ever run on the same priority when you disable round robin scheduling. This
compile time switch must not be modified in rRTOS.h. It has to be modified in
0S_RAW.h before embOS libraries are rebuilt.

24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE

This compile time switch is new since version 3.26 of embOS. If enabled, it allows
termination of tasks which are claiming resource semaphores or are suspended on
any synchronization object.

Note: By default, this switch is activated for 16- and 32-bit CPUs.
For 8-bit CPUs it is disabled.

Even though the overhead is minimal and execution time is not affected significantly,
you may define this switch to zero when you do not terminate tasks in your applica-
tion, or if your application ensures, that tasks are never suspended on any synchro-
nization object or claim any resource semaphores when they are terminated.

Disabling this switch will save some RAM in the task control structure and will also
speed up the wait functions for synchronization objects.

When using an 8-bit CPU, you have to enable this switch (define it to be unequal to
0) to enable termination of tasks which are suspended on synchronization objects or
claim resource semaphores.

This compile time switch must not be modified in RT0S.h. It can only be modified in
OS_RAW.h or has to be passed as define during the build process when embQS librar-
ies are rebuilt.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

289

Chapter 25

Additional modules

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

290

CHAPTER 25

Additional modules

25.1 Keyboard manager: KEYMAN.C

Keyboard driver module supplied in C. It serves both as an example and as a module
that can actually be used in your application. The module can be used in most
applications with only little changes to the hardware-specific portion. It needs to be
initialized on startup and creates a task that checks the keyboard 50 times per

second.

Changes required for your hardware

void ReadKeys (void) ;

Example of how to implement into your program

void main (void) {
O0S_InitKern() ;
OS_InitHW() ;

/*
/‘k

/* You need to create at

OS_CREATETASK (&TCBO,
OS_CREATETASK (&TCB1,
InitKeyMan() ;
0OS_Start () ;

User & reference guide for embOS

"HP
", P
/‘k

Initialize OS
Initialize Hardware for OS (see RtosInit.c)?*/
least one task here ! */

(should be first !) */

100, Stack0); /* Create TaskO0*/
50, Stackl); / *Create Taskl*/

Initialize keyboard manager */

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

201

25.2 Additional libraries and modules

For all embOS-compatible real-time operating systems, there are additional libraries
and modules available. However, these modules can also be used without embOS or
with a different operating system. Because these libraries are written in ANSI C, they
can be used on any target CPU for which an ANSI C compiler exists. In general, these
modules are highly optimized for both low memory consumption (especially in RAM)
and high speed.

The modules can be scaled for optimum performance at minimum memory consump-
tion using compile-time switches. Unused portions of the modules are not even com-

piled; your program stays lean and fast.

emWin The complete solution for graphical LCDs.
A fully scaleable graphical user interface featuring:
e different fonts (from 4*6 to 16*32)
e line drawing, bitmap drawing
e advanced drawing (for example circles)
e display routines for strings, dec/hex/bin values, mul-
tiple windows
e ultra-fast, yet still very compact (typically between 8
and 20 Kbytes ROM)
Everything you need for graphic displays!
Any LCD * Any LCD controller * Any CPU
Both monochrome and color versions available, as well as bit-
mapconverter, font converter, PC simulation and viewer. Check
out our website!

emlLoad Boot-loader software

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

292 CHAPTER 25 Additional modules

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

293

Chapter 26
FAQ (frequently asked questions)

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

294 CHAPTER 26 FAQ (frequently asked questions)

Q: Can I implement different priority scheduling algorithms ?

A: Yes, the system is fully dynamic, which means that task priorities can be changed
while the system is running (using 0S_sSetPriority()). This feature can be used
for changing priorities in a way so that basically every desired algorithm can be
implemented. One way would be to have a task control task with a priority higher
than that of all other tasks that dynamically changes priorities. Normally, the
priority-controlled round-robin algorithm is perfect for real-time applications.

Q: Can I use a different interrupt source for embQS ?

A: Yes, any periodical signal can be used, that is any internal timer, but it could also
be an external signal.

Q: What interrupt priorities can I use for the interrupts my program uses?

A: Any.

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

295

Chapter 27

Glossary

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

296

User & reference guide for embOS

Active task

Cooperative
multitasking

Counting sema-
phore

CPU

Critical region

Event

ISR

Mailbox

Message

Multitasking

NMI

Preemptive multi-
tasking

Processor

Priority

Priority inversion

CHAPTER 27 Glossary

Only one task can execute at any given time. The task that is
currently executing is called the active task.

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be sig-
naled more than once.

Central Processing Unit. The "brain" of a microcontroller; the
part of a processor that carries out instructions.

A section of code which must be executed without interrup-
tion.

A message sent to a single, specified task that something has
occurred. The task then becomes ready.

Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

A data buffer managed by the RTOS, used for sending mes-
sages to a task or interrupt handler.

An item of data (sent to a mailbox, queue, or other container
for data).

The execution of multiple software routines independently of
one another. The OS divides the processor's time so that the
different routines (tasks) appear to be happening simulta-
neously.

Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer-interrupt.

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the inter-
rupted task is returned to.

Short for microprocessor. The CPU core of a controller

The relative importance of one task to another. Every task in
an RTOS has a priority.

A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. The lower priority task temporarily gets
the highest priority until it releases the resource.

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

Queue

Resource

Resource sema-
phore

RTOS

Scheduler

Semaphore

Software timer

Stack

Superloop

Task

Tick

Timeslice

User & reference guide for embOS

297

Like a mailbox, but used for sending larger messages, or mes-
sages of individual size, to a task or an interrupt handler.

Anything in the computer system with limited availability (for
example memory, timers, computation time). Essentially, any-
thing used by a task.

A type of semaphore used for managing resources by ensuring
that only one task has access to a resource at a time.

Real-time Operating System.

The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

A data structure used for synchronizing tasks.

A data structure which calls a user-specified routine after a
specified delay.

An area of memory with FIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

The OS timer interrupt. Usually equals 1 ms.

The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

298 CHAPTER 27 Glossary

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

299

IndeXx

A
Additional modulescoceiiiiiiinnn 289
B
Baudrate for embOSViewcoovvevs 219
C
Cstartup oo 28
Compiler i 282
Configuration definescccvviennnnn. 218
Configuration, of embOS 215-222
Counting Semaphorescccvvvivviiininnen. 91
Critical regionsccooevvuennn. 22, 205-209
D
Debug version, of embOS ...l 30
Debuggingccccoviiiiiiiiiiiii 267-271
Error COAES .iviiiiiiiiiiiiiii it i, 269
runtime errors ... 268
Development toolscccvvvviiiiiiiiiinnnns 281
E
embOS
building libraries ofccooviiieinn. 287
different builds of ..o, 30
features of ..vviviiiiiii 15
embOS featurescoiviiiiiiiiiiiiaens 15
embOS profilingcooiiiiiiii 30
embOSViewccoviviiiiiiiiiiiineenen 237-265
APIL trace ..ccvvvvviiiiiiiiiiiiiiiiiiiee 245
OVEIVIEW tiiiiiiiiiiiiiiireee s sineennnnnnns 238
SIO i 241
system variables window 240
task list windowcccoiiiiiiiiin 239
trace filter setup functions 247
trace record functionscoel 257
emboad ...ooiiii 291
eMWIN e 291
Error codesovvvviiiiiiiii i e 269
Events .o 24, 133-154

User & reference guide for embOS

I
Internal data-structures 214
Interrupt control macrosc.oevenis 198
Interrupt level ..o 19
Interrupt service routines 19, 184
Interrupts ..o 183-203
enabling/disablingccooiiiinnn 195
interrupt handleroooiiii, 189
ISR 184
K
Keyboard managerccoevviiiiiinnnnn. 290
KEYMAN.C i neas 290
L
Libraries, buildingccoooviiiiiiininnnns 287
Limitations, of embOScoevvivvinnnns 283
M
Mailboxesccvcviiiiiiiiniinnnnn, 24, 103-120
basics .. 105
single-byte ... 107
Measurement ... 225
high-resolutioncoiiiiiinnn. 229
low-resolutioncccceviiiiiiiii i, 225
Memory management
fixed block sizecovviiiiiiiiiiiii 159
heap memory ..o 155
Memory poolsccoceviiiiiiiiiii, 159-173
Multitasking systemsccceviiiiiiiinnnnn 20
cooperative multitasking 20
preemptives multitasking 21
N
Nesting interruptsccoviviiiiiiiiininnnns 199
Non-maskable interruptsooenis 203
o
O e 34
OS_BAUDRATE ..iiiiiiiiiieiieeienie s 218
OS_ClearEvents() ...ccvvevviiiiiniiiiinninenne. 142

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

300

OS_ClearMB() .iovvvviiiiiiiiiiiiiiiieiie s 118
OS_COM_INIE() wevvreriniiiiiiiieiiennennns 217
OS_COM_Send1() .ioovvvvriviiiiiiiiniinnnenn, 217
OS_ConvertCycles2us() ..cccovvvevvinninnnnns 217
OS_CREATECSEMA() +ivviviiviieiieiiiinnnnnens 94
OS_CreateCSema() ..civevverrivrrriieninninens 95
OS_CREATEMB() .cvvviiiiiiiiiiiieiiiinennnns 109
OS_CREATERSEMA() .vivvviiiiiiiiiiiieiinennns 83
OS_CREATETASK() tiiiiiiiiiiiienieinennnnens 34
OS_CreateTask() .coevviiviiiiiiiiiiiiineaan, 35
OS_CREATETASK_EX() wivivviieiienninninnnnens 37
OS_CreateTaskEX() .icvvvviiviiiiiiiiiniinnnnns 38
OS_CREATETIMER() vevviiiiiiiiiiiiiiiiaennens 56
OS_CreateTimer() .cioovvivviviiiiiiiineiiennnn, 57
OS_CREATETIMER_EX() +ievivviiiiiiineinnns 67
OS_CreateTimerEX() .cccvviviiiiviiiniiinnnnnn. 68
0OS_CSemaRequest() .ccovvvvvviiviineiinnnn. 100
OS_DeCRI() tiveiviiiiiiiiii i eans 196
OS_Delay() coovviiiiiiiiiiiiiiic i 39
OS_DelayUntil() ..covvviiiiiiiiiiiiicieieenns 40
OS_DeleteCSema() ..ccovvvviiiiiiiiennnnnn. 102
OS_DeleteMB() vivvvviiiiiiiiiiiiiiiiieee, 120
OS_DeleteTimer() .coivvivviiiiiiiiiiiieane, 62
OS_DeleteTimerExX() ...oovvveviriiieiiniinnnnnns 73
OS_DI() evvriiiiiiiiiiiii i eens 197
OS_EI() eviriiiiiiiiiiiiiic i ee s 197
OS_EnterInterrupt()cccovevennne. 192, 194
OS_EnterNestableInterrupt() 200
OS_EnterRegion() ..cicvevvivvviiiiiiinnnnnnnn. 208
OS_EVENT_Create() ...covvvvvviiviinnnnnnnns 146
OS_EVENT_Delete() .covvvvvviiiiiiiinninnnns 154
OS_EVENT_Get() .covvvviiiiiiiiieiininiennns 153
OS_EVENT_Pulse() .covvvvriiiiiiiiiiiiinnnenn, 152
OS_EVENT_Reset() .ccvvvvriiiiiiiiiiniinnnnnn, 151
OS_EVENT_Set() .covvviriiiiiiiiiiiiiennenn, 149
OS_EVENT_Wait() .oovoviiiiiiiiiiiiiiiiiens 147
OS_EVENT_WaitTimed() ...cocovvvvvinvnnnnns 148
OS_free() wvvvriiiiiiiiiii i 157
OS_FSYS i, 218
0OS_GetCSemaVvalue() ...cvoevviiiviiennnnnn. 101
0S_GetEventsOccurred() ...ovvvvvvinennnnnn. 141
OS_GetMail() .ivvvviiiiiiii e 114
0S_GetMaill() .oovviiiiiiiiiiiiiii 114
0S_GetMailCond() ..ivvvvrviiiiiiiiiineinens 115
0S_GetMailCond1() ..coovvviiiiiiiiiininnen, 115
0S_GetMailTimed() ..ccovvvivviiiiiiiiiinnen, 116
0S_GetMessageCnt() ..covvvvvviiviinennnnnns 119
0OS_GetpCurrentTask() ...covvvveviiiiiiinnnnnn. 51
OS_GetpCurrentTimer()ccovevvnenns 66, 77
OS_GetPriority() .oovvvviiiiiiiiiiii 42
OS_GetResourceOwWnerccccvvvevvvieennns 89
OS_GetSemaValue() ...covvivviiiiiiiiiinennns 88
OS_GetStackSpace() .covvvvvvviiiiiiiiiinnnn. 181
0OS_GetTaskID() +ivvvrerriiriinrieinensinnnneinans 50
OS_GetTime() .covvvvriiiiiiiiiiiineiens 227
0OS_GetTime_Cycles() ..ccvvvvvviiniinninnnns 217
0OS_GetTime32() .ovvvieviriiiiiiiiiineinens 228
0OS_GetTimerPeriod() ...ovvviiiiiiiiiiinnnnnn. 63
OS_GetTimerPeriodEX() ...cvvvvvviinviinnnnnns 74
OS_GetTimerStatus() ..ovvvvvviiiiiieiiinennns 65
OS_GetTimerStatusEX()icevvivvievinennns 76
OS_GetTimerValue()covovvivviviieiinnnens 64
OS_GetTimerValueEX()cvvevvvvievinnnnens 75
OS_Idle() vvvevieviiiiiiiiiiiiieeieaen 217, 222
OS_INCDI() vevverriiriieiieiieiniieiienennaenn 196
OS_INitHW() wivviriiiinci e 217
OS_ISR_IX() tevvreiiriiniiiiiiiieeniiieannens 217

User & reference guide for embOS

Index

OS_ISR_Tick() terreeiiiiiiiiiieiieneaeeen, 217
OS_ISR_EX() weriieimiiiiiei e 217
O ISH [-1 O T R 49
0OS_Leavelnterrupt()ocevvvneennnn. 193-194
0OS_ LeavelnterruptNoSwitch() 194
OS_LeaveNestableInterrupt() 201
OS_LeaveNestableInterruptNoSwitch() . 202
OS_LeaveRegion() ..icevviviievirviinnnnennnnns 209
OS_malloc() .ivviiiiiiiii 157
OS_MEMF_AHOC() evverriiiiiiiiiiieiiieeen, 164
OS_MEMF_AllocTimed() ...vvvvvvviniinninnnn. 165
OS_MEMF_Create() ..covvvvvieiniiiiiinninnnnns 162
OS_MEMF_Delete() ..covvvviiiiiiiiiiiiiinnnnns 163
OS_MEMF_FreeBIlock() ...icovvivvievinninnnns 168
OS_MEMF_GetBlockSize()c.ccvvvvennene. 170
OS_MEMF_GetMaxUsed()ccoevvvrnene. 172
OS_MEMF_GetNumBIlocks()cccevvvnnnnn. 169
OS_MEMF_GetNumFreeBlocks() 171
OS_MEMF_ISINPOOI() .iiveviviiniiiiiiiiinnnns 173
OS_MEMF_Release() ...iovvvvvirviieninnnnnnns 167
OS_MEMF_Request() ..coovvivviiiiiiinninnnnns 166
OS_PutMail() .ovviieiiiiiiiii e, 110
OS_PutMaill() .ivvveiiiiiiiiiieeeeeeen, 110
OS_PutMailCond() ..ievviviiiiiiiiiiiiiienns 111
OS_PutMailCond1() .icovvvviiiiiiiiiiiiiinnenns 111
OS_PutMailFront() ...covvivviiiiiiiieiens 112
OS_PutMailFront1()cocoviiiiiiiiinninnnn. 112
OS_PutMailFrontCond()cccevvivevnnnnn. 113
OS_PutMailFrontCond1()ccovvvvivvrnenns 113
OS_Q_Clear() .ieevvrrrieiiiiiiiiiiiiiianienenns 131
OS_Q_Create() ..ivvvvirririiiiiniiiiiiinnenns 125
0S_Q_GetMessageCnt() ..ccvvvvvivvinvrnnnns 132
OS_Q_GetPtr() .ovvvviiiiiiiiiiieieeee, 127
OS_Q_GetPtrCond() ..oovvvvvvviererinnnnnnns 128
OS_Q_GetPtrTimed() ..vvvvvvvvviviiennnnnnns 129
OS_Q_Purge() «ieovviiiiiiiiiiiiiiiinnienans 130
OS_Q _PUE() ceriieiiii e 126
0S_realloc() covvvvviiiiiiiiiii e 157
OS_Request() .ooviiiiiiiiiiiiiiiiiiii 87
OS_Restorel() .voovvviiiiiiiiiiiiiiiieiieeeaens 197
OS_ResumMe() civeviriiiiiiiiiiiierieieneeaens 45
OS_RetriggerTimer()covveviiiiiiiiininnnnss 60
OS_RetriggerTimerEX()cvvevivviieiinnnnens 71
0S_SendString() .oovvvvviiiiiiiiiea 243
OS_SetPriority() ..ocvveviiiiiiiiiiiieieeens 41
0OS_SetRxCallback() ..ccovvvvviiiiiiiiiiinnnnn, 244
OS_SetTimerPeriod() ...covovvivviiiiiiinnnnens 61
OS_SetTimerPeriodEX() ...covvvvvviiiieininnnns 72
OS_SetTimeSlice() ...oovviviiiiiiiiiiiiiennns 43
0S_SignalCSema() ..cevvvvirvirriieninenns 96-97
0S_SignalEvent() ...icovviviiiviiiiiiineiienns 140
OS_StartTimer() «.ovevviiiiiiiiiiie i i 58
OS_StartTimerEx() ..ocvvvvviiiiiiiiiiiieen 69
OS_StopTimer() ..oovvvvviiiiiiiierieraeanens 59
OS_StopTimerEX() ..oovvvvviiiiiiiiiiiiiieeaens 70
0S_Suspend() covvveviiriiiiii e 44
OS_Terminate() ..ovvvvivviiiiiiiii e 47
OS_TIiMe i 213
OS_TimeDeX .oovvvviiiiiiiiiiiiineeee e, 213
OS_Timing_GetCycles() ...ccovvvvieviniinnnns 234
OS_Timing_Getus() ..cooovviiiiiiiiiiiiiinnnns 233
OS_TimingENd() +vovviieiiiiiiiiiieieeens 232
OS_TimingStart() ...coovvvviiiiiiiiiiinnens 231
OS_TraceData() ...ovvvvviiiiiiiiiiiiiinaens 261
OS_TraceDataPtr()cooovvvviiiiiiiiinnnns 262
OS_TraceDisable()cooovvvviiiiiiiinnnns 250
OS_TraceDisableAll()cccovviiiiiiiinnns 252

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

OS_TraceDisableFilterId()ccovvvnnen. 256
OS_TraceDisableld()cvevvivvieiinennens 254
OS_TraceEnable()covviviiiiiiiiiiiinnnn, 249
OS_TraceEnableAll()coovviiiiiiiiiinnnnn, 251
OS_TraceEnableFilterId()ccovvvennnnn. 255
OS_TraceEnableld()covveviiiiiiiinennnns 253
OS_TracePtr() ..ooovviiiiiiiiiiiiiiiiieeaens 260
OS_TraceU32Ptr() ..ccvvvvviviiiiiiiieinnennnns 263
OS_TraceVoid() .oovvviviiiiiiiiiiiiiiiie e 259
OS_UART it v enaennen 218
OS_UNUSE() tivvviiriiiiiiii i i iee e 86
OS_USE() wiiiiiiiiiiii i e 84
0OS_WaitCSema() .ivvvvivviiiiiiiiiiinenean, 98
0OS_WaitCSemaTimed() ...ivevvrvvivvininnennn. 99
OS_WaitEvent() ..coovvvvrviniiiiieiieinnennens 136
OS_WaitEventTimed()ccovvvviviiinnnnnn. 138
OS_WaitMail() .vvvvviiiiiiiii e 117
OS_WaitSingleEvent()ccovvvviiiininnen. 137
OS_WaitSingleEventTimed() 139
OS_WakeTask() .oevvrvviriiiiiiiieiiiinennens, 48
P
Preemptive multitaskingooeeieeen 21
Priority oveviii 22
Priority inversionccooiiiiiiiiiiiiiinns, 23
Profiling ...oviiiiiii 30
Q
QUEUES . i 24, 121-132
R
Reentranceccovviiiiiiiiiiiiiiie 282
Release version, of embOScuee 30
Resource semaphoresccoevvvvvvinnnnns 79
Round-robinccooiviiiiiiiii i e 22
RTOSInit.c configuration 216
Runtime errorscooviivvviiiiiiieeniennnnss 268
S
Schedulercovviiiiiiii 22
SeEMapPhores ...ovvviiiiiiiiic i 24
Counting covvviiiiiii i 91-102
ResSOUrce ...cviviiiiiiiiiiii e 79-90
Software timercooiiiiiiiii 53-66
Software timers API overview 55
Stack .o 25, 175-181
Stack pointer ...occiiiiiiii 25
Stacks
SWItChinNg ..ovviviiii 26
SUPEMIOOP wiiiiiiii i i e 19
Switching stacks ..o 26
Syntax, conventions usedcciinen 5
System variablesoiininnen. 211-214
T
Task communicationcccvvvvviiiiiinnnnns 24
Task control blockc.coviiiiiiinnns 25, 32
Task routinescovvivviiiiiiiiinninenns 31-51
TASKS teiieiiiiiri i 18
communicationccvviiiiiiiiiii 24
global variablesccoiiiiiiinnn, 24
multitasking systemsoeeiiiienn 20
single-task systems ...t 19
status ..o 27

User & reference guide for embOS

Index

301

(8] 01=T o (oo} o J 19

SWItChing .o 25
TCB ittt 25
THCK trvie i e 221
Time measurementcovvvvennns 223-236
Time variables ..o, 213
Timer-interrupt intervalc.oonil. 221
U
UL 238
UART, for embOScoiiiiiiiiiiiiiienen, 219
Using non-standard ticks 221
\"/
Vector table file ..o 219

© 1997 - 2007 SEGGER Microcontroller Systeme GmbH

302 Index

User & reference guide for embOS © 1997 - 2007 SEGGER Microcontroller Systeme GmbH

	About this document
	Table of Contents
	Introduction to embOS
	1.1 What is embOS
	1.2 Features

	Basic concepts
	2.1 Tasks
	2.2 Single-task systems (superloop)
	2.3 Multitasking systems
	2.3.1 Cooperative multitasking
	2.3.2 Preemptives multitasking

	2.4 Scheduling
	2.4.1 Round-robin scheduling algorithm
	2.4.2 Priority-controlled scheduling algorithm
	2.4.3 Priority inversion

	2.5 Communication between tasks
	2.5.1 Global variables
	2.5.2 Communication mechanisms
	2.5.3 Mailboxes and queues
	2.5.4 Semaphores
	2.5.5 Events

	2.6 How task-switching works
	2.7 Switching stacks
	2.8 Change of task status
	2.9 How the OS gains control
	2.10 Different builds of embOS
	2.10.1 Profiling
	2.10.2 List of libraries

	Task routines
	3.1 Task routine API function overview
	3.1.1 OS_CREATETASK()
	3.1.2 OS_CreateTask()
	3.1.3 OS_CREATETASK_EX()
	3.1.4 OS_CreateTaskEx()
	3.1.5 OS_Delay()
	3.1.6 OS_DelayUntil()
	3.1.7 OS_SetPriority()
	3.1.8 OS_GetPriority()
	3.1.9 OS_SetTimeSlice()
	3.1.10 OS_Suspend()
	3.1.11 OS_Resume()
	3.1.12 OS_GetSuspendCnt()
	3.1.13 OS_Terminate()
	3.1.14 OS_WakeTask()
	3.1.15 OS_IsTask()
	3.1.16 OS_GetTaskID()
	3.1.17 OS_GetpCurrentTask()

	Software timers
	4.1 Software timers API function overview
	4.1.1 OS_CREATETIMER()
	4.1.2 OS_CreateTimer()
	4.1.3 OS_StartTimer()
	4.1.4 OS_StopTimer()
	4.1.5 OS_RetriggerTimer()
	4.1.6 OS_SetTimerPeriod()
	4.1.7 OS_DeleteTimer()
	4.1.8 OS_GetTimerPeriod()
	4.1.9 OS_GetTimerValue()
	4.1.10 OS_GetTimerStatus()
	4.1.11 OS_GetpCurrentTimer()
	4.1.12 OS_CREATETIMER_EX()
	4.1.13 OS_CreateTimerEx()
	4.1.14 OS_StartTimerEx()
	4.1.15 OS_StopTimerEx()
	4.1.16 OS_RetriggerTimerEx()
	4.1.17 OS_SetTimerPeriodEx()
	4.1.18 OS_DeleteTimerEx()
	4.1.19 OS_GetTimerPeriodEx()
	4.1.20 OS_GetTimerValueEx()
	4.1.21 OS_GetTimerStatusEx()
	4.1.22 OS_GetpCurrentTimerEx()

	Resource semaphores
	5.1 Resource semaphores API function overview
	5.1.1 OS_CREATERSEMA()
	5.1.2 OS_Use()
	5.1.3 OS_Unuse()
	5.1.4 OS_Request()
	5.1.5 OS_GetSemaValue()
	5.1.6 OS_GetResourceOwner()
	5.1.7 OS_DeleteRSema()

	Counting Semaphores
	6.1 Counting semaphores API function overview
	6.1.1 OS_CREATECSEMA()
	6.1.2 OS_CreateCSema()
	6.1.3 OS_SignalCSema()
	6.1.4 OS_SignalCSemaMax()
	6.1.5 OS_WaitCSema()
	6.1.6 OS_WaitCSemaTimed()
	6.1.7 OS_CSemaRequest()
	6.1.8 OS_GetCSemaValue()
	6.1.9 OS_SetCSemaValue()
	6.1.10 OS_DeleteCSema()

	Mailboxes
	7.1 Why mailboxes?
	7.2 Basics
	7.3 Typical applications
	7.4 Single-byte mailbox functions
	7.5 Mailboxes API function overview
	7.5.1 OS_CREATEMB()
	7.5.2 OS_PutMail() / OS_PutMail1()
	7.5.3 OS_PutMailCond() / OS_PutMailCond1()
	7.5.4 OS_PutMailFront() / OS_PutMailFront1()
	7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
	7.5.6 OS_GetMail() / OS_GetMail1()
	7.5.7 OS_GetMailCond() / OS_GetMailCond1()
	7.5.8 OS_GetMailTimed()
	7.5.9 OS_WaitMail()
	7.5.10 OS_ClearMB()
	7.5.11 OS_GetMessageCnt()
	7.5.12 OS_DeleteMB()

	Queues
	8.1 Why queues?
	8.2 Basics
	8.3 Queues API function overview
	8.3.1 OS_Q_Create()
	8.3.2 OS_Q_Put()
	8.3.3 OS_Q_GetPtr()
	8.3.4 OS_Q_GetPtrCond()
	8.3.5 OS_Q_GetPtrTimed()
	8.3.6 OS_Q_Purge()
	8.3.7 OS_Q_Clear()
	8.3.8 OS_Q_GetMessageCnt()

	Task events
	9.1 Events API function overview
	9.1.1 OS_WaitEvent()
	9.1.2 OS_WaitSingleEvent()
	9.1.3 OS_WaitEventTimed()
	9.1.4 OS_WaitSingleEventTimed()
	9.1.5 OS_SignalEvent()
	9.1.6 OS_GetEventsOccurred()
	9.1.7 OS_ClearEvents()

	Event objects
	10.1 Event object API function overview
	10.1.1 OS_EVENT_Create()
	10.1.2 OS_EVENT_Wait()
	10.1.3 OS_EVENT_WaitTimed()
	10.1.4 OS_EVENT_Set()
	10.1.5 OS_EVENT_Reset()
	10.1.6 OS_EVENT_Pulse()
	10.1.7 OS_EVENT_Get()
	10.1.8 OS_EVENT_Delete()

	Heap type memory management
	11.1 Heap type memory manager API reference

	Fixed block size memory pools
	12.1 Memory pools API reference overview
	12.1.1 OS_MEMF_Create()
	12.1.2 OS_MEMF_Delete()
	12.1.3 OS_MEMF_Alloc()
	12.1.4 OS_MEMF_AllocTimed()
	12.1.5 OS_MEMF_Request()
	12.1.6 OS_MEMF_Release()
	12.1.7 OS_MEMF_FreeBlock()
	12.1.8 OS_MEMF_GetNumBlocks()
	12.1.9 OS_MEMF_GetBlockSize()
	12.1.10 OS_MEMF_GetNumFreeBlocks()
	12.1.11 OS_MEMF_GetMaxUsed()
	12.1.12 OS_MEMF_IsInPool()

	Stacks
	13.1 System stack
	13.2 Task stack
	13.3 Interrupt stack
	13.4 Stacks API function overview
	13.4.1 OS_GetStackSpace()

	Interrupts
	14.1 Interrupt latency
	14.1.1 Causes of interrupt latencies
	14.1.2 Additional causes for interrupt latencies

	14.2 Zero interrupt latency
	14.3 High / low priority interrupts
	14.4 Rules for interrupt handlers
	14.4.1 General rules
	14.4.2 Additional rules for preemptive multitasking

	14.5 Calling embOS routines from within an ISR
	14.5.1 Interrupts API function overview
	14.5.2 OS_EnterInterrupt()
	14.5.3 OS_LeaveInterrupt()
	14.5.4 OS_LeaveInterruptNoSwitch()
	14.5.5 Example using OS_EnterInterrupt()/OS_LeaveInterrupt()

	14.6 Enabling / disabling interrupts from C
	14.6.1 OS_IncDI() / OS_DecRI()
	14.6.2 OS_DI() / OS_EI() / OS_RestoreI()

	14.7 Definitions of interrupt control macros (in RTOS.h)
	14.8 Nesting interrupt routines
	14.8.1 OS_EnterNestableInterrupt()
	14.8.2 OS_LeaveNestableInterrupt()
	14.8.3 OS_LeaveNestableInterruptNoSwitch()

	14.9 Non-maskable interrupts (NMIs)

	Critical Regions
	15.1 Critical regions API function overview
	15.1.1 OS_EnterRegion()
	15.1.2 OS_LeaveRegion()

	System variables
	16.1 Time variables
	16.1.1 OS_Time
	16.1.2 OS_TimeDex

	16.2 OS internal variables and data-structures

	Configuration for your target system
	17.1 Hardware-specific routines
	17.2 Configuration defines
	17.3 How to change settings
	17.3.1 Setting the system frequency OS_FSYS
	17.3.2 Using a different timer to generate the tick-interrupts for embOS
	17.3.3 Using a different UART or baudrate for embOSView
	17.3.4 Changing the tick frequency

	17.4 Using non-standard ticks
	17.5 STOP / HALT / IDLE modes

	Time measurement
	18.1 Low-resolution measurement
	18.2 Low-resolution measurement API function overview
	18.2.1 OS_GetTime()
	18.2.2 OS_GetTime32()

	18.3 High-resolution measurement
	18.4 High-resolution measurement API function overview
	18.4.1 OS_TimingStart()
	18.4.2 OS_TimingEnd()
	18.4.3 OS_Timing_Getus()
	18.4.4 OS_Timing_GetCycles()

	18.5 Example

	embOSView: Profiling and analyzing
	19.1 Overview
	19.2 Task list window
	19.3 System variables window
	19.4 Sharing the SIO for terminal I/O
	19.4.1 Shared SIO API function overview
	19.4.2 OS_SendString()
	19.4.3 OS_SetRxCallback()

	19.5 Using the API trace
	19.6 Trace filter setup functions
	19.7 Trace filter API functions
	19.7.1 OS_TraceEnable()
	19.7.2 OS_TraceDisable()
	19.7.3 OS_TraceEnableAll()
	19.7.4 OS_TraceDisableAll()
	19.7.5 OS_TraceEnableId()
	19.7.6 OS_TraceDisableId()
	19.7.7 OS_TraceEnableFilterId()
	19.7.8 OS_TraceDisableFilterId()

	19.8 Trace record functions
	19.9 Trace record API function overview
	19.9.1 OS_TraceVoid()
	19.9.2 OS_TracePtr()
	19.9.3 OS_TraceData()
	19.9.4 OS_TraceDataPtr()
	19.9.5 OS_TraceU32Ptr()

	19.10 Application-controlled trace example
	19.11 User-defined functions

	Debugging
	20.1 Runtime errors
	20.2 List of error codes

	Performance and resource usage
	21.1 Introduction
	21.2 Memory requirements
	21.3 Performance
	21.4 Benchmarking
	21.4.1 Measurement with port pins and oscilloscope

	Supported development tools
	Limitations
	Source code of kernel and library
	24.1 Building embOS libraries
	24.2 Major compile time switches
	24.2.1 OS_RR_SUPPORTED
	24.2.2 OS_SUPPORT_CLEANUP_ON_TERMINATE

	Additional modules
	25.1 Keyboard manager: KEYMAN.C
	25.2 Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index
	A
	B
	C
	D
	E
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

