embOS &
embOS-MPU

Real-Time
Operating System

CPU-independent
User & Reference Guide

Document: UM01001

Software version 4.24
Revision: O
Date: June 28, 2016

ecoaen
SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com




2 CHAPTER

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com
Internet: http://www.segger.com

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: June 28, 2016

Software | Revision| Date | By Description

Chapter "Multi-core support" added.
Chapter "Debugging" updated.

New functions in chapter "Queues" added:
0S_Q_PutEx(),

0S_Q_PutBlockedEx(), and
OS_Q_PutTimedEx().

Chapter "MPU - memory protection" added.

4.24 0 160628 | MC

4.22 0 160525 | MC

4.20 0 160421 TS 0OS_AddExtendTaskContext() added.
4.16 0 160210 TS | Minor corrections/updates
4.14a 0 160115 TS | Minor corrections/updates

Chapter "Interrupts" updated.

Description of new API function
0OS_SetDefaultTaskContextExtension() added.

Chapter "System variables": embOS info routines added.
Chapter "Shipment updated".

Chapter "Low power support" updated.

Chapter "Interrupts":

Description of OS_INT_PRIO_PRESERVE() and
OS_INT_PRIO_RESTORE() added.

Chapter "Software timers":

Description of OS_TriggerTimer() and OS_TriggerTimerEx()

4.14 0 151029 | TS

added.
4.12b 0 150922 TS | Update to latest software version.
4.12a 0 150916 TS | Description of API function OS_InInterrupt() updated.

New functrions in chapter "Mailbox" added:
OS_Mail_GetPtr()

4.12 0 150715 TS | OS_Mail_GetPtrCond()

OS_Mail_Purge()

Chapter "Debugging" with new error codes updated.
4.10b 1 150703 | MC | Minor spelling and wording corrections.

Minor spelling and wording corrections.

Chapter "Source code of kernel and library" updated.
4.10b 0 150527 TS | New chapter "embOS shipment"

New chapter "Update"

New chapter "Low power support"

Minor spelling and wording corrections.

4.10a 0 150519 MC Chapter "embOSView": added JTAG chain configuration.
4.10 0 150430 TS | Chapter "embOSView" updated.
4.06b 0 150324 | MC | Minor spelling and wording corrections.
4.06a 0 150318 | MC | Minor spelling and wording corrections.
4.06 0 150312 | TS | Update to latest software version.
4.04a 0 141201 TS | Update to latest software version.
Chapter "Tasks"
4.04 0 141112 | Ts gh;?;';rp..rl'gggg‘é‘?s;ﬁ'pt'°” updated.
* New error number
4.02a 0 140918 TS Update to Iatgst software version.
Minor corrections.
New functions in chapter Time Measurement added:
0OS_Config_SysTimer
4.02 0 140818 | TS Os:GetTi?n_e_yus() 0
0S_GetTime_us64()
New function added in chapter SystemTick:
OS_StopTicklessMode()
4.00a 0 140723 | TS geszv_vsf$£_?iig?a?tcé§1ed in chapter Profiling:
OS_STAT_Stop()
OS_STAT_GetTaskExecTime()
4.00 0 140606 | TS | Tickless suppport added.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



CHAPTER

Software

Revision

Date

By

Description

3.90a

140410

AW

Software-Update, OS_TerminateTask() modified / corrected.

3.90

140312

SC

Added cross-references to the API-lists.

3.90

140303

AW

New functions to globally enable / diasble Interrupts:
OS_INTERRUPT_MaskGlobal()
OS_INTERRUPT_UnmaskGlobal()
OS_INTERRUPT_PreserveGlobal()
OS_INTERRUPT_RestoreGlobal()
OS_INTERRUPT_PreserveAndMaskGlobal()

3.88h

131220

AW

New functions added, chapter "Sytem tick":
0OS_GetNumIdleTicks();

OS_AdjustTime();

Chapter "System variable"

Description of internal variable OS_Global.TimeDex corrected

3.88¢g

131104

TS

Corrections.

3.88g

131030

TS

Update to latest software version.
Minor corrections.

3.88f

130922

TS

Update to latest software version.

3.88e

130906

TS

Update to latest software version.

3.88d

130904

AW

Update to latest software version.

3.88c

130808

TS

Update to latest software version.

3.88b

o|ojojo|o| ©

130528

TS

Update to latest software version.

3.88a

130503

AW

Software update.

Event handling modified, the reset behaviour of events can be
controlled. New functions added, chapter "Events":
OS_EVENT_CreateEx();

OS_EVENT_SetResetMode();

OS_EVENT_GetResetMode();

Mailbox message size limits enlarged.

3.88

130219

TS

Minor corrections.

3.86n

121210

AW
/TS

Update to latest software version.

3.86l

121122

AW

Software update
OS_AddTickHook() function corrected.
Several functions modified to allow most of MISRA rule checks

3.86k

121004

TS

Chapter "Queue"
* 0S_Q_GetMessageSize() and OS_Q_PeekPtr() added.

3.86i

120926

TS

Update to latest software version.

3.86h

120906

AW

Software update,
OS_EVENT handling with timeout corrected.

3.869g

120806

AW

Software update, OS_RetriggerTimer() corrected.
Task events explained more in detail. Additional software
examples in the manual.

3.86f

120723

AW

Task events modified, default set to 32bit on 32bit CPUs.
Chapter 4: New API function OS_AddOnTerminateHook()
OS_ERR_TIMESLICE removed. A time slice value of zero is
legal when creating tasks.

3.86e

120529

AW

Update to latest software version with corrected functions:
0OS_GetSysStackBase()
OS_GetSysStackSize()
0OS_GetSysStackSpace()
0OS_GetSysStackUsed()
OS_GetIntStackBase()

0OS_GetlIntStackSize()
OS_GetIntStackSpace()
OS_GetIntStackUsed()

could not be used in release builds of embOS.
Manual corrections:

Several index entries corrected.
OS_EnterRegion() described more in detail.

3.86d

120510

TS

Update to latest software version.

3.86¢C

120508

TS

Update to latest software version.

3.86b

120502

TS

Chapter "Mailbox"

* OS_PeekMail() added.

Chapter "Support" added.

Chapter "Debugging":

* Application defined error codes added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Software

Revision

Date

By

Description

3.86

120323

AW

Timeout handling for waitable objects modified. A timeout will
be returned from the waiting function, when the obeject was
not avaialbale during the timeout time. Previous implementa-
tion of timeout functions might have returned a signaled state
when the object was signaled after the timeout when the call-
ing task was blocked for a longer period by higher priorized
tasks.

Modified functions:

0S_UseTimed(), Chapter 6.2.3

0S_WaitCSemaTimed(), Chapter 7.2.6

0S_GetMailTimed(), Chapter 8.5.8

0S_WaitMailTimed(), Chapter 8.5.10

0S_Q_GetPtrTimed(), Chapter 9.3.10
OS_EVENT_WaitTimed(), Chapter 11.2.4
OS_MEMF_AllocTimed(), Chapter 13.2.4

New Chapter 4.3. "Extending the task context" added.

New functions added and described in the manual:
Chapter 4.4.14: OS_GetTaskName()
Chapter 4.4.14: OS_GetTimeSliceRem()

Handling of queues described mor in detail:
Chapter 9.3.8: 0OS_Q_GetPtr()

Chapter 9.3.9: 0S_Q_GetPtrCond()
Chapter 9.3.10: OS_Q_GetPtrTimed()
Chapter 9.3.11: 0S_Q_Purge()

Chapter 10, Task Events:

Type for task events OS_TASK_EVENT introduced. This type is
used for all events and event masks. it defaults to unsigned
char.

Chapter 2.4.3 "Priority inversion / inheritance" updated

Chapter 17.3.1 function names OS_Timing_Start() and
OS_Timing_End() corrected in the API table.

3.84c

120130

AW
/TS

Since version 3.82w of embOS, all pointer parameter pointing
to objects which were not modified by the function were
declared as const, but the manual was not updated accord-
ingly.

The prototype descriptions of the following API functions are
corrected now:

0OS_GetTimerValue()

OS_GetTimerStatus()

0OS_GetTimerPeriod()

0S_GetSemaValue()

0OS_GetResourceOwner()

0S_Q _IsInUse()

0S_Q_GetMessageCnt()

0OS_IsTask()

0S_GetEventsOccurred()

0S_GetCSemaValue()

OS_TICK_RemoveHook()

OS_MEMF_1IsInPool()

OS_MEMF_GetMaxUsed()

OS_MEMF_GetNumBlocks()

OS_MEMF_GetBlockSize()

0S_GetSuspendCnt()

OS_GetPriority()

OS_EVENT_Get()

OS_Timing_Getus()

Chapter "Preface"

* Segger Logo replaced.

Chapter "Mailbox"

* OS_CREARTEMB() changed to OS_CreateMB().
Chapter "Queues"

* Typos corrected.

3.84c

120104

TS

Chapter "Events"
* Return value of OS_EVENT_WaitTimed() explained in more
detail

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



CHAPTER

Software

Revision

Date

By

Description

3.84b

111221

TS

Chapter "Queues"
* OS_Q_PutBlocked() added.

3.84a

111207

TS

General updates and corrections.

3.84

110927

TS

Chapter "Stacks"

* OS_GetSysStackBase() added.
* OS_GetSysStackSize() added.
* OS_GetSysStackUsed() added.
* OS_GetSysStackSpace() added.
* OS_GetIntStackBase() added.
* OS_GetIntStackSize() added.

* OS_GetIntStackUsed() added.
* OS_GetIntStackSpace() added.

3.82x

110829

TS

Chapter "Debugging"
* New error code "OS_ERR_REGIONCNT" added.

3.82w

110812

TS

New embOS generic sources.
Chapter 24 "Debugging" updated.

3.82v

110715

AW

0OS_Terminate() renamed to OS_TerminateTask().

3.82u

110630

TS

New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

3.82t

o] O |[Oo|] ©

110503

TS

New embOS generic sources. Trial time limitation increased.

3.82s

110318

AW

Chapter 5.2, "Timer" API functions table corrected.

All functions can be called from main(), task, ISR or Timer.
Chapter 6: OS_UseTimed() added.

Chapter 9: OS_Q_IsInUse() added.

3.82p

110112

AW

Chapter "Mailboxes"

* OS_PutMail()

* OS_PutMailCond()

* OS_PutMailFront()

* OS_PutMailFrontCond()

parameter declaration changed.

Chapter 4.3 API functions table corrected.
0OS_Suspend() cannot be called from ISR or Timer.

3.820

110104

AW

Chapter "Mailboxes"
* OS_WaitMailTimed() added.

3.82n

101206

AW

Chapter "Taskroutines"

* OS_ResumeAllSuspendedTasks() added.
* OS_SetlInitialSuspendCnt() added.

* OS_SuspendAllTasks() added.

Chapter "Time Measurement"

* Description of OS_GetTime32() corrected.
Chapter "List of error codes"

* New error codes added.

3.82k

100927

TS

Chapter "Taskroutines"
* OS_Delayus() added
* 0S_Q_Delete() added

3.82i

100917

TS

General updates and corrections.

3.82h

100621

AW

Chapter Event objects: Samples added.
Chapter: Configuration of target system: Detailed description
of OS_idle() added

3.82f

100505

TS

Chapter Profiling added
Chapter SystemTick: OS_TickHandleNoHook() added.

3.82f

100419

AW

Chapter Tasks: New function OS_IsRunning()added.
Chapter Tasks: Description of OS_Start() added.

3.82e

100309

TS

Chapter "Working with embOS - Recommendations" added
Chapter Basics

* Priority inversion image added
Chapter Interrupt

* subchapter "Using OS functions from high priority inter-
rupts"

added

Added text at chapter 22 "Performance and resource usage"

3.82

090922

TS

API function overview now contains information about allowed
context of function usage (main, task, ISR or timer)
TOC format corrected

3.80

090612

AW

Scheduler optimized for higher task switching speed.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Software

Revision

Date

By

Description

3.62.c

080903

SK

Chapter structure updated.
Chapter "Interrupts":
* OS_LeaveNestablelnterruptNoSwitch() removed.
* OS_LeavelnterruptNoSwitch() removed.
Chapter "System tick":
* OS_TICK_Config() added.

3.60

080722

SK

Contact address updated.

3.60

080617

SK

General updates.
Chapter "Mailboxes":
- OS_GetMailCond() / OS_GetMailCond1() corrected.

3.60

080117

00

General updates.
Chapter "System tick" added.

3.52

071026

AW

Chapter "Task routines": Added OS_SetTaskName().

3.52

070824

00

Chapter "Task routines": Added OS_ExtendTaskContext().
Chapter "Interrupts": Updated, added OS_CallISR() and
OS_CallNestableISR().

3.50c

070814

AW

Chapter "List of libraries" updated, XR library type added.

3.40C

070716

(0]¢)

Chapter “Performance and resource usage" updated,

3.40C

070625

SK

Chapter “Debugging", error codes updated:
- OS_ERR_ISR_INDEX added.
- OS_ERR_ISR_VECTOR added.
- OS_ERR_RESOURCE_OWNER added.
- OS_ERR_CSEMA_OVERFLOW added.
Chapter “Task routines™:
- OS_Yield() added.
Chapter “Counting semaphores" updated.
- OS_SignalCSema(), additional information adjusted.
Chapter “Performance and resource usage" updated:
- Minor changes in wording.

3.40A

070608

SK

Chapter “Counting semaphores" updated.
- OS_SetCSemaValue() added.
- OS_CreateCSema(): Data type of parameter InitValue
changed from unsigned char to unsigned int.
- OS_SignalCSemaMax(): Data type of parameter MaxValue
changed from unsigned char to unsigned int.
- OS_SignalCSema(): Additional information updated.

3.40

070516

SK

Chapter “Performance and resource usage" added.

Chapter “Configuration of your target system (RTOSInit.c)"
renamed to “Configuration of your target system".

Chapter "STOP\WAIT\IDLE modes" moved into

chapter “Configuration of your target system".

Chapter “time-related routines™ renamed to “"Time measure-
ment".

3.320

070422

SK

Chapter 4: OS_CREATETIMER_EX(), additional information
corrected.

3.32m

070402

AW

Chapter 4: Extended timer added.
Chapter 8: API overview corrected,
0S_Q_GetMessageCount()

3.32j

070216

AW

Chapter 6: OS_CSemaRequest() function added.

3.32e

061220

SK

About: Company description added.
Some minor formatting changes.

3.32e

061107

AW

Chapter 7: OS_GetMessageCnt() return value corrected to
unsigned int.

3.32d

061106

AW

Chapter 8: 0OS_Q_GetPtrTimed() function added.

3.32a

061012

AW

Chapter 3: OS_CreateTaskEx() function, description of
parameter pContext corrected.

Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.

Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.

Chapter 9: OS_GetEventsOccured() renamed to
OS_GetEventsOccurred().

Chapter 10: OS_EVENT_WaitTimed() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



8 CHAPTER
Software | Revision Date By Description

3.32 1 060717 | OO | Event objects introduced. Chapter 10 inserted which
describes event objects.
Previous chapter "Events" renamed to "Task events"

3.30 1 060519 OO | New software version.

3.28 5 060223 | OO | All chapters: Added API tables.
Some minor changes.

3.28 4 051109 | AW | Chapter 7: OS_SignalCSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

3.28 3 050926 | AW | Chapter 6: OS_DeleteRSema() function added.

3.28 2 050707 | AW | Chapter 4: OS_GetSuspendCnt() function added.

3.28 1 050425 | AW | Version number changed to 3.28 to fit to current ombOS ver-
sion.
Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected
Chapter 4: OS_Terminate() modified due to new features of

3.26 050209 | AW | version 3.26.
Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in
detail.

3.24 041115 AW Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

3.22 1 040816 | AW | Chapter 8: New Mailbox functions added
OS_PutMailFront()
OS_PutMailFront1()
OS_PutMailFrontCond()
0OS_PutMailFrontCond1()

3.20 5 040621 RS | Software timers: Maximum timeout values and

AW | OS_TIMER_MAX_TIME described.

Chapter 14: Description of rules for interrupt handlers
revised.
OS_LeaveNestableInterruptNoSwitch() added which was
not described before.

3.20 4 040329 | AW | OS_CreateCSema() prototype declaration corrected.
Return type is void.
0S_Q_GetMessageCnt() prototype declaration corrected.
0OS_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20 2 031128 | AW | OS_CREATEMB() Range for parameter MaxnofMsg cor-
rected. Upper limit is 65535, but was declared 65536 in
previous manuals.

3. 1 040831 | AW | Code samples modified: Task stacks defined as array of

int, because most CPUs require alignment of stack on inte-
ger aligned addresses.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Software

Revision

Date

By

Description

3.20

1

031016

AW

Chapter 4: Type of task priority parameter corrected to
unsigned char.

Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resume() added.

Chapter 5: OS_GetTimerValue(): Range of return value
corrected.

Chapter 6: Sample program for usage of resource sema-
phores modified.

Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.

Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.

Chapter 8: OS_WaitMail() added

Chapter 10: OS_WaitEventTimed(): Range of timeout
value specified.

3.12

021015

AW

Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG
KG
KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related
routines).

Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains con-
trol).

Chapter 4 (Configuration for your target system) moved to
after Chapter 15 (System variables).

Chapter 16 (Time-related routines) added.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



10 CHAPTER

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



11

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

e DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t.hat you entt_ar at the comm_and-pr_ompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment | Comments in programm examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



12

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
# the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG




13

Table of Contents

1 Introduction t0 eMBDOS ... .. o 23
1.1 What IS €mMbDOS .. e e e 24
1.2 ST L 1 < 25

P Y- L (ol oo (o =T o) £ RSP PPPPRTPPRTRPP 27
2.1 L= ] G 28
2.1.1 LI (=T 1o 3 28
2.1.2 e (Y0 =T 28
2.2 Single-task systems (SUPEIIOOP) .uiiiiiiii i i e e e e 29
2.2.1 Advantages & disadvantages . ....oviiiiiiiiiii i 29
2.2.2 Using embOS in super-loop applications.......ccoiiiiiiiiiiiic i e 30
2.2.3 Migrating from superloop to multi-tasking .........ccoiiiiiiiiiiii i 30
2.3 MUIEIEASKING SYSEOMIS . it e e as 31
2.3.1 TaSK SWIECNES . .t e 31
2.3.2 Cooperative task SWILCh......iiiiiii e 31
2.3.3 Preemptive task SWItCh......coiiiiiii e 31
2.3.4 Preemptive multitasking ..o e 32
2.3.5 Cooperative MUItItasKing ..oivii i i i e 33
2.4 1Y | =T 1] 1.9 T 34
2.4.1 Round-robin scheduling algorithm ... 34
2.4.2 Priority-controlled scheduling algorithm ... 34
2.4.3 Priority inversion / priority inheritance......c.oooiiiiiiiiii i 35
2.5 Communication between tasks .....cciiiiiiiiiiii s 37
2.5.1 PeriodiC POIING .. i e 37
2.5.2 Event-driven communication mechanisSms ......c.coviiiiiiiiiiii i e naeas 37
2.5.3 MailbOXES AN QUEUES 1 vttt it ettt aae e e e e 37
2.5.4 Y= ] 0 =] 0 5 0 1P 37
2.5.5 BV BNt S ottt e 37
2.6 How task switChing WOrKsS ..o e 38
2.6.1 SWIECHING STACKS ..ttt e i e 39
2.7 Change of task StatusS.....ciiiiiiiii i e e e 40
2.8 How the OS gains CONTIol ...oiiiiiii i e e e 41
2.9 Different builds of @mbOS .....c.i i s 42
2.9.1 o) 111 o Vo PP 42
2.9.2 LISt Of DrariEs e 42
2.9.3 embOS fUNCLIONS CONtEXE . vt e e neeaes 43

3 Working With @mBDOS ... 45
3.1 (1< =T =1 = T AV Tl 46
3.1.1 B 1= =0 T i o= =] PP 46

N I 1] &SR 47
4.1 |l Yo [T o o P 48
4.1.1 Example of a task routine as an endless 100p......cccviiiiiiiiiiii i 48
4.1.2 Example of a task routine that terminates itself ..o 48
4.2 Cooperative vs. preemptive task switches ..o 49
4.2.1 Disabling preemptive task switches for tasks of equal priority ..........ccviiveinen. 49
4.2.2 Completely disabling preemptions for a task.......cooviiiiiiiiiiiii i 49
4.3 Extending the task conteXt ..o 50
4.3.1 Passing one parameter to a task during task creation .........c.coooiiiiinnn, 50

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



14

4.3.2 Extending the task context individually at runtime ..., 50
4.3.3 Extending the task context by using own task structures ............c.covvivviinnnnns 50
4.4 AP fUNCHIONS ¢ttt e 52
4.4.1 OS_AddONTerminateHOOK() . .vuriiieiiii i e s e e e reaas 54
4.4.2 O S CREATETASK() +tuttutttttteae et ateataeeaeeeataaeee s e aeaeee e aneaseaeeae e anennanens 55
4.4.3 (@ ST O ==Y =l = 1] () PP 57
4.4.4 OS _CREATETASK _EX() +erttttitiniite ettt et s e e e e e e e e e e e e s e aneneenees 59
4.4.5 OS_Creat@TasKEX() «voeeruerieeieiiiaiiiatestraseseraaesaesaassarsasssanessesnesanssneannsannsns 61
4.4.6 (@ I D11 = 1V () TP 62
4.4.7 (@I DT F= 1V 0 o o | T PP 63
4.4.8 L@ ST B =] = 1 1] () 1P 64
4.4.9 OS_ExtendTaskConteXt() .ovvveiiiiiiiiii i e e e e aeas 65
4.4.10 OS_AddEXtendTaskConteXt() .oovuireiieiiiiei i e e e e aaeas 68
4.4.11 (@I C =] o o /1 Y () P 69
4.4.12 (@ ST €11 oY U] 0 1= o [ o) o () TR PP 70
4.4.13 (O I 1] o =11 4 5 1 T PR 71
4.4.14 (@I =] =11 140 =T 1.2 L= () PP 72
4.4.15 OS_GetTimeSHCEREM() 1.uiei i e e e e aaeaeaas 73
4.4.16 (@ TN ] 2B [ o1 11 o T | () PP 74
4.4.17 (@ T K= =11 () 1 PP 75
4.4.18 (@I =T U 0 1 1= () 1 76
4.4.19 OS_ResumeAllSUsSpendedTasksS (). .uuueereerireriiiiariararesieraes s raassesaesaneannns 77
4.4.20 OS_SetDefaultTaskConteXtEXteNSION() ..vvieiiiii e 78
4.4.21 OS_SetInitialSuspendCnt() .ooe i e 79
4.4.22 (O TS = o T Y7 () TR PR 80
4.4.23 (O SIS o =1 1A =T 2 =T () PP 81
4.4.24 (OIS ol 0 0 1= [T =T () PP 82
4.4.25 (O TS ] = o o () PP 83
4.4.26 (@IS ¥ 1] 01T o o () 1P 84
4.4.27 OS_SUSPENAAITASKS() 1 vttt et s e rar s s s raasaesaeannens 85
4.4.28 (O T =] (g o 1= o w o () L PP 86
4.4.29 (O ST =T YT F= L= =] () TP 87
4.4.30 (O ST V=1 =] () PP 88
4.4.31 (@ 1T 1= [ [ TP 89
5 SOMWANE TIMEIS ...ttt ettt e e e e e e e e e e e e e e e e e e e s e e e bbb b abeeee e 91
5.1 INErOdUCEHION L s 92
5.2 AP fUNCHIONS ¢ttt e e e 93
5.2.1 OS_CREATETIMER() -euueitieiie it e e e e ettt et et e e et e e e e e e n e e eneens 94
5.2.2 (O IOl =) =0 N 0 1= o I PP 95
5.2.3 (O S = o ol 10 4 U= () I PR 96
5.2.4 (@ ST o] o 11 4 T=1 () PP 97
5.2.5 (O I I = e o =T ol W T 0 =T of () TP 98
5.2.6 (O ISTN I g e [ 1< ol I 10 01T o I PP 99
5.2.7 (O IS Y= W g 1= 2= T o o Lo ) I PP 100
5.2.8 (O ST D=1 (= W=l W 0 1= o PP 101
5.2.9 OS _GetTimerPeriod() .. o e i iiiae e i s e s ae e sar e ane e e aneeneans 102
5.2.10 O I 1= N g (=] A V= 1 LU =T () T PP 103
5.2.11 OS _GetTimerSTatUS() «uvvveeiiriiiiire i e a e ar e a e ar s arerar e ane e aaneaneans 104
5.2.12 OS _GetpCUIENETIMEI() ettt ittt it s e e e rar e aeeanaaneaneans 105
5.2.13 OS_CREATETIMER _EX() +tuueueiueieieaeae et et et e e e e et e e e e ee st aeeeeanennans 106
5.2.14 (O I Ol =) =l N 0 (= = () T PP 107
5.2.15 (O IS = ol 10 4 =1 = PP 108
5.2.16 (O SIS o] o 11 4 =1 = I PP 109
5.2.17 OS _RetriggerTimMeErEX () «ueue et et e e e e e e enens 110
5.2.18 (O 1ST I g oo 1< gl 10 1T o =5tq () I PP 111
5.2.19 OS_SetTimerPeriodEX() +uvveiieiiriieiiteiiteie i re it ar s ar s e s rareaneannenneans 112
5.2.20 (O ST D=1 (= W=l W 0[] o = () T PP 113
5.2.21 OS_GetTimerPeriodEX() «uvueiireiiriiri i aeieeate s e e s raseseaane s aanerneannans 114
5.2.22 0S_GetTimerValUEEX() «.vvieiii it s i eeaeaas 115
5.2.23 O _GetTimerStatUSEX() vvureririiitiire it rte s ar e a s ae s e rareaneeaeeaneeneans 116

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



5.2.24 OS_GetpCurrentTimMErEX() «veeieiieiieiiei i assesaasaneaens 117
6 RESOUICE SEMAPNOIES.......cii i 119
6.1 0o oY [ T o o S 120
6.2 AP fUNCHIONS Lot i e e 122
6.2.1 [0 1T O /== ) o =] 2= o 2 = 123
6.2.2 (O 1T U 1= T () T PP PR 124
6.2.3 (O S U 10 N 0 [=Te O TP 126
6.2.4 (O ST U 1 (U 1=1=T () I RPN 127
6.2.5 (O ST T [T o () PR 128
6.2.6 0S _GetSemMAVAlIUE() ittt e 129
6.2.7 OS_GetReSOUNCEOWNEI() tviiiiiiri ittt a e e e e eae e sneeaneaneaneas 130
6.2.8 OS _DeleteRSEMA() ittt i e 131
7 CountiNg SEMAPNOIES ....ooiiiiiiiie et e e e e e e e e e e e e 133
7.1 |l o Yo [ U T o o TP 134
7.2 Y o I 11 U o 1= 135
7.2.1 O S _CREATECSEMA() tttittitiit ittt et sttt et e e e e st et e st et a e e e reaaeaaens 136
7.2.2 (OIS O =T =T @1 =] o = 1 P 137
7.2.3 0S _SIgNalCSEMA() + vttt ittt ittt et 138
7.2.4 0S8 SigNalCSEMaAMaX () et tuttiitit it i et e 139
7.2.5 (O I T OrST=T o -1 T PP PR 140
7.2.6 OIS - T O =] = 1 L g LT [ S 141
7.2.7 OS_ CSEMAREGUESE() tttiittiiitiii i i et r e a e 142
7.2.8 O _GEtlSEMAVAIUE() ittt e e e 143
7.2.9 0S8 _SetlSEmMAVAlUE() ittt i e e 144
7.2.10 OIS B L= L= W =T Y =T 0 1 1= 1 ) P 145
8 MaAUIDOXES ... e e a e aaan 147
8.1 |l o Yo [ U T o o TP 148
8.2 5 = =] [l P 149
8.3 Typical @ppliCatioNS ..o 150
8.3.1 A Keyboard DUFfEr ... 150
8.3.2 YN o T U i (=T ol o T Y] = I 74 1, 150
8.3.3 A buffer for commands sent to @ task.......ccviiiiiiiii i 150
8.4 Single-byte mailboxX fuNCiONS....c i 151
8.5 Y o I 11 o o 1= 152
8.5.1 O _CrEatEMB() vviviitii ittt 153
8.5.2 OS_PutMail() / OS_PUEMAITL() teveiriiieiie i s s e vne s e ennernennneenens 154
8.5.3 OS_PutMailCond() / OS_PutMailCondL() «.veevrviriiiiiiiiiieiiii i naaneaaens 155
8.5.4 OS_PutMailFront() / OS_PutMailFrontl () ...ccoviiiiiiiiii i i 156
8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()...ccovviiiiiiiiiiiiiiiiiiiiinenns 157
8.5.6 0OS_GetMail() / OS_GetMailL()reierireiieiineiiierie i rerane s ranearranerernneaneans 158
8.5.7 0S_GetMailCond() / OS_GetMailCond1() «ivoviiiiiiiiiiiii i e 159
8.5.8 O GEtMaAIlTIMEA() .ttt ittt e 160
8.5.9 OS _ WaitMaAil() e v iiei i e 161
8.5.10 OS_WaitMailTimed () «oeie it e e ae e 162
8.5.11 OS _PEEKMAII() +iutitiitiiti ittt e 163
8.5.12 (O ST = 1 I 1= o o o () T PP RPRPRN 164
8.5.13 OS_Mail_GEPErCONA() +oueiriitiitiii ittt re et a et e et s et e e aaeaan 165
8.5.14 (O I\ = 11 I 0T o =T () I RPN 166
8.5.15 O I AMMB () ittt ittt e e e 167
8.5.16 OS_ GEtMESSAGECNT( ) ttttiitttiiti it e e 168
8.5.17 O S DEIEEEMB() ttititit ittt e e 169
S T 11 1= PPN 171
9.1 |l o o [ U T o o PP 172
9.2 1 ] o 173
9.3 A o I 8 o o o 1= 174

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



16

9.3.1 (O T O O ¢ =T- 1 T () PP 175
9.3.2 L@ 1T T U () P 176
9.3.3 OS_Q_PUEBIOCKEA() + ittt ittt e e et 177
9.3.4 OS_Q_ PUETIMEA() ttt ittt ittt e e et e r e r e e aaeaeaas 178
9.3.5 O  Q PUEEX() + ittt e e 179
9.3.5.1 The OS_Q_SRCLIST StrUCTUNE c.uviit it i i i i e r e e e anaes 179
9.3.6 OS_Q_PUBIOCKEAEX() tuvtirtiitiiitiite ittt i et e st e e e r e e e s e s e e ieenaeaaeans 180
9.3.7 (O I O I U o I [0 01T () I PP 181
9.3.8 (O ST O T 1= o o o () PP 182
9.3.9 (@ ST O I 1= o 4 o @ o [ [ () P S 183
9.3.10 (O I O I C 1= o ol W 0 1= 1 RPN 184
9.3.11 (@ T O T ST o =T (PP 185
9.3.12 (O T O O 1=T- 1 () T PP 186
9.3.13 OS_Q_GetMeESSageCNE() . ueieiiriiei it aaeaas 187
9.3.14 O QDI vttt ittt i e s 188
9.3.15 (O IS @ K= 1 | =T PP 189
9.3.16 OS_Q_GetMESSAGESIZE() e ruttuntririitiiitiant ittt s rare s aaasaeaaeaaeaneans 190
9.3.17 (@ T O T 27T T o ol () S 191
O = TS V=T o | P 193
10.1 INErOdUCEION e e 194
10.2 AP fUNCHIONS ¢ttt i e e 195
10.2.1 OS _ WaltEVENE() ce i e e 196
10.2.2 OS_WaitSIiNgIEEVENT() tviiriiitiii it i et s e eaneaas 197
10.2.3 OS_WaitEventTimed() «ovvveiiiiiii i e s e e aneas 198
10.2.4 0S_WaitSingleEventTimed() cuuveiie i i e e e anneanens 199
10.2.5 (O SIS o [ E=1 1 =T o) o () PP 200
10.2.6 OS_GetEventsSOCCUITEA() tuvviriiiiire it st ae s e a e rar e are e anneaneans 201
10.2.7 (O O[T [ 7T o} =Y () PP 202
11 EVENT ODJECES ..ooeiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e 203
11.1 |l o Yo 18 T o o T PP 204
11.2 7N o I 11 o o o 1= 205
11.2.1 OS _EVENT _CrEat() cvuueiueitiititieetiateatiie et stea et s et e e s e e e e e e e taneaaens 206
11.2.2 OS _EVENT _CreateEX() e iue ittt et e et e e aaeas 207
11.2.3 O _EVENT _Waait() cvuueiueitentiitiiietisteie st s et et s tea e e e e s e e e e e e et e eaaeaaens 208
11.2.4 OS_EVENT_WaitTimed() «eoeveieiiiiiiii it s s ses e es e sen e aaa e aneeaens 209
11.2.5 (O I YA = AV Y= () T PP 211
11.2.6 O _EVENT _RESEE() tutiutitiitiitiiiie ettt e a e aaeeaeas 212
11.2.7 O _EVENT _PUISE() ettt ittt ettt et e e r e e e e e aaeas 213
11.2.8 (O I YA =\ 1= () I PP 214
11.2.9 OS _EVENT _DIEEE() ttutitiitiitii ittt ettt e e aeaaens 215
11.2.10 OS_EVENT_SetResetMode() .ivviiiiiiiiii i i i e e e aaeas 216
11.2.11 OS_EVENT_GetResetMOode() «ioviiiiiiiiii i i e e e 217
11.3 Examples of using event objects..... ..o 218
11.3.1 Activate a task from interrupt by an event object ........ccovviiiiiii 218
11.3.2 Activating multiple tasks using a single event object ..., 219
12 Heap type Memory ManNagEMENT.........ccouuuuuuieeaieeii e eeeeitia e eeeeaiia e e e eeesaaa e eeaeesnnnnns 221
12.1 |l o o 18 T o o T PP 222
12.2 7N o I 11 o o o 1= 223
12.2.1 (0T 1 0 T= 11 Lo Yo () T PP 224
12.2.2 (O T =TT T PP 225
12.2.3 (O T =T=1 oYl () PP 226
13 Fixed block Size MemOry POOIS........cooiiiiiiiiiii e 227
13.1 INErOdUCEION e s 228
13.2 7N o I 8 o o T 1= 229
13.2.1 (O I ] =1 O Y= | =T () T PP 230

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



13.2.2 OS _ MEMF DI () tiutiiti ittt i e e 231
13.2.3 (O ST 1 = Y[ Fo Yol () PR 232
13.2.4 OIS 1 = T Fo ol I [n aT=Te [ RPN 233
13.2.5 OS_MEMF_REQUESE() .ttt ittt s r s re s s as s e sneanernans 234
13.2.6 (O IS | = o =T (=T 1Y =T () PP 235
13.2.7 OS_MEMF _FreeBIloCK() tueittiiiitii it e et et r e et e e e e e aeeaeas 236
13.2.8 OS_MEMF_GetNUMBIOCKS()uuttiirttiiti it see e eit e e e s e e anneaanneas 237
13.2.9 OS_MEMF_GetBIOCKSIZE() ettt it e aaas 238
13.2.10 OS_MEMF_GetNUMFreeBIOCKS (). .uiiiti it i e aaee e aneas 239
13.2.11 OS_MEMF_GetMaXUSEA() +tvvriiiniiiine it sai e sane s e e sasesaneesaneennnean 240
13.2.12 OS_MEMF _ISINPOOI() tiiutiitiiiiii it i e et e e e aaeeaeas 241
] = Vo3 €S 243
14.1 INErOdUCEION e s 244
14.1.1 SYSEEM SEACK 1ttt e 244
14.1.2 TASK SEACK 1.ttt e 244
14.1.3 INEerrUPE SEACK cv et e 244
14.1.4 Stack Size CalCUlation .ouvi i e 245
14.1.5 StACK-ChECK ittt s 245
14.2 APT fUNCHIONS ettt e 246
14.2.1 O I O ) = Tol 4= = ET = () PR 247
14.2.2 OS _GetStaCtKSIZE() v itiirtiitii it it 248
14.2.3 (O S CT= ) = 1ol oS o = (oL () T PP 249
14.2.4 OS _GetStatKUSEA() turvurtrriiire it iitei it a e ae e s ra e s sans e eaneseanneaneannans 250
14.2.5 0S _GetSySSTAaCKBASE() +evurririiieiiti it iieie it a i s rar e rare e aaneaeaaneaneas 251
14.2.6 OS _GetSYSSTACKSIZE() tttirtrirt ittt i ar e a e s aeaanaas 252
14.2.7 0SS _GetSySSTaCKSPACE() ettt ittt ittt ite it ae e ar e e e aaeaeeanaaneannans 253
14.2.8 0S_GetSySSTaCKUSEA() +uurtiriirtiitiie st ae it e aerar e e aneaeanraaneanans 254
14.2.9 OS_GetINtStacKBase() cuvvvrirriiirii i i a s are e are e aae e e 255
14.2.10  OS_GetINtStackSiZE() vuveiiriiri it i aeaanaas 256
14.2.11  OS_GetIntStackSPace (). e iiiiiii it i e e e aane e 257
14.2.12 OS_GetIntStacklUSEA() cuviriiriiiiiii it i are e s e ane e aareaneanans 258
ST | 01T 1] o £ PP 259
15.1 What are INTaITUPES ? 1. e e e 260
15.2 INtErTUPE [aEENCY i e 261
15.2.1 Causes of interrupt [ateNCies .o e 261
15.2.2 Additional causes for interrupt latencies........covviiiiiiiiiii i 261
15.2.3 How to detect the cause for high interrupt latency .......cccooiiiiiiiiiinn, 262
15.3 Zero iNterrupl [ateNCY oo e 263
15.4 High / low priority interrupts ..o 264
15.4.1 Using OS functions from high priority interrupts.......ccooviiiiiiiiiiiiiiic i, 264
15.5 Rules for interrupt handlers.......ocviiiiiii e 266
15.5.1 LT =1 I o U] U= PP 266
15.5.2 Additional rules for preemptive multitasking .........ccooviiiiiiiiiiiii 266
15.6 APT fUNCHIONS 1ottt e 267
15.6.1 (O ST O 11151 2 T PP 268
15.6.2 OS_CallNEStabIEISR() tveitiitiiitii s i a e a e e s e se e aneaeanneaneas 269
15.6.3 OS _ENterInterrupl() cvveeiie i e 270
15.6.4 (O S =T 1Y g =] o ] o) o () I PP 271
15.7 Enabling / disabling interrupts from C.......c.oiiiiiiiiii e 272
15.7.1 OS_INCDI() / OS_DECRI() terurtiutiitiiutiineieiasesiesasereaanesnesassrneaanesneaareaneannens 273
15.7.2 OS_DI() / OS_EI() / OS_RESLOFEI()uevutrrnerinienerierienereraeneeesieneenesnssaeneenees 274
15.8 Definitions of interrupt control macros (in RTOS.h).....cocoviiiiiiiiiiciieee e 275
15.9 Nesting interrupt roOULINES ...oviviiiii i e 276
15.9.1 OS_EnterNestableINterrupt() .. o eieiieiie i i e i aneaneaaaas 277
15.9.2 0OS_LeaveNestableINterrupt() oo i e e 278
15.9.3 (O ST L 1 g Y =T o T ] o) o () PP 279
15.10 Global interrupt enable / disable ......c.oiiiiiiiii 280
15.10.1  OS_INTERRUPT_MaskGIobal() ..covriiieiiiiiiiiiiii i rce s i s sese e nneena s 281

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



18

15.10.2 OS_INTERRUPT_UNmMaskGIobal()...uiireiiiiiiiii i e ene e e e eaes 282
15.10.3 OS_INTERRUPT_PreserveGlobal() ....ciueiiiiiiie i e e e enne e nanes 283
15.10.4 OS_INTERRUPT_PreserveAndMaskGlobal() ...covvvviiiiiiiiiiiiiiii e e 284
15.10.5 OS_INTERRUPT_RestoreGIobal() ..covveiiiiiiii i e 285
15.10.6  OS_INT_PRIO_PRESERVE() «iutiitiiiiiiiiiiii i s e e e n e e 286
15.10.7  OS_INT_PRIO_RESTORE() . .tiittiitiitiiiiiti ittt st iite it resaee e ente e anaeaneaneas 287
15.11 Non-maskable interrupts (NMIS) ....c.oiiiiiiiiiiiiiii e reas 288
16 CritiCal REGIONS ..o it e e e e e e e e e aeeeaeaeas 289
16.1 9o oY [ T o o 290
16.2 N o I 0T T o T 291
16.2.1 (O T = p | W= g 2 =To [ o] oY () HF PP 292
16.2.2 OS_LeaVEREGION() teiriiriiitii it i i r e st r e e anaas 293
17 TIME MEASUIEIMENT ....uu ittt e e e e e e e e e e e e e e et e e e e e e aa e e e e eeesaa s eeeeeeesnannes 295
17.1 |l o Yo 18 T o o T PP 296
17.2 Low-resolution mMeasuremMent. ... i e e e nneans 297
17.2.1 7Y o 11 o o 1= 298
0 s R © Y 1=l I 0 1= (P 299
0 R A © | Y 1= ol I 0 0 1=7C 374 () L 300
17.3 High-resolution mMeasuremMENt .. .c.ii i e e 301
17.3.1 Y o I 11 o o 1= PP 302
3 0 10 s R © LY I [0 11 T ] = o o () 303
17.3.1.2  OS _TimMiNG _ENd() e ittt i i r e e e e e 304
17.3.1.3  OS_TimMiNG_GeEEUS() +rurerueinernenneiieennesaesaneraneaneraessneranereransrneransrneeanesneenns 305
17.3.1.4  OS_TimiNG_GetCYClES() «eiiiiiiiiiiii i i e e e e 306
17.4 = 1.0 o 1= 307
17.5 Microsecond precise system LimMe. . ..o 309
17.5.1 N o 11 o o 1= PP 309
17.5.2 (@ ST =] I TSI 1= () TS 310
17.5.3 (@ ST =] I TSI 11 X 311
17.5.4 OIS Oo] o 1o SN 23 I 0 4 T=1 (T 312
17.5.4.1  PrGetTimarCyCles() ueiiiiiii i i i e e e e 312
17.5.4.2 pfGetTimerIntPending() «.ooveiiiiiiii i i i e e e e r e aeeaaes 312
T B T <= ] 0] L= 313
18 MPU - MEMOTY PIrOECHION ...ttt e e e e e e ea b e e e e e e e e eaeas 315
18.1 |l o Yo 18 T o o T PP 316
18.1.1 Privilege States .uiiii i i s 316
18.1.2 (OfeTa [<o] g'o =] a1 f (o o PP 316
18.2 MeEMOIY ACCESS PeIMNISSIONS. . ettt ittt tiites s eiirtessaireessannneeseanneessaannneaaanns 317
18.2.1 Default memory acCess PeIrMISSIONS. . ittt ittt e aaneens 317
18.2.2 | g Y o= o U] o (= P 317
18.2.3 Access to additional mMemory regions .....ooviiiii i e 317
18.2.4 ACCESS 0 OS 0DbJECES .o 317
18.3 ROM placement of @mbOS ... .o e 318
18.4 Allowed embQOS API in unprivileged tasks .....cccoiiiiiiiiiiiiiciic 319
18.5 DTSV ol | AV =T PP 323
18.5.1 @] 5 [T o) o 323
18.6 7 o I 1 o o 1= 324
18.6.1 L@ ST 1 o W I = o= 0] 1= () PP 325
18.6.2 OS_MPU_EN@DIEEX() 1. vureinttneraesase it iiesasssnesasesnesanssneranssnesanssnernnsnnesnnens 326
18.6.3 OS_MPU _CONfIgMEMI() .ttt i i e e e e e e anes 327
18.6.4 OS_MPU_SetAllowedODb eCES() . vuireiirrare s rineseraesaeransaerareanerneaanerneans 328
18.6.5 OS_MPU_AAAREGION() tuvtrrtinernnranernraneinesanssnesanssnesanssnnranssnesanssnernnssnernnens 329
18.6.6 OS_MPU_SetErrorCallback() «ovveeeiieiiiiiiii i ieie s v ane e nne e rnnennennans 330
18.6.6.1 emMbOS-MPU €Ir0r COURS ...uviiriiitiitiiitiieiiteaseransaseraneaneraeeanernnaarerneeaneaneanns 331
18.6.7 OS_MPU_SwitchToUnprivState() .ovvvervi i vne e rnee e nneans 332
18.6.8 OS_MPU_SetDeVviceDriVerLiST() vuveeeierreriinnsieranesseranererassseransaernnsnnernnans 333
18.6.9 OS_MPU_CallDeVICEDIIVEI() tuvrireiueranereiaesrnernsssneransaneranraneraessnerneeasrnernnens 334

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



18.6.10 OS_MPU_GetThreadState() .voo e i e aea e 335
18.6.11 OS_MPU_ExtendTaskConteXt() .ovvviviriiii i e n e e aneas 336
19 SYSIEIM TICK. .. e e e e e e 337
19.1 INErOdUCEION e s 338
19.2 TICK NI . e e 339
19.2.1 APT fUNCHIONS ottt e 339
19.2.1.1  OS_TICK _HaNAIE() tovieiiiiiiiiii it i et e st e et a e et e e aa e aaeas 340
19.2.1.2  OS_TICK _HanNdIEEX() «ouriiiiiiiii i i e e aae e e 341
19.2.1.3  OS_TICK_HandleNOHOOK() . uuiiiii it aee e aeas 342
19.2.1.4  OS_TICK _CONFIG() ttutrrinititiieiteitiitiie it sttt it re s taae e ie e tsat e aae e raaaeaaens 343
19.3 Hooking into the system tick ..o 344
19.3.1 APT fUNCHIONS ettt i e e 344
19.3.1.1  OS_TICK _AdAHOOK() tuuitiitiiiii ittt s r e e et e a e e aeaaeeaeas 345
19.3.1.2  OS_TICK _REMOVEHOOK() tutiitiiiiitiiii it e et e e aee e 346
19.4 Lo S L5318 o Lo ] PP 347
19.4.1 (@ 1T e | 1T T PP 347
19.4.2 Callback FUNCEION .. s e e e e e an e aaans 348
19.4.3 APT fUNCHIONS ettt e e e 349
19.4.3.1 OS_GetNUMIAIETICKS() trrrrtrirtiieiitiiiiie it e i st sase s sar e s eaneseaaranneannans 350
I T 0 © L Yo [ U1 T 1T TP PP 351
19.4.3.3 OS_StartTickleSSMOAE() «iviiriiieii i e i aa e e eaneanans 352
19.4.3.4 OS_StopTicKIESSMOAE() .euuviriiiiiti it i e ar e a e reaareaneaanans 353
19.4.4 Frequently Asked QUESTIONS ..viiiiiiii i e e rae e e e 354
20 MUILI-COI® SUPPOIT ...ttt ettt e e e e e e e e e e e e e e e e e e e eebe e b neeeeees 355
20.1 ol o Yo [ 8 T o o TP 356
20.2 1Y 01 1 o Lol 357
20.2.1 Usage of spinlocks with embOS ... 357
20.2.2 Y o I 11 U o 1= P 358
20.2.2.1  OS_SPINLOCK _Cre@te() «iueeriieieieiutitiatiitiiestiiseitsie e stsateataneseanenesneanernens 359
20.2.2.2  OS_SPINLOCK _LOCK() ttuttutttttttieiueiseasiitsersensenssaesesssseaeenesesensaneanernens 361
20.2.2.3  OS_SPINLOCK _UNIOCK() ttrtutiutiutitintiniieiieieatiae i senssaesiesesssnssaesesannanenns 362
20.2.2.4 OS_SPINLOCK_SW_Create() ueieeitiriiiiieiie it iiesenssaesiesssssaesneeieanennns 363
20.2.2.5 OS_SPINLOCK_SW_LOCK() tuttuttutruiitatreinensentiieiestensriesneeerssassaerereanennnns 365
20.2.2.6  OS_SPINLOCK_SW_UNIOCK() tuttutrtiitiitieieiientiieiierienssaesieeesssnssnesesannanens 366
P23 R 0 VIV o 0 V=T ] o] o o ] PSP 367
21.1 ol /o o [ 8 T o o T PP 368
21.2 Y o I 11 U o 1= 368
21.2.1 OS_POWER _GEEMASK ()t uttutitiitiitit it iterteat it et a et e st e aa e e aeaeaaes 369
21.2.2 OS_POWER _USAGEDEC() e vttt iiitiitii ittt st et it e st et se e e st e aa e e aaeean 370
21.2.3 OS_POWER _USAGEINC() tututiitiititiiitiitiit it iiesteat it sesteatenesae e steanaeaeanenenn 371
21.2.4 = 0] 0 = 372
21.3 STOP / WAIT MOGE 1utiiiiiiiiii ittt e ettt ettt a et e e aeaes 373
22 Configuration of target SyStem (BSP) ........uuiiiiiiiiii e 375
22.1 |l o T [ U T o o I PP 376
22.2 Hardware-specCific FOULINES ... ittt e 377
22.2.1 (O 1T o | 1T I PP 377
22.3 Configuration defiNEsS ...oiiiiii i e 379
22.4 HOW 0 Change Settings .ooivviiiiiiiii i i i e e 380
22.4.1 Setting the system frequency OS_FSYS ..o e 380
22.4.2 Using a different timer to generate tick interrupts for embOS .....................L 380
22.4.3 Using a different UART or baudrate for embOSView........coiviiiiiiiiiiiiiiiiinnnn, 380
22.4.4 Changing the tick freqUENCY ...oiiiiiiii e 380
22.5 STOP / HALT / IDLE MOGES ¢ vttt it ete st et st eae st sae e e e naaaeaenneneas 382

23 Profiling

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



20

23.1 AP fUNCHIONS ¢ttt e 384
23.1.1 O ST AT SaMPIE() et utiittitt ittt it e et 385
23.1.2 (O I Y B 1= ] o oY [ PPN 386
23.1.3 Sample application for OS_STAT_Sample() and OS_STAT_GetLoad() ............ 387
23.1.4 OS_AddLoadMeasuremMeENnt() ...voee i s aaans 388
23.1.5 OS_GetLoadMeasuremMeENnt() ..o e 389
23.1.6 (@ ST @ L U 1o Y- T FR PP 390
23.1.7 O ST AT _EN@DIE() ettt e e e e e 391
23.1.8 O _STAT _DiS@bIE() trtiitiiti it i i e e 392
23.1.9 OS_STAT _GetTasKEXECTIME() . tuiirttitttiteiieriteeiesaieesaieesaeeeaeeeaneaanneeannes 393
24 embOSView: Profiling and analyzing...........ccccouuuiiiiiiiiiiiieeeeeee e 395
24.1 L@ Y7 YT L P 396
24.2 L= ] S L1 AV o [ X PP 397
24.3 System variables WINAOW ......oiiiiiiiiii i e 398
24.4 Sharing the SIO for terminal I/O ...ciiriiiiii e e e e 399
24.5 FAY o B 1 Vo o 1= PP 400
24.5.1 (O Y= aTe 1w g o Vo | () T PP 401
24.5.2 OS_SetRXCAlIDACK() tuvtireireiitiiisite i i et a e e ae s ar e s eaneaneanans 402
24.6 Enable communication to embOSViIieW ......oiiiii i e 403
24.7 Select the communication channel in the start project..........c.ccviiiiiiiiniis 403
24.7.1 Select @ UART for commuUNICaAtioN ...ovviieiiiii i e e naea s 403
24.7.2 Select J-Link for COmMmMUNICAtioN . ovviuiiieiii i e eea s 403
24.7.3 Select Ethernet for communication .......ccoviii i 403
24.8 Setup embOSView for COMMUNICAtION .. viiiii i 403
24.8.1 Select @ UART for commuUNICAtioN ...ovviieiiiii i e nae e 404
24.8.2 Select J-Link for COmMmuUNICatioN . .cvviuiiiiii i e ea s 405
24.8.3 Select Ethernet for communication .......ccoviii i 406
24.8.4 Use J-Link for communication and debugging in parallel .............c.cooiiiiiniis 407
24.8.5 Restrictions for using J-Link with embOSView........c.oooiiiiiiiies 407
24, USING the AP fraCe. .. et e e eeaeas 408
24.10 Trace filter setup fUNCLIONS .. ooiviii i e 410
24.11 P o B 11 Vo o =P 411
24.11.1 OS_TraCceENaDbIe() cuviiri i s 412
24.11.2  OS_TraceDisable() .iuieiiiiiii i i s 413
24.11.3 OS_TraceENableAll() cuiur e e 414
24.11.4  OS_TraceDisableAll() uuuiiiii i s e s 415
24.11.5  OS_TraceEnableld() «ovireiiiiiiiii i 416
24.11.6  OS_TraceDisableld() .iiviiiiiiiiiiii i s e e e 417
24.11.7 OS_TraceEnableFilterId() .ocvviiiiiiii i i e e e s ee e e 418
24.11.8 OS_TraceDisableFilterId() ..ooiiiiiiiiiii i e e aeaas 419
24.12 Trace record fUNCHIONS ...viiii i e e e e e e eaneanans 420
24.13 FAY 2 B 11 Vo o o 1= PP 421
24.13.1 (O ST N = [ol oAV o] [ () PP 422
B N T © TN I o= ol =] o o o () PP 423
24.13.3 OS _TraceDatal) cooeeieriieiiei i i i 424
24.13.4  OS _TraceDataPir() coue i i 425
24.13.5  OS _TraCUIB 2PEr() ceureiittittiiteieiiee st iiss s eatease e aanesanesne s e aneeaneareenneaneannans 426
24.14 Application-controlled trace example......c.ooiiiiiiiiiiii 427
24.15 User-defined fUNCLIONS ...iiviiii i e e e e aeens 428
25 Performance and reSOUICE USAGE..........cooiuuuuiuiiiiiiieiieeeteeeeeeae e e e e e e e s s s s s saiinneeeenreeeeees 429
25.1 INErOdUCEION e e 430
25.2 NIt oY VA o =T 18 L =] 0.0 =T o N o= 431
25.3 =T Vo] g 1= [ Lol =T PP 432
25.4 BenNChMarking ..o 432
25.4.1 Measurement with port pins and 0sCilloSCOPE ....cvvivviiiiiiii e 433
25.4.1.1 OSCilloSCOPE @NalYSIS 1iiuviiiiiiiii it i e 434
25.4.1.2 Example measurements Renesas RZ, Thumb2 code in RAM..........ccoevvvviniinnnns 435
25.4.1.3 Measurement with high-resolution timer............coooiiii i, 436

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



72T I =Y o 0 T o [V U PPPPPRRSP 437
26.1 O g g = =T 0 ] = 438
26.1.1 OS _DEBUG . _LEVEL ..uiiiiiiiiiiiii i it e ettt e ettt e et e e aenean 438
26.2 [ o] =T o /o] ol ol Yo 1= P 439
26.3 Application defined error COAES ... vt ae e 444

27  SYStEM VAIIADIES.....ceeiiiii e a e e 445
27.1 | g} o [ T o] o PP 446
27.2 BN gL 2= g 1= o] (= PP 447
27.2.1 L@ 1T €1 1] o =Y 447
27.2.2 (O 1T €1 [0 Y= 1R 1T = 447
27.2.3 (O T €1 (o] Y= IR T 11 < 447
27.3 OS internal variables and data-structures ..o 448
27.4 OS INfOrmation FOULINES. . .c.i i e e e ea s 449
27.4.1 (@ 1T 1= @] U 1 (TP 450
27.4.2 (@I L= o 101\ oo [T () T PP 451
27.4.3 (@ ST €= 1 o Yo 11 1 (PP 452
27.4.4 L@ ST C =1 o 11\ = o ¢ =T () TS 453
27.4.5 L@ ST €1 Y /=T 5] o o | () PP 454

28 Supported developmeENt tOOIS ........oceveviiiiiiiiiiir e e e e e 455
28.1 L@ A YT 456

29 Source code of kernel and lDrary ..........cccuuevviiiiiiiieee e 457
29.1 ol o Yo [ 8 T o o TP 458
29.2 Building embOS libraries. . ..o e 459
29.3 Major compile time SWItCheS ....iiiiiiiii 460
29.4 SOUICE COAE PrOJECE c ittt e 461

30 emMBDOS SHIPMENT ... e e e e 463
30.1 General iNformMation ...uoe i e 464
30.1.1 Object code ShiPMENT. .. i e 465
30.1.2 Source code ShipPMENE ..o e 466
30.1.3 Trial S PMENE . 467

31 R U 1 o = 1 TP UUT 469
31.1 |l o T [ U T o o PP 470
31.2 How to update an exXisting ProjeCt....ccciiiiiiiiiiii i i i e 471
31.2.1 My project does not work anymore. What did I do wrong?...........c.covvvinennne. 471

1 7 T U o] oL ¢ APPSR 473
32.1 (oY w=Totu 1 To IR U] o] Yo o P 474

33 FAQ (frequently asked qQUESLIONS) ....uuuiiiiiie e e e 475

G 10 1S T 1 Y/ 477

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



22

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



23

Chapter 1

Introduction to embOS

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



24 CHAPTER 1 Introduction to embQOS

1.1  What is embOS

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimal memory con-
sumption in both RAM and ROM, as well as high speed and versatility.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



25

1.2 Features

Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the real-time oper-
ating system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of industry. Fully source-compatible implementations of
embOS are available for a variety of microcontrollers, making it well worth the time
and effort to learn how to structure real-time programs with real-time operating sys-
tems.

embOS is highly modular. This means that only those functions that are required are
linked into an application, keeping the ROM size very small. The minimum memory
consumption is little more than 1 Kbyte of ROM and about 30 bytes of RAM (plus
memory for stacks). A couple of files are supplied in source code to make sure that
you do not loose any flexibility by using embOS and that you can customize the sys-
tem to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a
number of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:

e Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inheritance applies.
Round-robin scheduling for tasks with identical priorities.
Preemptions can be disabled for entire tasks or for sections of a program.
Up to 4.294.967.296 priorities.
Every task can have an individual priority, which means that the response of
tasks can be precisely defined according to the requirements of the application.
e Unlimited number of tasks
(limited only by the amount of available memory).
e Unlimited number of semaphores
(limited only by the amount of available memory).
Two types of semaphores: resource and counting.
Unlimited number of mailboxes
(limited only by the amount of available memory).

e Size and number of messages can be freely defined when initializing mailboxes.
e Unlimited number of software timers
(limited only by the amount of available memory).
e Up to 32 bit events for every task.
e Time resolution can be freely selected (default is 1ms).
e Easily accessible time variable.
e Power management.
e Calculation time in which embOS is idle can automatically be spent in low-power

mode.
power-consumption is minimized.
e Full interrupt support:
Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication methods (mailboxes, semaphores, events).

e Disabling interrupts for very short periods allows minimal interrupt latency.

e Nested interrupts are permitted.

e embOS has its own interrupt stack (usage optional).

e Application samples for an easy start.

e Debug build performs runtime checks that catch common programming errors
early on.

e Profiling and stack-check may be implemented by choosing specified libraries.

e Monitoring during runtime is available using embOSView via UART, Debug Com-

munications Channel (DCC) and memory read/write, or else via Ethernet.
Very fast and efficient, yet small code.
Minimal RAM usage.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



26 CHAPTER 1 Introduction to embQOS

e Core written in assembly language.
e API can be called from assembly, C or C++ code.
e Initialization of microcontroller hardware as sources (BSP).

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



27

Chapter 2

Basic concepts

This chapter explains some basic concepts behind embOS. It should be relativly easy
to read and is recommended before moving to other chapters.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



28 CHAPTER 2 Basic concepts

2.1 Tasks

In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely
“own” the entire CPU. The tasks are scheduled for execution, meaning that the RTOS
can activate and deactivate each task according to its priority, with the highest prior-
ity task being executed in general.

2.1.1 Threads

Threads are tasks which share the same memory layout. Two threads can access the
same memory locations. If virtual memory is used, the same virtual to physical
translation and access rights are used.

The embOS tasks are threads; they all have the same memory access rights and
translation (in systems with virtual memory).

2.1.2 Processes

Processs are tasks with their own memory layout. Two processes cannot normally
access the same memory locations. Different processes typically have different
access rights and (in case of MMUs) different translation tables.

Processes are not supported by the present version of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



29

2.2 Single-task systems (superloop)

The classic way of designing embedded systems does not use the services of an
RTOS, which is also called "superloop design". Typically, no real time kernel is used,
so interrupt service routines (ISRs) are used for the real-time parts of the application
and for critical operations (at interrupt level). This type of system is typically used in
small, simple systems or if real-time behavior is not critical.

Task level Interrupt level

Superloop

Time

ISR (nhested)

Typically, because no real-time kernel and only one stack is used, both program
(ROM) and RAM size for simple applications are smaller when compared to using an
RTOS. Of course, there are no inter-task synchronization problems with a superloop
application. However, superloops can become difficult to maintain if the program
becomes too large or uses complex interactions. As sequential processes cannot
interrupt themselves, reaction times depend on the execution time of the entire
sequence, resulting in a poor real-time behavior.

2.2.1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low stack usage (only one stack required)

Disadvantages

No "delay" capability

Higher power consumption due to the lack of a sleep mode in most architectures
Difficult to maintain as program grows

Timing of all software components depends on all other software componts:
Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



30

CHAPTER 2 Basic concepts

2.2.2 Using embOS in super-loop applications

In a true superloop application, no tasks are used, so the biggest advantage of using
an RTOS cannot be used unless the application is converted to use multitasking.
However, even with just a single task, using embOS has the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

2.2.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been
designed as single task, super loop application. At a certain point, the disadvantages
of this approach lead to a decision to use an RTOS. The typical question is then: How
do I do this?

The easiest way is to take the start application that comes with the embQOS and put
your existing "superloop code" into one task. At this point you should also make sure
that the stack size of this task is sufficient. Later, additional functionality which is
added to the software can be put in one or more additional tasks; the functionality of
the super loop can also be distributed over multiple tasks.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



31

2.3 Multitasking systems

In a multitasking system, there are different ways of distributing the CPU time
amongst different tasks. This process is called scheduling.

Idle task

i Priority . >
| |
| |
I - - - I
, Low prio task High prio task | ISR
| |
OS_Start() 1 - 1
1 7] 1
1 P OS_EVENT_Wait() !
1 < 1
1 Interrupt 1 >
I < " g S|
| |
| |
| |
| |
1 Interrupt (Rx) | .
Time 1 OS_EVENT_Set()
: P 0S_EVENT_Wait() :
1 1
1) !
| |
1 Interrupt (Tick) 1 >
| [~ |
| |
| |
1 1
0S_Delay() :
1 1
1 1
1 1
| |
| |
| |

Application level tasks Interrupt service

2.3.1 Task switches

There are two types of task switches, also called context switches: Cooperative and
preemptive task switches.
2.3.2 Cooperative task switch

A cooperative task switch is performed by the task itself. It requires the cooperation
of the task, hence the name. What happens is that the task blocks itself by calling a
blocking RTOS function such as 0S_Delay () Oor 0OS_WaitEvent ().

2.3.3 Preemptive task switch

A preemptive task switch is a task switch caused by an interrupt. Typically some
other high priority task becomes ready for execution and, as a result, the current
task is suspended.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



32 CHAPTER 2 Basic concepts

2.3.4 Preemptive multitasking

Real-time operating systems like embOS operate with preemptive multitasking. The
highest-priority task in the READY state always executes as long as the task is not
suspended by a call of any operating system function. A high-priority task waiting for
an event is signaled READY as soon as the event occurs. The event can be set by an
interrupt handler, which then activates the task immediately. Other tasks with lower
priority are suspended (preempted) as long as the high-priority task is executing.

A real-time operating system, such as embQOS, normally comes with a regular timer
interrupt to interrupt tasks at regular intervals and to perform task switches if timed
task switches are necessary.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state;
Time task switch occurs

High priority task

Higher priority task
Is executed

Interrupted task
is completed

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



33

2.3.5 Cooperative multitasking

Cooperative multitasking requires all tasks to cooperate by using blocking functions.
A task switch can only take place if the running task blocks itself by calling a blocking
function such as 0s_Delay () or 0Ss_wait... (). If tasks do not cooperate, the system
“hangs”, which means that other tasks have no chance of being executed by the CPU
while the first task is being carried out. This is illustrated in the diagram below. Even
if an ISR makes a higher-priority task ready to run, the interrupted task will be
resumed and complete before the task switch is made.

Low priority task

Executing task is interrupted

ISR
ISR puts high priority
task in READY state

Interrupted task
is completed

Time

High priority task

Higher priority task
Is executed

A pure cooperative multi-tasking system has the disadvantage of longer reaction
times when high priority tasks become ready for execution. This makes their usage in
embedded real-time systems uncommon.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



34 CHAPTER 2 Basic concepts

2.4 Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and other tasks that are sus-
pended for some reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the body of this task). The task which is currently executing is
referred to as the running task. The main difference between schedulers is the way
they distribute computation time between tasks in the READY state.

2.4.1 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the running task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time. Round-robin scheduling can be illustrated as
follows:

All tasks share the same priority; the possession of the CPU changes periodically
after a predefined execution time. This time is called a time slice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For exam-
ple, in an application that controls a motor, a keyboard, and a display, the motor usu-
ally requires faster reaction time than the keyboard and display. While the display is
being updated, the motor needs to be controlled. This makes preemptive multitask-
ing essential. Round-robin might work, but because it cannot guarantee a specific
reaction time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on
these priorities, one task gets chosen for execution according to one simple rule:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with a priority higher than the running task
becomes ready, it immediately becomes the running task, thus the previous task gets
preempted. However, the scheduler can be switched off in sections of a program
where task switches are prohibited, known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not need to decide whether one task is more important than
another. Tasks with identical priority cannot block each other for longer than their
time slices. But round-robin scheduling also costs time if two or more tasks of identi-
cal priority are ready and no task of higher priority is ready, because execution con-
stantly switch between the identical-priority tasks. It is more efficient to assign a
different priority to each task, which will avoid unnecessary task switches.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



35

2.4.3 Priority inversion / priority inheritance
The rule the scheduler obeys is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority task is resumed and releases the resource.

Up to this point, everything works as expected.

Problems arise when a task with medium priority becomes ready during the execu-
tion of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than
the low-priority task.

In this scenario, a task with medium priority runs in place of the task with high prior-
ity. This is known as priority inversion.

With Priority Inversion

Low priority task Medium priority task High priority task

OS_Use()
Interrupt activates high prio task
>

»

OS_Use()

A

OS_Delay()

<&
l

rime |1

OS_Unuse()

OS_Unuse()

The low priority task claims the semaphore with OS_Use(). An interrupt activates the
high priority task, which also calls OS_Use().

Meanwhile a task with medium priority becomes ready and runs when the high prior-
ity task is suspended.

The task with medium priority eventually calls OS_Delay() and is therefore sus-
pended. The task with lower priority now continues and calls OS_Unuse() to release
the resource semaphore. After the low priority task releases the semaphore, the high
priority task is activated and claims the semaphore.

To avoid this situation, embOS temporarily raises the low-priority task to high priority
until it releases the resource. This unblocks the task that originally had the highest
priority and can now be resumed. This is known as priority inheritance.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



36 CHAPTER 2 Basic concepts

With Priority Inheritance

Low priority task Medium priority task High priority task

OS_Use()
Interrupt activates high prio task
>

P

Priority inheritance
0OS_Use()

A

T| me OS_Unuse() o

-os_Unuseo

A

With priority inheritance, the low priority task inherits the priority of the waiting high
priority task as long as it holds the resource semaphore. The lower priority task is
activated instead of the medium priority task when the high priority task tries to
claim the semaphore.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



37

2.5 Communication between tasks

In a multitasking (multithreaded) program, multiple tasks and ISRs work completely
separately. Because they all work in the same application, it will sometimes be nec-
essary for them to exchange information with each other.

2.5.1 Periodic polling

The easiest way to communicate between different pieces of code is by using global
variables. In certain situations, it can make sense for tasks to communicate via glo-
bal variables, but most of the time this method has disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you must continually poll this variable, wasting precious computa-
tion time and energy, and the reaction time depends on how often you poll.

2.5.2 Event-driven communication mechanisms

When multiple tasks work with each other, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues

A mailbox is a data buffer managed by the RTOS and is used for sending a message
to a task. It works without conflicts even if multiple tasks and interrupts try to access
the same mailbox simultaneously. embOS activates any task that is waiting for a
message in a mailbox the moment it receives new data and, if necessary, switches to
this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and
each message may have an individual size.

For more information, refer to the chapters Mailboxes on page 147 and Queues on
page 171.

2.5.4 Semaphores

Two types of semaphores are used for synchronizing tasks and to manage resources
of any kind. The most common are resource semaphores, although counting sema-
phores are also used. For details and samples, refer to the chapters Resource sema-
phores on page 119 and Counting Semaphores on page 133.

2.5.5 Events

A task can wait for a particular event without consuming any calculation time. The
idea is as simple as it is convincing, there is no sense in polling if we can simply acti-
vate a task the moment the event it is waiting for occurs. This saves processor cycles
and energy and ensures that the task can respond to the event without delay. Typical
applications for events are those where a task waits for some data, a pressed key, a
received command or character, or the pulse of an external real-time clock.

For further details, refer to the chapters Task events on page 193 and Event objects
on page 203.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



38 CHAPTER 2 Basic concepts

2.6 How task switching works

A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

e The program code, which typically resides in ROM
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate results and register values. Each task can have a different stack size.
More information can be found in chapter Stacks on page 243.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task
priority, current task status (ready, waiting, reason for suspension) and other man-
agement data. Knowledge of the stack pointer allows access to the other registers,
which are typically stored (pushed onto) the stack when the task is created and each
time it is suspended. This information allows an interrupted task to continue execu-
tion exactly where it left off. TCBs are only accessed by the RTOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



2.6.1

39

Switching stacks

The following diagram demonstrates the process of switching from one stack to
another.

Task O Task n
Task Control Stack Task Control Stack
block block
variables variables
temp. storage temp. storage
ret. addresses ret. addresses
CPU CPU
registers registers
SP > SP >
Free Stack Free Stack
area area
\ /
\ /
\ /
\ /
\ /

CPU

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's
stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task's stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task n) by performing the sequence
in reverse order:

1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task n's stack.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



40 CHAPTER 2 Basic concepts

2.7 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY
state with higher priority. Only one task may be running at a time. If a task with
higher priority becomes READY, this higher priority task is activated and the pre-
empted task remains in the READY state.

The running task may be delayed for or until a specified time; in this case it is placed
into the WAITING state and the next-highest-priority task in the READY state is acti-
vated.

The running task might need to wait for an event (or semaphore, mailbox or queue).
If the event has not yet occurred, the task is placed into the waiting state and the
next-highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been ter-
minated or was not created at all.

The following illustration shows all possible task states and transitions between
them.

Not existing

OS_CreateTask()

OS_CreateTaskEXx() OS_Terminate()

Ready Running
API class such as API class such as
OS_Delay() OS_Signal...() or
OS_Wait_...() delay expiration
Waiting

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



41

2.8 How the OS gains control

When the CPU is reset, the special-function registers are set to their default values.
After reset, program execution begins. The PC register is set to the start address
defined by the start vector or start address (depending on the CPU). This start
address is usually in a startup module shipped with the C compiler, and is sometimes
part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs
the end of the defined stack segment(s)

e Initializes all data segments to their respective values

e Calls the main () function.

The main() function is the part of your program which takes control immediately
after the C startup. Normally, embOS works with the standard C startup module with-
out any modification. If there are any changes required, they are documented in the
CPU & Compiler Specifics manual of the embOS documentation.

With embQOS, the main () function is still part of your application program. Essentially,
main() creates one or more tasks and then starts multitasking by calling
0S_Start (). From this point, the scheduler controls which task is executed.

Startup code
main ()

—OS_IncDI()

—OS_InitKern()

—OS_InitHW()

—Additional initialization code;
creating at least one task.

—0S_Start()

The main() function will not be interrupted by any of the created tasks because
those tasks execute only following the call to os_start (). It is therefore usually rec-
ommended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. Good practice is to write software in the form of
modules which are (up to a point) reusable. These modules usually have an initializa-
tion routine, which creates any required task(s) and control structures.

A typical main () function looks similar to the following example:

Example

/~k~k~k~k~k~k~k**~k********~k~k~k~k~k~k*********~k~k~k~k*************************************
*
* main
*

Rk Ik I I I Sk I I I S S R R S R I R R Ik I R Rk S kI I I

*/

void main(void) {
0S_TIncDI();
OS_InitKern() ; /* Initialize OS (should be first !) */
OS_InitHW() ; /* Initialize Hardware for OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create */
/* the tasks they need ... (Order of creation may be important) */
MODULE1l_Init () ;
MODULE2_Init () ;
MODULE3_TInit (
(
(

MODULE4_Init

MODULES5_Init

0S_Start () ; /* Start multitasking */
}

With the call to os_start (), the scheduler starts the highest-priority task created in
main ().
Note that os_start () is called only once during the startup process and does not
return.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



42 CHAPTER 2 Basic concepts

2.9 Different builds of embOS

embOS comes in different builds or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release build into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug build of the embOS libraries and make the code a little
bigger (about 50%) and also slightly slower than the release or stack-check build
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack-check build of the libraries), and a safer (though
bigger and slower) build for development which will catch most common application
programming errors. Of course, you may also use the release build of embOS during
development, but it will not catch these errors.

2.9.1 Profiling

embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they require larger task control blocks, additional ROM (approxi-
mately 200 bytes) and additional runtime overhead. This overhead is usually
acceptable, but for best performance you may want to use non-profiling builds of
embOS if you do not use this feature.

2.9.2 List of libraries

In your application program, you need to let the compiler know which build of embQOS
you are using. This is done by defining a single identifier prior to including RT0OS.h.

o 0|4
|5 | o g | &
: e R (F|2|7F .
Name Define @ | 5 | = 2 = Description
83|33 |° |23
o o0 =3 o
o | = 5| o
Eéf;i?ee 0S_LIBMODE_XR Smallest fastest build.
Small, fast build, normally
Release OS_LIBMODE_R X | X |used for release build of
application.
Same as release, plus
Stack check | 0s_LIBMODE_S X X | X stack checking.
Stackcheck
plus profil- | 0S_LIBMODE_SP X | X X | X Sam_e_ as stack check, plus
ing profiling.
Debug 0S LIBMODE D N X | x Maximum runtime check-
- - ing.
Debug plus 0s LIBMODE DP | X | X |X X |x Maximum runtime check-
profiling - - ing, plus profiling.
Prilljuucﬁn Maximum runtime check-
trace ?o- OS_LIBMODE_DT [X [X |X |X |X |X |ing, plus tracing API calls
fiIing’ P and profiling.

Table 2.1: List of libraries

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



43

2.9.3 embOS functions context

Not all embQOS functions can be called from every place in your application. We need
to distinguish between Main (before the call of OS_Start() ), Task, ISR and Software
timer.

Please consult the embOS API tables to be sure that an embQOS function is allowed to
be called from your execution context, e.g. from an ISR. The embOS debug build
helps you to check that you do not violate these rules.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



44

UMO01001 User & Reference Guide for embOS

CHAPTER 2 Basic concepts

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



45

Chapter 3
Working with embOS

This chapter gives some recommendations on how to use embOS in your applica-
tions. These are simply recommendations that we feel are helpful when designing
and structuring an application.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



46 CHAPTER 3 Working with embOS

3.1 General advice
- Avoid Round Robin if possible

- Avoid dynamically creating and terminating tasks

- Avoid nesting interrupts if possible

3.1.1 Timers or task

For periodic jobs you can use either a task or a software timer. An embOS software
timer has the advantage that it does not need its own task stack since it runs on the
system stack.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



47

Chapter 4

Tasks

This chapter explains some basic concepts related to tasks and embOS task API func-
tions. It should be relatively easy to read and is recommended before moving to
other chapters.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



48

4.1 Introduction

CHAPTER 4

Tasks

A task that should run under embOS needs a task control block (TCB), a stack, and a
task body written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which
case 0S_CreateTask() is used to create it, or take a single void pointer as
parameter, in which case 0S_CreateTaskEx () is used to create it.

e The task routine must not return.

e The task routine must be implemented as an endless loop or it must terminate

itself (see examples below).

4.1.1 Example of a task routine as an endless loop

/* Example of a task routine as an endless loop */
void Taskl (void) {
while (1) {
DoSomething () ; /* Do something */
0S_Delay (1) ; /* Give other tasks a chance */

}
}

4.1.2 Example of a task routine that terminates itself

/* Example of a task routine that terminates */

void Task2 (void) {
char DoSomeMore;
do {

DoSomeMore = DoSomethingElse();

/* Do something */

0S_Delay (1) ; /* Give other tasks a chance */

} while (DoSomeMore) ;
OS_TerminateTask (0) ;
}

/* Terminate yourself */

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is sufficient in most cases. However, if you are dynamically creat-
ing and deleting tasks, a function is available allowing “fine-tuning” of all parame-
ters. For most applications, at least initially, using the macro as in the sample start

project works fine.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



49

4.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemp-
tive task switches are required to guarantee responsiveness of high-priority, time-
critical tasks. However, it may be desireable to disable preemptive task switches for
certain tasks in some circumstances. The default behavior of embOS is to always

allow preemptive task switches.

4.2.1 Disabling preemptive task switches for tasks of equal

priority

In some situations, preemptive task switches between tasks running at identical pri-
orities are not desireable. To inhibit time slicing of equal-priority tasks, the time slice
of the tasks running at identical priorities must be set to zero as in the example

below:

#include "RTOS.h"

#define PRIO_COOP 10
#define TIME_SLICE_NULL 0

OS_STACKPTR int StackHP[128],
OS_TASK TCBHP, TCBLP;

StackLP[128]; /* Task stacks */

/* Task-control-blocks */

/********************************************************************/

static void TaskEx(void *pData)

while (1) {

0S_Delay ((OS_TIME) pDbata) ;

}
}

/*********************************************************************

*

* main
*

*********************************************************************/

int main(void) {

0OS_IncDI(); /* Initially disable interrupts */
O0S_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

0S_CreateTaskEx (&TCBHP, "HP Task",
sizeof (StackHP),
0S_CreateTaskEx (&TCBLP, "LP Task",
sizeof (StackLP),

OS_Start();
return O;

}

PRIO_COOP, TaskEx, StackHP,
TIME_SLICE_NULL, (void *) 50);
PRIO_COOP, TaskEx, StackLP,
TIME_SLICE_NULL, (void *) 200);

/* Start multitasking */

4.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be 0S_EnterRegion() as shown in the

following sample:

void MyTask (void *pContext) {
OS_EnterRegion () ;
while (1) {

// Do something. In the code,

/* Disable preemptive context switches */

make sure that you call a blocking

// funtion periodically to give other tasks a chance to run.

}
}

Note: This will entirely disable preemptive context switches from that particular
task and will therefore affect the timing of higher-priority-tasks. Do not use this

carelessly.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



50 CHAPTER 4 Tasks

4.3 Extending the task context

For some applications it might be useful or required to have individual data in tasks
that are unique to the task.

Local variables, declared in the task, are unique to the task and remain valid, even
when the task is suspended and resumed again.

When the same task function is used for multiple tasks, local variables in the task
may be used, but cannot be initialized individually for every task.

embOS offers different options to extend the task context.

4.3.1 Passing one parameter to a task during task creation

Very often it is sufficient to have just one individual parameter passed to a task.
Using the OS_CREATETASK_EX () Or 0S_CreateTaskEx() function to create a task
allows passing a void-pointer to the task. The pointer may point to individual data, or
may represent any data type that can be held within a pointer.

4.3.2 Extending the task context individually at runtime

Sometimes it may be required to have an extended task context for individual tasks
to store global data or special CPU registers such as floating-point registers in the
task context.

The standard libraries for file I/0, locale support and others may require task-local
storage for specific data like errno and other variables.

embOS enables extension of the task context for individual tasks during runtime by a
call of 0S_ExtendTaskContext ().

The sample application file OS_ExtendTaskContext.c delivered in the application
samples folder of embOS demonstrates how the individual task context extension can
be used.

4.3.3 Extending the task context by using own task structures

When complex data is needed for an individual task context, the
OS_CREATETASK_EX () OrF 0OS_CreateTaskEx() functions may be used, passing a
pointer to individual data structures to the task.

Alternatively you may define your own task structure which can be used.

Note, that the first item in the task structure must be an embOS task control struc-
ture OS_TASK. This can be followed by any amount and type of additional data of dif-
ferent types.

The following code shows the example application OS_EgxtendedTask.c which is
delivered in the sample application folder of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



51

/********‘k*‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*****‘k‘k‘k*‘k*‘k*‘k‘k*******************

* SEGGER MICROCONTROLLER GmbH & Co KG *

* Solutions for real time microcontroller applications ¥*
R R R S R I I I R I I I I R R R I S R I I I I R R I S I S I

File : OS_ExtendedTask.c

Purpose : Skeleton program for OS to demonstrate extended tasks
———————— END-OF-HEADER === === = = = = o e e e e e e e e
*/

#include "RTOS.h"

#include <stdio.h>

/xxx*x*%*% Define an own task structure with extended task context *****/
typedef struct {

OS_TASK Task; // OS_TASK must be the first element
OS_TIME Timeout; // Any other data may follow
char *pString;

} MY_APP_TASK;

/****** Varlables ********‘k*‘k*‘k*‘k**‘k*****‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*/

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
MY_APP_TASK TCBHP, TCBLP; /* Task-control-blocks */

/********************'k*'k**********************************************

*

* Task function

*/

static void MyTask(void) {
char* pString;
OS_TIME Delay;

MY_APP_TASK *pThis;

pThis = (MY_APP_TASK *) 0OS_GetTaskID() ;
while (1) {
Delay = pThis->Timeout;

pString = pThis->pString;
printf (pString) ;
0S_Delay (Delay) :;

/******************~k~k~k~k~k~k***********************************************
*

* maln

*

***********************************************************************/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern(); /* Initialize 0OS */
OS_InitHW() ; /* Initialize Hardware for OS */
/*

* Create the extended tasks just as normal tasks.

* Note that the first paramater must be of type OS_TASK

*/

OS_CREATETASK (&TCBHP.Task, "HP Task", MyTask, 100, StackHP);
OS_CREATETASK (&TCBLP.Task, "LP Task", MyTask, 50, StackLP);
/*

*  Give task contexts individual data

*/

TCBHP.Timeout = 200;

TCBHP.pString "HP task running\n";

TCBLP.Timeout = 500;
TCBLP.pString = "LP task running\n";
0S_Start () ; /* Start multitasking */

return 0;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



52 CHAPTER 4 Tasks

4.4 API functions

Routine Description 3 § % g
5 = P o
Adds a hook (callback) function to the
0S_AddOnTerminateHook () list of functions which are called when | X | X
a task is terminated.
OS_CREATETASK () Creates a task. X | X
0S_CreateTask () Creates a task. X | X
OS_CREATETASK_EX () Creates a task with parameter. X| X
0S_CreateTaskEx () Creates a task with parameter. X| X
oS Delay () Suspends the calling task for a speci- x| x

fied period of time.
Suspends the calling task until a spec-

0S_DelayUntil () ified time. X | X

0S._Delayus () Waits for the given time in microsec- x| x
onds

0S. ExtendTaskContext () Malfe global varlabl_e_s or processor X
registers task-specific.

0S. AddExtendTaskContext () ,:iiis an additional task context exten-

0OS_GetPriority () Returns the priority of a specified task | X| X | X| X

0S_GetSuspendCnt () Returns the suspension count. X X[ X[ X
Returns a pointer to the task control

0S_GetTaskID() block structure of the currently run- X| X| X | X
ning task.

0S_GetTaskName () Returns the name of a task.

. . Returns the remaining time slice time

OS_GetTimeSliceRem()
of a task.

0S._TsRunning () Examine whether OS_Start() was x| x| x| x
called.

0S. TsTask () Determines whether a task control X% x| x

block actually belongs to a valid task.
Decrements the suspend count of
OS_Resume () specified task and resumes the task, if X | X
the suspend count reaches zero.
Decrements the suspend count of
0S_ResumeAllSuspendedTasks () |specified task and resumes the task, if XX
the suspend count reaches zero.
0S_SetDefaultTaskContextExten |Sets the default task context exten-

sion|() sion for newly created tasks X

0S._SetInitialSuspendcnt () Sets an initial suspension count for x| x| x| x
newly created tasks.

0S_SetPriority () é(sazlg,;cg:ka specified priority to a speci- x| X

0S. SetTaskName () AIIov_vs modification of a task name at x| % x
runtime.

05 SetTimeslice () ASS|gn_s_a specified time slice value to x| x| x
a specified task.

0S_Start () Start the embOS kernel.

0S. Suspend () Suspends the specified task and incre- X
ments a counter.

0S_SuspendAllTasks () Suspends all tasks except the running xIx!x x

task.

Table 4.1: Task routine API list

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Routine

Description

urew
yselL
HSlI
FETTINE

Returns the task control block of the

OS_TaskIndex2Ptr () task with the Index TaskIndex. X XXX
OS_TerminateTask () Ends (terminates) a task. X| X
0S_WakeTask () Ends delay of a task immediately. X[ X| X
oS vield() Calls the scheduler to force a task X

switch.

Table 4.1: Task routine API list

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



54 CHAPTER 4 Tasks

441 OS_AddOnTerminateHook()

Description

Adds a handler function to a list of functions that are called when a task is termi-
nated.

Prototype

void OS_AddOnTerminateHook (OS_ON_TERMINATE_HOOK *pHook,
OS_ON_TERMINATE_FUNC *pfUser) ;

Parameter Description

Pointer to a variable of type 0S_ON_TERMINATE_HOOK which will
pHook be inserted into the linked list of functions to be called during
O0S_TerminateTask () .

Pointer to the function of type OS_TERMINATE_FUNC which shall
be called when a task is terminated.

Table 4.2: OS_AddOnTerminateHook() parameter list

pfUser

Additional Information

For some applications, it may be useful to allocate memory or objects specific to
tasks. For other applications, it may be useful to have task-specific information on

the stack.
When a task is terminated, the task-specific objects may become invalid.
A callback function may be hooked into 0S_TerminateTask() by calling

0S_AddOnTerminateHook () to allow the application to invalidate all task-specific
objects before the task is terminated.

The callback function of type 0S_ON_TERMINATE_FUNC receives the ID of the termi-
nated task as its parameter.

OS_ON_TERMINATE_FUNC is defined as:

typedef void OS_ON_TERMINATE_FUNC (OS_CONST_PTR OS_TASK * pTask);

Important

The variable of type OS_ON_TERMINATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not
be located on any stack of any task that might be terminated.

Example

OS_ON_TERMINATE_HOOK _OnTerminateHook; /* Stack-space */

void OnTerminateHookFunc (OS_CONST_PTR OS_TASK *pTask) {
// This function is called when OS_TerminateTask() is called.
if (pTask == &MyTask) {
free (MytaskBuffer) ;
}
}

main (void) {
0S_AddOnTerminateHook (& OnTerminateHook, OnTerminateHookFunc) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



55

4.42 OS_CREATETASK()

Description

Creates a task.

Prototype
void OS_CREATETASK ( OS_TASK *pTask,
char *pName,
void *pRoutine,
OS_PRIO Priority,
void *pStack) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a function that should run as the task body.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16 bit CPUs
Priority 1 <= priority <= 232-1 = OxFFFFFFFF for 32 bit CPUs

Higher values indicate higher priorities.
The type 0s_PRr10 is defined as 32 bit value for 32 bit CPUs and
8bit value for 8 or 16 bit CPUs by default.

Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
Table 4.3: OS_CREATETASK() parameter list

Additional Information

OS_CREATETASK () is @ macro which calls an OS library function. It creates a task and
makes it ready for execution by placing it into the READY state. The newly created
task will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed immediately before it. This macro is normally used for creating a
task instead of the function call 0s_createTask() because it has fewer parameters
and is therefore easier to use.

OS_CREATETASK () can be called either from main () during initialization or from any
other task. The recommended strategy is to create all tasks during initialization in
main () to keep the structure of your tasks easy to understand.

The absolute value of priority is of no importance, only the value in comparison to
the priorities of other tasks matters.

OS_CREATETASK () determines the size of the stack automatically, using sizeof ().
This is possible only if the memory area has been defined at compile time.

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



56 CHAPTER 4 Tasks

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask (void) {
while (1) {
Delay (100);
}
}

void InitTask (void) {

OS_CREATETASK (&UserTCB, "UserTask", UserTask, 100, UserStack);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



57

4.4.3 OS_CreateTask()

Description
Creates a task.

Prototype

void OS_CreateTask ( OS_TASK *pTask,
char *pName,
OS_PRIO Priority,
voidRoutine *pRoutine,
void *pStack,
unsigned StackSize,
unsigned char TimeSlice );

Parameter Description

pTask Pointer to a task control block structure.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:

1 <= priority <= 28-1 = OxFF for 8/16 bit CPUs

1 <= priority <= 232-1 = OxFFFFFFFF for 32 bit CPUs

Higher values indicate higher priorities.

The type 0s_prr1o is defined as a 32 bit value for 32 bit CPUs and
as an 8 bit value for 8 or 16 bit CPUs by default.

pRoutine Pointer to a function that should run as the task body.

Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.

StackSize Size of the stack in bytes.

Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
the time in embOS timer ticks that the task will run before it sus-
pends, thus enabling another task with the same priority.

The time slice value must be in the following range:

0 <= TimeSlice <= 255.

Table 4.4: OS_CreateTask() parameter list

Priority

TimeSlice

Additional Information

This function works the same way as 0S_CREATETASK (), except that all parameters of
the task can be specified.

The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.

A time slice value of zero is allowed and disables round-robin task switches (see
sample in chapter Disabling preemptive task switches for tasks of equal priority on
page 49).

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



58

Example

CHAPTER 4 Tasks

/* Demo-program to illustrate the use of 0S_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];

OS_TASK TaskMain, TaskClock;
OS_SEMA SemalCD;

void Clock(void) {
while(1l) {
/* Code to update the clock */
}
}

void Main (void) {
while (1) {
/* Your code */
}
}

void InitTask (void) {
OS_CreateTask (&TaskMain, NULL,
0S_CreateTask (&TaskClock, NULL,
}

UMO01001 User & Reference Guide for embOS

50,
100,

Main, StackMain, sizeof (StackMain), 2);
Clock, StackClock, sizeof (StackClock),2);

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



59

4.4.4 OS_CREATETASK_EX()

Description
Creates a task and passes a parameter to the task.
Prototype
void OS_CREATETASK_EX ( OS_TASK *pTask,
char *pName,
void *pRoutine,
OS_PRIO Priority,
void *pStack,
void *pContext ) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a function that should run as the task body.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16 bit CPUs
Priority 1 <= priority <= 232-1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities.
The type 0s_pPRr10 is defined as a 32 bit value for 32 bit CPUs and
an 8 bit value for 8 or 16 bit CPUs per default.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
pContext Parameter passed to the created task function.

Table 4.5: OS_CREATETASK_EX() parameter list

Additional Information

OS_CREATETASK_EX () is a macro calling an embOS library function. It works like
OS_CREATETASK () but allows passing a parameter to the task.

Using a void pointer as an additional parameter gives the flexibility to pass any kind
of data to the task function.

Example

The following example is delivered in the samples folder of embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



60 CHAPTER 4 Tasks

e e
File : OS_CreateTaskEx.c

Purpose : Sample program for embOS using OC_CREATETASK_EX

————————— END-OF-HEADER —— === === == — oo %/
#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/‘k‘k‘k‘k‘k‘k‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*******‘k‘k‘k‘k‘k*‘k**‘k***‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k***/

static void TaskEx(void *pVoid) {
while (1) {
0S_Delay ((OS_TIME) pVoid);
}

/*********************************************************************
*

* maln

*
*********************************************************************/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* initialize 0OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

OS_CREATETASK_EX (&TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
OS_CREATETASK_EX (&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
0S_SendString("Start project will start multitasking !\n");

0S_Start () ; /* Start multitasking */
return O;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



61

4.4.5 OS_CreateTaskEx()

Description
Creates a task and passes a parameter to the task.
Prototype
void OS_CreateTaskEx ( OS_TASK *pTask,
char *pName,
OS_PRIO Priority,
voidRoutine *pRoutine,
void *pStack,
unsigned StackSize,
unsigned char TimeSlice,
void *pContext ) ;
Parameter Description
pTask Pointer to a task control block structure.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
1 <= priority <= 28-1 = OxFF for 8/16 bit CPUs
pPriority 1 <= priority <= 232-1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities.
The type 0s_prr1o is defined as a 32 bit value for 32 bit CPUs and
an 8 bit value for 8 or 16 bit CPUs per default.
pRoutine Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the stack in bytes.
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
TimeSlice the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority.
The time slice value must be in the following range:
0 <= TimeSlice <= 255.
pContext Parameter passed to the created task.

Table 4.6: OS_Create_TaskEx() parameter list

Additional Information

This function works the same way as 0S_CreateTask () except that a parameter is
passed to the task function.

An example of parameter passing to tasks is shown under 0S_CREATETASK_EX ().

A time slice value of zero is allowed and disables round-robin task switches (see
sample in chapter Disabling preemptive task switches for tasks of equal priority on
page 49).

Important

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size.

The task stack cannot be shared between multiple tasks and must be assigned to one
task only. The memory used as task stack cannot be used for other purposes unless
the task is terminated.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



62 CHAPTER 4 Tasks

4.4.6 OS_Delay()

Description
Suspends the calling task for a specified period of time.

Prototype
void 0S_Delay (OS_TIME ms) ;

Parameter Description

Time interval to delay. Must be within the following range:
215> = 0x8000 <= ms <= 21°-1 = Ox7FFF for 8/16 bit CPUs

231 = 0x80000000 <= ns <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Please note that these are signed values.
Table 4.7: OS_Delay() parameter list

ms

Additional Information

The calling task is placed into the WAITING state for the period of time specified. The
task will stay in the delayed state until the specified time has expired. 0s_bDelay ()
returns immediately if the parameter ms is less than or equal to zero. The parameter ms
specifies the precise interval during which the task is suspended given in basic time
intervals (usually 1/1000 seconds). The actual delay (in basic time intervals) will be
in the following range: ms - 1 <= delay <= ms, depending on when the interrupt for
the scheduler occurs.

After the expiration of the delay, the task is made ready and activated according to
the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling 0s_wakeTask ().

Example

void Hello(void) {
printf ("Hello");
printf ("The next output will occur in 5 seconds");
0S_Delay (5000) ;
printf ("Delay is over");

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



63

4.4.7 OS_DelayUntil()

Description
Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (OS_TIME t) ;

Parameter Description

Time to delay until. Must be within the following range:
0 <=t <= 216-1 = OxFFFF = 65535 for 8/16 bit CPUs
0 <= t <= 232-1 = OxFFFFFFFF for 32 bit CPUs

t and must meet the following additional condition
1 <= (t -0S_Time) <= 213-1 = Ox7FFF = 32767 for 8/16 bit
CPUs

1 <= (t- OS_Time) <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 4.8: OS_DelayUntil() parameter list

Additional Information

The calling task will be put into the WAITING state until the time specified.

The 0s_bDelayuntil () function delays until the value of the time-variable 0s_Time
reaches a certain value. It is very useful to avoid accumulating delays.

An embOS SysTick timer overflow is no problem as long as parameter t is within the
specified range.

Example

int sec,min;

void TaskShowTime (void) {
OS_TIME tO;
t0 = 0S_GetTime() ;
while (1) {
ShowTime () ; /* Routine to display time */
£t0 += 1000;
0S_DelayUntil (tO0);
if (sec < 59) {
sec++;
} else {
sec = 0;
min++;
}
}
}

In the example above, using 0S_bDelay () could lead to accumulating delays and
would cause the simple “clock” to be slow.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



64

CHAPTER 4 Tasks

4.4.8 OS_Delayus()

Description
Waits for the given time in microseconds.

Prototype
void 0OS_Delayus (0S_U1l6 us);

Parameter Description

Number of microseconds to delay. Must be within the following
us range:

1 <= us <= 215-1 = Ox7FFF = 32767

Table 4.9: OS_Delay() parameter list

Additional Information
This function can be used for short delays.

0S_Delayus () must only be called with interrupts enabled and after OS_InitKern()
and OS_InitHW() have been called. This only works when the embQOS system timer is
running. The embOS debug build of 0s_belayus() checks that interrupts are
enabled, and if not then 0s_Error () is called.

0S_Delayus () does not block task switches and does not block interrupts. Therefore,
the delay may not be accurate because the function may be interrupted for an unde-
fined time. The delay duration therefore is a minimum delay.

0S_Delayus() does not suspend the calling task, thus all tasks with lower priority can
not interrupt OS_Delayus() and will not be executed before OS_Delayus() returns.

Example

void Hello (void) {
printf ("Hello");
printf ("The next output will occur in 500 microseconds") ;
0S_Delayus (500);
printf ("Delay is over");

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



65

4.4.9 OS_ExtendTaskContext()

Description

The function may be used for a variety of purposes. Typical applications are:

e global variables such as “errno” in the C library, making the C-lib functions
thread-safe.

e additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.
Coprocessor registers such as registers of a VFP (floating-point coprocessor).
Data registers of an additional hardware unit such as a CRC calculation unit

This allows the user to extend the task context as required. A major advantage is
that the task extension is task-specific. This means that the additional information
(such as floating-point registers) needs to be saved only by tasks that actually use
these registers. The advantage is that the task switching time of other tasks is not
affected. The same is true for the required stack space: Additional stack space is
required only for the tasks which actually save the additional registers.

Prototype
void OS_ExtendTaskContext (const OS_EXTEND_TASK_CONTEXT * pExtendContext) ;

Parameter Description

Pointer to the 0S_EXTEND_TASK_CONTEXT structure which contains
pExtendContext |the addresses of the specific save and restore functions that save
and restore the extended task context during task switches.
Table 4.10: OS_ExtendTaskContext() parameter list

Additional Information

The 0S_EXTEND_TASK_CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
void* (*pfSave) ( void *pStack) ;
void* (*pfRestore) (const void *pStack) ;
} OS_EXTEND_TASK_CONTEXT;

The save and restore functions must be declared according the function type used in
the structure. The sample below shows how the task stack must be addressed to
save and restore the extended task context.

0S_ExtendTaskContext () is not available in the XR libraries.
Important

The task context can be extended only once per task with OS_ExtendTaskContext().
The function must not be called multple times for one task. Additional task context
extensions can be set with 0S_aAddExtendTaskContext ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



66 CHAPTER 4 Tasks

Example

The following example is delivered in the Application folder of embOS.

/* ____________________________________________________________________
File : 0OS_ExtendTaskContext.c
Purpose : Sample program for embOS demonstrating how to dynamically

extend the task context.

This example adds a global variable to the task context of

certain tasks.

———————— END-OF~HEADER === == == = = = = = e e e e e e e e

*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

int GlobalVar;

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k****

*

* _Restore

* _Save

*

* Function description

* This function pair saves and restores an extended task context.

* In this case, the extended task context consists of just a single
* member, which is a global variable.

*/

typedef struct {
int GlobalVar;
} CONTEXT_EXTENSION;

static void* _Save(void *pStack) {
CONTEXT_EXTENSION *p;

p = ((CONTEXT_EXTENSION *)pStack) - (1 - OS_STACK_AT_BOTTOM) ; // Create pointer
//

// Save all members of the structure

//

p->GlobalVar = GlobalVar;
return (void*)p;

}

static void* _Restore(const void *pStack) {
CONTEXT_EXTENSION *p;

p = ((CONTEXT_EXTENSION *)pStack) - (1 - OS_STACK_AT_BOTTOM) ; // Create pointer
//

// Restore all members of the structure

//

GlobalvVar = p->GlobalVar;
return (void*)p;

}

/*k**********‘k*‘k**k***************k**k************‘k************‘k*‘k********
*
* Global variable which holds the function pointers
* to save and restore the task context.
*/
const OS_EXTEND_TASK_CONTEXT _SaveRestore = {
_Save,
_Restore
}i

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k***/

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k**********‘k***‘k****

*

* HPTask

*

*  Function description

* During the execution of this function, the thread-specific
* global variable has always the same value of 1.

*/

static void HPTask (void) {
OS_ExtendTaskContext (&_SaveRestore) ;
GlobalvVar = 1;
while (1) {
0S_Delay (10) ;
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



67

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*****‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k

*

* LPTask

*

* Function description

* During the execution of this function, the thread-specific
* global variable has always the same value of 2.

*/

static void LPTask(void) {
0S_ExtendTaskContext (&_SaveRestore) ;
Globalvar = 2;
while (1) {
0S_Delay (50) ;
}
}

/*********************************************************************

*

* main

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0OS_InitKern() ; /* initialize 0OS */
OS_InitHW() ; /* initialize Hardware for 0OS */
/* You need to create at least one task here ! */

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);

0S_Start () ; /* Start multitasking */
return O;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



68

CHAPTER 4 Tasks

4.4.10 OS_AddExtendTaskContext()

Description

The task context can be extended with 0s_ExtendTaskContext () only once. Addi-
tonal task context extensions can be added with 0s_aAddExtendTaskContext ().

The function 0S_AddExtendTaskContext () requires an additional parameter of type
OS_EXTEND_TASK_CONTEXT_LINK which is used to create a task specific linked list of
task context extensions.

Prototype
void 0S_AddExtendTaskContext (OS_EXTEND_TASK_CONTEXT_LINK*
pExtendContextLink,
const OS_EXTEND_TASK_ CONTEXT* pExtendContext) ;
Parameter Description

pExtendContextLink Pointer to the 0S_EXTEND_TASK_CONTEXT_LINK structure.

Pointer to the 0S_EXTEND_TASK_CONTEXT structure which

pExtendContext conta_ins the addresses of the specific save and restore
functions that save and restore the extended task context

during task switches.

Table 4.11: OS_AddExtendTaskContext() parameter list

Additional Information

The object of type 0S_EXTEND_TASK_CONTEXT_LINK is task specific and must only be
used for one task. It can be located e.g. on the task stack.

Example

static void HPTask (void) ({
OS_EXTEND_TASK_CONTEXT_ LINK p;
//
// Extend the task context with VFP registers and global variable
//
0S_ExtendTaskContext (&0S_VFP_ExtendContext) ;
0S_AddExtendTaskContext (&p, &_SaveRestore) ;
a=1.2;
while (1) {
b =3 * a;
Globalvar = 1;
0S_Delay (10) ;
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



69

4.4.11 OS_GetPriority()

Description

Returns the priority of a specified task.

Prototype

OS_PRIO 0OS_GetPriority (const OS_TASK *pTask);
Parameter Description

pTask Pointer to a task control block structure.

Table 4.12: OS_GetPriority() parameter list

Return value
Priority of the specified task (range 1 to 255).
Additional Information

If pTask is NULL, the function returns the priority of the currently running task. If
pTask does not specify a valid task, the debug build of embOQOS calls 0s_Error (). The
release build of embOS cannot check the validity of pTask and may therefore return
invalid values if pTask does not specify a valid task.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



70 CHAPTER 4 Tasks

4.4.12 OS_GetSuspendCnt()

Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used to examine whether a task is suspended by previous
calls of 0S_Suspend ().

Prototype
unsigned char 0S_GetSuspendCnt (const OS_TASK *pTask) ;

Parameter Description

pTask Pointer to a task control block structure.
Table 4.13: OS_GetSuspendCnt() parameter list

Return value

Suspension count of the specified task.
0: Task is not suspended.
>0: Task is suspended by at least one call of 0S_Suspend ().

Additional Information

If pTask does not specify a valid task, the debug build of embOS calls 0S_Error ().
The release build of embOS cannot check the validity of pTask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, 0s_iIsTask() may be called prior to calling
0S_GetSuspendCnt () to determine whether a task is valid. The returned value can be
used to resume a suspended task by calling 0s_Resume () as often as indicated by the
returned value.

Example

/* Demo-function to illustrate the use of 0S_GetSuspendCnt () */

void ResumeTask (OS_TASK *pTask) {
unsigned char SuspendCnt;
SuspendCnt = 0S_GetSuspendCnt (pTask) ;
while (SuspendCnt > 0) {
OS_Resume (pTask); /* May cause a task switch */
SuspendCnt--;
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



71

4.4.13 OS_GetTasklID()

Description

Returns a pointer to the task control block structure of the currently running task.
This pointer is unique for the task and is used as a task Id.

Prototype
OS_TASK * 0S_GetTaskID ( wvoid );

Return value
A pointer to the task control block. NULL indicates that no task is executing.
Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



72 CHAPTER 4 Tasks

4.4.14 OS_GetTaskName()

Description

Returns a pointer to the name of a task.

Prototype

const char * OS_GetTaskName (const OS_TASK *pTask) ;
Parameter Description

pTask Pointer to a task control block structure.

Table 4.14: OS_GetTaskName() parameter list

Return value
A pointer to the name of the task. NULL indicates that the task has no name.
Additional Information

If prask is NULL, the function returns the name of the running task. If not called from
a task with a NULL pointer as parameter, the return value is “0s_1Idle()". If pTask
does not specify a valid task, the debug build of embOS calls 0s_Error(). The
release build of embOS cannot check the validity of pTask and may therefore return
invalid values if pTask does not specify a valid task.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



73

4.4.15 OS_GetTimeSliceRem()

Description

Returns the remaining time slice value of a task.

Prototype

unsigned char 0S_GetTimeSliceRem(const OS_TASK *pTask) ;
Parameter Description

pTask Pointer to a task control block structure.

Table 4.15: OS_GetTimeSliceRem() parameter list

Return value
The remaining time slice value of the task.
Additional Information

If pTask is NULL, the function returns the remaining time slice of the running task. If
not called from a task with a NULL pointer as parameter, or if pTask does not specify
a valid task, the debug build of embOS calls 0s_Error (). The release build of embQS
cannot check the validity of pTask and may therefore return invalid values if pTask
does not specify a valid task.

The function is unavailable when using an embOS build without round-robin support.
The embOS eXtreme release libraries do not support round robin. Furthermore, when
embOS is recompiled with 0s_RRrR_sUpPPORTED set to 0, the function will not be avail-
able.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



74

CHAPTER 4 Tasks

4.4.16 OS_IsRunning()

Description

Determines whether the embOS scheduler was started by a call of OS_Start().

Prototype

unsigned char 0OS_IsRunning (void) ;

Return value

Character value:
0: Scheduler is not started.
I=0: Scheduler is running, os_start () has been called.

Additional Information

This function may be helpful for some functions which might be called from main () or
from running tasks.

As long as the scheduler is not started and a function is called from main (), blocking
task switches are not allowed.

A function which may be called from a task or main() may use 0S_IsRunning() to
determine whether a blocking task switch is allowed.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



75

4.4.17 OS_IsTask()

Description

Determines whether a task control block belongs to a valid task.

Prototype
char 0S_IsTask (const OS_TASK *pTask) ;

Parameter Description
pTask Pointer to a task control block structure.

Table 4.16: OS_1IsTask() parameter list

Return value

Character value:
0: TCB is not used by any task
1: TCB is used by a task

Additional Information

This function checks if the specified task is present in the internal task list. When a
task is terminated it is removed from the internal task list.

In applications that create and terminate tasks dynamically, this function may be
useful to determine whether the task control block and stack for one task may be
reused for another task.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



76

CHAPTER 4 Tasks

4.4.18 OS_Resume()

Description

Decrements the suspend count of the specified task and resumes it if the suspend
count reaches zero.

Prototype
void OS_Resume (OS_TASK *pTask) ;

Parameter Description
pTask Pointer to a task control block structure.

Table 4.17: OS_Resume() parameter list

Additional Information

The specified task's suspend count is decremented. When the resulting value is zero,
the execution of the specified task is resumed.

If the task is not blocked by other task blocking mechanisms, the task is placed in
the READY state and continues operation according to the rules of the scheduler.

In debug builds of embOS, 0s_Resume () checks the suspend count of the specified
task. If the suspend count is zero when 0S_Resume () is called, 0s_Error () is called
with error 0S_ERR_RESUME_BEFORE_SUSPEND.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



77

4.4.19 OS_ResumeAllSuspendedTasks()

Description

Decrements the suspend count of all tasks that have a nonzero suspend count and
resumes these tasks when their respective suspend count reaches zero.

Prototype

void OS_ResumeAllSuspendedTasks (void) ;

Additional Information

This function may be helpful to synchronize or start multiple tasks at the same time.
The function resumes all tasks, no specific task must be addressed.

The function may be used together with the functions 0s_SuspendallTasks () and
0S_SetInitialSuspendCnt () .

The function may cause a task switch when a task with higher priority than the call-
ing task is resumed. The task switch will be executed after all suspended tasks are
resumed.

As this is a non-blocking function, the function may be called from all contexts, main,
ISR or timer.

The function may be called even if no task is suspended.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



78

CHAPTER 4 Tasks

4.4.20 OS_SetDefaultTaskContextExtension()

Description

Sets the default task context extension for newly created tasks.

Prototype

void 0OS_SetDefaultTaskContextExtension (const OS_EXTEND_TASK_CONTEXT
*pExtendContext)

Parameter Description

Pointer to the 0S_EXTEND_TASK_CONTEXT structure which contains
pExtendContext |the addresses of the specific save and restore functions that save
and restore the extended task context during task switches.
Table 4.18: OS_SetDefaultTaskContextExtension() parameter list

Additional Information

Should be called at any time from main () before the first task is started.
After calling this function all newly created tasks will automatically use the context
extension.

Example

extern const OS_EXTEND_TASK_CONTEXT OS_VFP_ExtendContext;

int main(void) {

0S_IncDI(); // Initially disable interrupts
0S_InitKern() ; // Initialize OS

OS_InitHW() ; // Initialize Hardware for OS
BSP_Init(); // Initialize LED ports

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);
0OS_SetDefaultTaskContextExtension (&0S_VFP_ExtendContext) ;
0S_Start () ; // Start multitasking
return 0;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



79

4.4.21 OS_SetlnitialSuspendCnt()

Description

Sets the initial suspend count for newly created tasks to one. May be used to create
tasks which are initially suspended.

Prototype
void OS_SetInitialSuspendCnt (unsigned char SuspendCnt) ;

Parameter Description

1= 0: Tasks will be created in suspended state.

dcnt . . .
SuspendCn = 0: Tasks will be created normally without suspension.

Table 4.19: OS_SetInitialSuspendCnt() parameter list

Additional Information

Can be called at any time from main (), any task, ISR or software timer.

After calling this function with nonzero SuspendCnt, all newly created tasks will be
automatically suspended with a suspend count of one.

This function may be used to inhibit further task switches, which may be useful dur-
ing system initailization.

Important

When this function is called from main () to initialize all tasks in suspended state, at
least one task must be resumed before the system is started by a call of 0s_start ().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Example

/* Sample to demonstrate the use of 0S_SetInitialSuspendCnt */

void InitTask (void) {

//
// High priority task started first after 0OS_Start().
//
0S_SuspendAllTasks () ; // Ensure no other existing task can run.
0S_SetInitialSuspendCnt(l); // Ensure no newly created task will run.
//
// Perform application initialization.
//
// New tasks may be created but cannot start.
. // Even when InitTask() blocks itself by a delay, no other task will run.
0S_SetInitialSuspendCnt(0); // Reset the initial suspend count for tasks.
//
// Resume all tasks that were blocked before or were created in suspended state.
//

0OS_ResumeAllSuspendedTasks () ;
while (1) {
// Do the normal work.
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



80

CHAPTER 4 Tasks

4.4.22 OS_SetPriority()

Description

Assigns a priority to a specified task.

Prototype

void OS_SetPriority (OS_TASK *pTask,

OS_PRIO Priority);

Parameter

Description

pTask

Priority

Pointer to a task control block structure.

Priority of the task. Must be within the following range:

1 <= priority <= 28-1 = OxFF for 8/16 bit CPUs

1 <= priority <= 232-1 = OxFFFFFFFF for 32 bit CPUs

Higher values indicate higher priorities.

The type 0s_PRI0 is defined as 32 bit value for 32 bit CPUs and 8
bit value for 8 or 16 bit CPUs per default.

Table 4.20: OS_SetPriority() parameter list

Additional Information

Can be called at any time from any task or software timer. Calling this function might
lead to an immediate task switch.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



81

4.4.23 OS_SetTaskName()

Description

Allows modification of a task name at runtime.

Prototype
void OS_SetTaskName (0OS_TASK *pTask,
const char *s);
Parameter Description
pTask Pointer to a task control block structure.
s Pointer to a zero terminated string which is used as task name.

Table 4.21: OS_SetTaskName() parameter list

Additional Information

Can be called at any time from any task or software timer.
When pTask is NULL, the name of the currently running task is modified.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



82

CHAPTER 4 Tasks

4.4.24 OS_SetTimeSlice()

Description
Assigns a time slice period to a specified task.
Prototype
unsigned char 0S_SetTimeSlice (OS_TASK *pTask,
unsigned char TimeSlice);
Parameter Description

pTask Pointer to a task control block structure.

New time slice period for the task. Must be within the following
TimeSlice range:

0 <= TimeSlice <= 255.

Table 4.22: OS_SetTimeSlice() parameter list

Return value
Previous time slice period of the task.

Additional Information

Can be called at any time from any task or software timer. Setting the time slice
period only affects tasks running in round-robin mode. This means another task with
the same priority must exist.

The new time slice period is interpreted as a reload value. It is used after the next
activation of the task. It does not affect the remaining time slice of a running task.

A time slice value of zero is allowed, but disables round-robin task switches (see Dis-
abling preemptive task switches for tasks of equal priority on page 49).

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



83

4.4.25 OS_Start()

Description
Starts the embOS scheduler.

Prototype
void OS_Start (void);

Additional Information
This function starts the embOS scheduler and should be the last function called from
main ().

e 0S_sStart() marks embOS as running. The running state can be examined by a
call of the function 0s_IsRunning().

e 0S_start () will activate and start the task with the highest priority.

e 0S_sStart () automatically enables interrupts.

e 0S_sStart() does not return.

e 0S_Start() must not be called from a task, from an interrupt or an embOS

timer, and must be called from main () only once.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



84 CHAPTER 4 Tasks

4.4.26 OS_Suspend()

Description
Suspends the specified task.
Prototype
void 0S_Suspend (OS_TASK *pTask) ;
Parameter Description
pTask Pointer to a task control block structure.

Table 4.23: OS_Suspend() parameter list

Additional Information

If pTask is NULL, the current task suspends.

If the function succeeds, execution of the specified task is suspended and the task's
suspend count is incremented. The specified task will be suspended immediately. It
can only be restarted by a call of 0S_Resume ().

Every task has a suspend count with a maximum value of 0S_MAX_SUSPEND_CNT. If
the suspend count is greater than zero, the task is suspended.

In debug builds of embQOS, upon calling 0s_Suspend () more often than the maximum
value without calling 0s_Resume () the task's internal suspend count is not incre-
mented and 0s_Error () is called with error 0S_ERR_SUSPEND_TOO_OFTEN.

Cannot be called from an interrupt handler or timer as this function may cause an
immediate task switch. The debug build of embOS will call the 0s_Error () function
when 0S_Suspend () is called from an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



85

4.4.27 OS_SuspendAllTasks()

Description
Suspends all tasks except the running task.

Prototype
void OS_SuspendAllTasks (void) ;

Additional Information

This function may be used to inhibit task switches. It may be useful during applica-
tion initialization or supervising.

The calling task will not be suspended.

After calling 0s_SuspendallTasks (), the calling task may block or suspend itself. No
other task will be activated unless one or more tasks are resumed again. The tasks
may be resumed individually by a call of 0s_Resume() or all at once by a call of
0S_ResumeAllSuspendedTasks ().

Example

/* Sample to demonstrate the use of 0S_SuspendAllTasks */

void InitTask(void) {

//
// High priority task started first after 0OS_Start().
//
0S_SuspendAllTasks () ; // Ensure no other existing task can run.
0S_SetInitialSuspendCnt(l); // Ensure no newly created task will run.
//
// Perform application initialization.
//
// New tasks may be created but cannot start.
// Even when InitTask() blocks itself by a delay, no other task will run.
0S_SetInitialSuspendCnt(0); // Reset the initial suspend count for tasks.
//
// Resume all tasks that were blocked before or were created in suspended state.
//

0S_ResumeAllSuspendedTasks () ;
while (1) {
// Do the normal work.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



86 CHAPTER 4 Tasks

4.4.28 OS_Taskindex2Ptr()

Description
Returns the task control block of the task with the Index TaskIndex.
Prototype
OS_TASK* 0S_TaskIndex2Ptr (int TaskIndex) ;

Parameter Description
TaskIndex Index of task control block in the task list

Table 4.24: OS_Terminate() parameter list

Return value

NULL: No task control block with this index found.
I= NULL: Pointer to the task control block with the index TaskIndex.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



87

4.4.29 OS_TerminateTask()

Description

Ends (terminates) a task.

Prototype
void OS_TerminateTask (OS_TASK *pTask) ;

Parameter Description
pTask Pointer to a task control block structure.

Table 4.25: OS_Terminate() parameter list

Additional Information

If pTask is NULL, the current task terminates. The specified task will terminate imme-
diately. The memory used for stack and task control block can be reassigned.

Since version 3.26 of embOS, all resources which are held by a task are released
upon its termination. Any task may be terminated regardless of its state. This func-
tionality is default for any 16 bit or 32 bit CPU and may be changed by recompiling
embOS sources. On 8 bit CPUs, terminating tasks that hold any resources such as
semaphores, which may block other tasks, is prohibited.

Since embOS version 3.82u, OS_TerminateTask() replaces the deprecated function
OS_Terminate(), which may still be used.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



88 CHAPTER 4 Tasks

4.4.30 OS_WakeTask()

Description
Ends delay of a specified task immediately.
Prototype
void 0S_WakeTask (OS_TASK *pTask);
Parameter Description
pTask Pointer to a task control block structure.

Table 4.26: OS_WakeTask() parameter list

Additional Information

Places the specified task, which is already suspended for a certain amount of time by
a call of os_Delay () or 0S_DelayUntil (), back into the READY state.

The specified task will be activated immediately if it has a higher priority than the
task that had the highest priority before. If the specified task is not in the WAITING
state (because it has already been activated, or the delay has already expired, or for
some other reason), calling this function has no effect.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



89

4.4.31 OS_Yield()

Description

Calls the scheduler to force a task switch.
Prototype

void 0OS_Yield (void);

Additional Information

If the task is running round-robin, it will be suspended if there is another task with
equal priority ready for execution.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



90 CHAPTER 4 Tasks

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



91

Chapter 5

Software timers

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



92

5.1

CHAPTER 5 Software timers

Introduction

A software timer is an object that calls a user-specified routine after a specified
delay. An unlimited number of software timers can be defined with the macro
OS_CREATETIMER ().

Timers can be stopped, started and retriggered much like hardware timers. When
defining a timer, you specify a routine to be called after the expiration of the delay.
Timer routines are similar to interrupt routines: they have a priority higher than the
priority of any task. For that reason they should be kept short just like interrupt rou-
tines.

Software timers are called by embOS with interrupts enabled, so they can be inter-
rupted by any hardware interrupt. Generally, timers run in single-shot mode, which
means they expire exactly once and call their callback routine exactly once. By call-
ing 0S_RetriggerTimer () from within the callback routine, the timer is restarted
with its initial delay time and therefore functions as a periodic timer.

The state of timers can be checked by the functions 0S_GetTimerStatus(),
0S_GetTimerValue () and 0S_GetTimerPeriod().

Maximum timeout / period

The timeout value is stored as an integer, thus a 16 bit value on 8/16 bit CPUs, a 32
bit value on 32 bit CPUs. The comparisons are done as signed comparisons because
expired time-outs are permitted. This means that only 15 bits can be used on 8/16
bit CPUs, 31 bits on 32 bit CPUs. Another factor to take into account is the maximum
time spent in critical regions. Timers may expire during critical regions, but because
the timer routine cannot be called from a critical region (timers are “put on hold”),
the maximum time that the system continuously spends in a critical region needs to
be deducted. In most systems, this is no more than a single tick. However, to be
safe, we have assumed that your system spends no more than a maximum of 255
consecutive ticks in a critical region and defined a macro which defines the maximum
timeout value. This macro, 0s_TIMER_MAX_TIME, defaults to 0x7F00 on 8/16 bit sys-
tems and to 0x7FFFFF00 on 32 bit Systems as defined in RTOS.h. If your system
spends more than 255 consecutive ticks in a critical section, effectively disabling the
scheduler during this time (which is not recommended), you must make sure your
application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This
allows the callback function to be shared between different software timers.

Since version 3.32m of embQOS, the extended timer structure and related extended
timer functions were implemented to allow parameter passing to the callback func-
tion.

Except for the different callback function with parameter passing, extended timers
behave exactly the same as regular embOS software timers and may be used in par-
allel with these.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



5.2 API functions

93

the extended timer that just expired.

3 4|4
Routine Description 59 3
s> |x W
0S._ CREATETIMER () zl:“%rro that creates and starts a software- x| x| x| x
0S_CreateTimer () Creates a software timer without starting it.| X | X| X | X
0S_StartTimer () Starts a software timer. X[ X| XX
0S_StopTimer () Stops a software timer. XX | X|X
0S_RetriggerTimer () tRi?rmséa\I/F;sluae software timer with its initial x| %% x
0S_TriggerTimer () Ends a software at once. XX
0S_SetTimerPeriod () ﬁ(;::ra new timer reload value for a software x| x| x
0S_DeleteTimer () Stops and deletes a software timer. XX
. , Returns the current reload value of a soft-
0S_GetTimerPeriod () ware timer X | X| X
0S_GetTimervalue () ‘Il?\vztrlér?i?ntehre remaining timer value of a soft- x!x!x x
0S_GetTimerstatus () \Ilkvztrl.ér?ii‘]tgre current timer status of a soft- x| %% x
0S_GetpCurrentTimer () Returns a pointer to the data structure of x| %% x
—>etptu * the timer that just expired.
0S_ CREATETIMER EX () ?Oigcvoatgiti;lreerates and starts an extended x| x| x| x
0S. CreateTimerEx () ;:tr:iiizﬁz ?tn extended software timer without x| %% x
0S_StartTimerEx () Starts an extended timer. X[ X X| X
0S_StopTimerEx () Stops an extended timer. XX XX
0S_RetriggerTimerEx () EﬁqséaJETuaen extended timer with its initial x| %% x
0S_TriggerTimerEx () Ends a software timer at once. X | X
0S_SetTimerPeriodEx () gjttznadgjvgiﬂger reload value for an X | X
0OS_DeleteTimerEx () Stops and deletes an extended timer. X| X
. . Returns the current reload value of an
0S_GetTimerPeriodEx () extended timer X | X
. Returns the remaining timer value of an
0S_GetTimerValueEx () extended timer X | X|X|X
0S_GetTimerStatusEx () E)fsgr:zz;ht?n‘?g:rent timer status of an X[ X[ X|X
0S_GetpCurrentTimerEx () Returns a pointer to the data structure of x| x!x|x

Table 5.1: Software timers API

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



94

CHAPTER 5 Software timers

52.1 OS_CREATETIMER()

Description
Macro that creates and starts a software timer.
Prototype
void OS_CREATETIMER (OS_TIMER *pTimer,
OS_TIMERROUTINE *Callback,
OS_TIME Timeout) ;
Parameter Description
. Pointer to the 0os_TIMER data structure which contains the data of
pTimer .
the timer.
Pointer to the callback routine to be called by the RTOS after
e e expiration of the delay. The callback function must be a void

function which does not take any parameter and does not return
any value.

Initial timeout in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 5.2: OS_CREATETIMER() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This deprecated macro uses the functions 0s_CreateTimer () and 0S_StartTimer ().
It is supplied for backward compatibility; in newer applications these routines should
instead be called directly.

OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Source of the macro (in RT0S.h):

#define OS_CREATETIMER (pTimer, c, d) \
0S_CreateTimer (pTimer, c, d); \
0S_StartTimer (pTimer) ;

Example

OS_TIMER TIMER1O00;

void Timerl00 (void) {
LED = LED ? 0 : 1; /* Toggle LED */
OS_RetriggerTimer (&TIMER100); /* Make timer periodic */
}

void InitTask (void) {
/* Create and start Timerl100 */
OS_CREATETIMER (&TIMER100, Timer100, 100);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



95

5.2.2 OS_CreateTimer()

Description

Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer (OS_TIMER *pTimer,
OS_TIMERROUTINE *Callback,
OS_TIME Timeout) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.
Pointer to the callback routine to be called by the RTOS after
Callback

expiration of the delay.

Initial timeout in basic embQOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 5.3: OS_CreateTimer() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled). The timer is not automatically started. This must
be done explicitly by a call of 0s_StartTimer () Oor OS_RetriggerTimer ().
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Example

OS_TIMER TIMER100;
void Timerl1l00 (void) {
LED = LED ?2 0 : 1

OS_RetriggerTimer
}

; /* Toggle LED */
(&TIMER100) ; /* Make timer periodic */

void InitTask (void) {
/* Create Timerl1l00, start it elsewhere */
0S_CreateTimer (&TIMER100, Timerl100, 100);
0S_StartTimer (&TIMER100) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



96 CHAPTER 5 Software timers

5.2.3 OS_StartTimer()

Description
Starts a software timer.
Prototype
void OS_StartTimer (OS_TIMER *pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.

Table 5.4: OS_StartTimer() parameter list

Additional Information

0S_startTimer () is used for the following reasons:

e Start a timer which was created by 0S_CreateTimer (). The timer will start with
its initial timer value.

e Restart a timer which was stopped by calling 0s_stopTimer (). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired: use 0S_RetriggerTimer () to restart those timers.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



97

5.2.4 0OS_StopTimer()

Description

Stops a software timer.

Prototype
void OS_StopTimer (OS_TIMER *pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 5.5: OS_StopTimer() parameter list

Additional Information

The actual value of the timer (the time until expiration) is maintained until
0S_StartTimer () lets the timer continue. The function has no effect on timers that
are not running, but have expired.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



98

CHAPTER 5 Software timers

5.2.5 OS_RetriggerTimer()

Description
Restarts a software timer with its initial time value.
Prototype
void OS_RetriggerTimer (OS_TIMER *pTimer) ;

Parameter Description

. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .

the timer.

Table 5.6: OS_RetriggerTimer() parameter list

Additional Information

OS_RetriggerTimer () restarts the timer using the initial time value programmed at
creation of the timer or with the function 0s_SetTimerPeriod().
OS_RetriggerTimer () can be called regardless the state of the timer. A running
timer will continue using the full initial time. A timer that was stopped before or had
expired will be restarted.

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

volid TimerCursor (void) {
if (CursorOn) ({
ToggleCursor () ; /* Invert character at cursor-position */
}
0S_RetriggerTimer (&TIMERCursor); /* Make timer periodic */
}

void InitTask(void) {
/* Create and start TimerCursor */
OS_CREATETIMER (&TIMERCursor, TimerCursor, 500);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



99

5.2.6 OS_TriggerTimer()

Description

Stops a software timer at once and calls the timer callback function.

Prototype
void OS_TriggerTimer (OS_TIMER *pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 5.7: OS_TriggerTimer() parameter list

Additional Information

0S_TriggerTimer () can be called regardless the state of the timer. A running timer
will be stopped and the callback function is called. For a timer that was stopped
before or had expired the callback function will not be executed.

Example

OS_TIMER TIMERUartRx;

void TimerUart (void) ({
HandleUartRx () ;
}

void UartRxIntHandler (void) {
//
// Character received, stop the software timer
//
0S_TriggerTimer (&TIMERUartRx) ;
}

void UartSendNextCharachter (void) {
0S_StartTimer (&§TIMERUartRx) ;
//
// Send next uart character and wait for Rx character
//
}

int main(void) {
0S_CreateTimer (&TIMERUartRx, TimerUart, 20);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



100

CHAPTER 5 Software timers

5.2.7 OS_SetTimerPeriod()

Description
Sets a new timer reload value for a software timer.

Prototype

void OS_SetTimerPeriod (OS_TIMER *pTimer,
OS_TIME Period) ;

Parameter Description

Pointer to the 0s_TIMER data structure which contains the data of
the timer.

Timer period in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Seriod values are

1 <= Timeout <= 21°-1
1 <= Timeout <= 231-1
Table 5.8: OS_SetTimerPeriod() parameter list

pTimer

OX7FFF = 32767 for 8/16 bit CPUs
OX7FFFFFFF for 32 bit CPUs

Additional Information

0S_SetTimerPeriod() sets the initial time value of the specified timer. period is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS_RetriggerTimer ().

Example

OS_TIMER TIMERPulse;

void TimerPulse(void) {
TogglePulseOutput () ; /* Toggle output */
OS_RetriggerTimer (&TIMERPulse); /* Make timer periodic */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse = 500ms */
OS_CREATETIMER (&TIMERPulse, TimerPulse, 500);
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriod (&TIMERPulse, 200);

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



101

5.2.8 0OS_DeleteTimer()

Description

Stops and deletes a software timer.

Prototype
void OS_DeleteTimer (OS_TIMER *pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 5.9: OS_DeleteTimer() parameter list

Additional Information

The timer is stopped and therefore removed from the linked list of running timers. In
debug builds of embOS, the timer is also marked as invalid.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



102

CHAPTER 5 Software timers

5.29 OS_GetTimerPeriod()

Description
Returns the current reload value of a software timer.

Prototype

OS_TIME OS_GetTimerPeriod (const OS_TIMER *pTimer) ;

Parameter Description

Pointer to the os_TIMER data structure which contains the data of
the timer.
Table 5.10: OS_GetTimerPeriod() parameter list

pTimer

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs and as an integer between

1 and <= 231-1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a «call of
0S_SetTimerPeriod (). This reload value will be used as time period when the timer
is retriggered by 0S_RetriggerTimer ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



103

5.2.10 OS_GetTimerValue()

Description
Returns the remaining timer value of a software timer.

Prototype
OS_TIME OS_GetTimerValue (const OS_TIMER *pTimer) ;

Parameter Description

Pointer to the 0s_TIMER data structure which contains the data of
the timer.
Table 5.11: OS_GetTimerValue() parameter list

pTimer

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs and as an integer between

1 and <= 231-1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer
values.

The returned timer value is the remaining timer time in embOS tick units until expi-
ration of the timer.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



104

5.2.11 OS_GetTimerStatus()

CHAPTER 5 Software timers

Description
Returns the current timer status of a software timer.
Prototype
unsigned char 0S_GetTimerStatus (const OS_TIMER *pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 5.12: OS_GetTimerStatus parameter list

Return value

penotes whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG




105

5.2.12 OS_GetpCurrentTimer()

Description
Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER * 0OS_GetpCurrentTimer (void);

Return value
A pointer to the control structure of a timer.
Additional Information

The return value of 0S_GetpCurrentTimer () is valid during execution of a timer call-
back function; otherwise it is undefined. If only one callback function should be used
for multiple timers, this function can be used for examining the timer that expired.
The example below shows one usage of 0S_GetpCurrentTimer (). Since version
3.32m of embOS, the extended timer structure and functions may be used to gener-
ate and use a software timer with an individual parameter for the callback function.
Please be aware that OS_TIMER must be the first member of the structure.

Example

#include "RTOS.H"

/************‘k*‘k**********‘k*‘k*‘k******************‘k‘k*******‘k

*

* Types

*/

typedef struct { /* Timer object with its own user data */
OS_TIMER Timer; /* OS_TIMER must be the first element */
void *pUser;

} TIMER_EX;

/*~k~k~k~k*************~k~k~k~k~k~k**********************************
*

* Variables

*/

TIMER_EX Timer User;
int a;

/****k*k******************k*k**********************************
*

* Local Functions
*/

static void _CreateTimer (TIMER_EX *timer, OS_TIMERROUTINE *Callback,
OS_UINT Timeout, void *pUser) {
timer->pUser = pUser;
0S_CreateTimer (&timer->Timer, Callback, Timeout) ;

}

/* Timer callback function for multiple timers */
static void _cb(void) {
TIMER_EX *p = (TIMER_EX *)O0S_GetpCurrentTimer () ;
void *pUser = p->pUser; /* Examine user data */
OS_RetriggerTimer (&p->Timer) ; /* Retrigger timer */

}

/****k*k******************k*k**********************************
*

* main

*/

int main(void) {
0OS_InitKern() ; /* Initialize 0OS x/
0OS_InitHW() ; /* Initialize Hardware for 0S */
_CreateTimer (&Timer_User, _cb, 100, &a);
0S_Start(); /* Start multitasking */

return 0;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



106

CHAPTER 5 Software timers

5.2.13 OS_CREATETIMER_EX()

Description
Macro that creates and starts an extended software timer.
Prototype
void OS_CREATETIMER_EX (OS_TIMER_EX *pTimerEx,
OS_TIMER_EX_ROUTINE *Callback,
OS_TIME Timeout
void *pData)
Parameter Description
- - Pointer to the os_TIMER_EX data structure which contains the
primersx data of the extended software timer.
Pointer to the callback routine to be called by the RTOS after
e e expiration of the delay. The callback function must be of type

OS_TIMER_EX_ROUTINE Which takes a void pointer as parameter
and does not return any value.

Initial timeout in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs

A void pointer which is used as parameter for the extended timer

callback function.
Table 5.13: OS_CREATETIMER_EX() parameter list

pData

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This macro uses the functions 0S_CreateTimerEx() and O0S_StartTimerEx().
OS_TIMER_EX_ROUTINE is defined in RT0OS.h as follows:

typedef void OS_TIMER_EX_ROUTINE (void *pVoid) ;

Source of the macro (in RT0S.h):

#define OS_CREATETIMER_EX (pTimerEx, cb, Timeout, pData) \
0S_CreateTimerEx (pTimerEx, cb, Timeout, pData);
0S_StartTimerEx (pTimerEx)

Example

OS_TIMER _EX TIMER100;
OS_TASK TCB_HP;

void Timerl100 (void *pTask) {
LED = LED ? 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK *)pVoid);
}
OS_RetriggerTimerExX (&TIMER100) ; /* Make timer periodic */
}

void InitTask (void) {

/* Create and start Timer100 */

OS_CREATETIMER_EX (&TIMER100, Timerl100, 100, (void *) &TCB_HP) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



107

5.2.14 OS_CreateTimerEx()

Description

Creates an extended software timer (but does not start it).

Prototype
void OS_CreateTimerEx (OS_TIMER_EX *pTimerEx,
OS_TIMER_EX_ ROUTINE *Callback,
OS_TIME Timeout,
void *pData)
Parameter Description
TimerEx Pointer to the os_TIMER_EX data structure which contains the
P data of the extended software timer.
Pointer th I k r ine of TIMER_EX_ ROUTINE
callback ointer to the callback routine of type os_ _EX_ROUTINE to

be called by the RTOS after expiration of the timer.

Initial timeout in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 219-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs

A void pointer which is used as parameter for the extended timer

callback function.
Table 5.14: OS_CreateTimerEx() parameter list

pData

Additional Information

embOS keeps track of timers by using a linked list. Once the timeout has expired, the
callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

The extended software timer is not automatically started. This must be done explic-
itly by a call of 0S_StartTimerEx() Or OS_RetriggerTimerEx().

0S_TIMER_EX_ ROUTINE is defined in RToS.h as follows:
typedef void OS_TIMER_EX ROUTINE (void *pVoid) ;

Example

OS_TIMER_EX TIMER100;
OS_TASK TCB_HP;

void Timerl1l00 (void *pTask) {
LED = LED ? 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK *) pVoid) ;
}
OS_RetriggerTimerEx (&§TIMER100); /* Make timer periodic */
}

void InitTask (void) {
/* Create Timerl00, start it elsewhere later on*/
0S_CreateTimerEx (&TIMER100, Timerl1l00, 100, (void* ) & TCB_HP);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



108 CHAPTER 5 Software timers

5.2.15 OS_StartTimerEx()

Description
Starts an extended software timer.
Prototype
void OS_StartTimerEx (OS_TIMER_EX *pTimerEx) ;
Parameter Description
- - Pointer to the os_TIMER_ EX data structure which contains the
p-imerhx data of the extended software timer.

Table 5.15: OS_StartTimereEx() parameter list

Additional Information

0S_StartTimerEx () is used for the following reasons:

e Start an extended software timer which was created by 0S_CreateTimerEx().
The timer will start with its initial timer value.

e Restart a timer which was stopped by calling 0s_StopTimerEx (). In this case,
the timer will continue with the remaining time value which was preserved by
stopping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use 0S_RetriggerTimerEx () to restart those timers.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



109

5.2.16 OS_StopTimerEx()

Description
Stops an extended software timer.

Prototype

void OS_StopTimerEx (OS_TIMER_EX *pTimerEX) ;

Parameter Description

Pointer to the os_TIMER_EX data structure which contains the
data of the extended software timer.
Table 5.16: OS_StopTimerEx() parameter list

pTimerEx

Additional Information

The actual time value of the extended software timer (the time until expiration) is
maintained until os_startTimerEx() lets the timer continue. The function has no
effect on timers that are not running, but have expired.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



110

CHAPTER 5 Software timers

5.2.17 OS_RetriggerTimerEx()

Description
Restarts an extended software timer with its initial time value.

Prototype

void OS_RetriggerTimerEx (OS_TIMER_EX *pTimerEX) ;

Parameter Description

Pointer to the os_TIMER_ EX data structure which contains the
data of the extended software timer.
Table 5.17: OS_RetriggerTimerEx() parameter list

pTimerEx

Additional Information

OS_RetriggerTimerEx () restarts the extended software timer using the initial time
value which was programmed at creation of the timer or which was set using the
function 0S_SetTimerPeriodEx ().

OS_RetriggerTimerEx () can be called regardless of the state of the timer. A running
timer will continue using the full initial time. A timer that was stopped before or had
expired will be restarted.

Example

OS_TIMER_EX TIMERCursor;
OS_TASK TCB_HP;

BOOL CursorOn;

void TimerCursor (void *pTask) {
if (CursorOn != 0) ToggleCursor(); /* Invert character at cursor-position */
0S_SignalEvent (0x01, (OS_TASK *) pTask);
0S_RetriggerTimerEX (&TIMERCursor); /* Make timer periodic */

}

void InitTask(void) {

/* Create and start TimerCursor */

OS_CREATETIMER_EX (&TIMERCursor, TimerCursor, 500, (void *)&TCB_HP) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



111

5.2.18 OS_TriggerTimerEx()

Description

Ends an extended software timer at once and calls the timer callback function.

Prototype
void OS_TriggerTimerEx (OS_TIMER_EX *pTimer) ;
Parameter Description
iy Pointer to the os_TIMER_EX data structure which contains the
plimer data of the extended software timer.

Table 5.18: OS_TriggerTimer() parameter list

Additional Information

0S_TriggerTimerEx () can be called regardless the state of the timer. A running
timer will be stopped and the callback function is called. For a timer that was stopped
before or had expired the callback function will not be executed.

Example

OS_TIMER_EX TIMERUartRx;

0S_U32 UartNum;

void TimerUart (void *pNum) {
HandleUartRx ( (0OS_U32) *pNum) ;

}

void UartRxIntHandler (void) {

//

// Character received, stop the software timer

//

0S_TriggerTimer (&TIMERUartRx) ;

}

void UartSendNextCharachter (void) {
0S_StartTimerEx (&TIMERUartRx) ;

//

// Send next uart character and wait for Rx character

//
}

int main(void)
UartNum = 0;

0S_CreateTimerEx (&TIMERUartRx, TimerUart, 20, (void*)&UartNum) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



112 CHAPTER 5 Software timers

5.2.19 OS_SetTimerPeriodEx()

Description
Sets a new timer reload value for an extended software timer.
Prototype
void 0OS_SetTimerPeriodEx (OS_TIMER_EX *pTimerEx,
OS_TIME Period) ;
Parameter Description
. Pointer to the os_TIMER_ EX data structure which contains the
pTimerEx

data of the extended software timer.

Timer period in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Seriod values are

1 <= Timeout <= 21°-1
1 <= Timeout <= 231-1
Table 5.19: OS_SetTimerPeriodEx() parameter list

OX7FFF = 32767 for 8/16 bit CPUs
OX7FFFFFFF for 32 bit CPUs

Additional Information

0S_SetTimerPeriodEx () sets the initial time value of the specified extended soft-
ware timer. Pperiod is the reload value of the timer to be used as initial value when
the timer is retriggered the next time by 0S_RetriggerTimerEx().

A call of 0s_setTimerPeriodEx() does not affect the remaining time period of an
extended software timer.

Example

OS_TIMER_EX TIMERPulse;
OS_TASK TCB_HP;

void TimerPulse(void *pTask) {

0S_SignalEvent (0x01, (OS_TASK *) pTask);
OS_RetriggerTimerEx (&TIMERPulse); /* Make timer periodic */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse == 500ms */
OS_CREATETIMER_EX (&TIMERPulse, TimerPulse, 500, (void *)&TCB_HP) ;
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriodEx (&TIMERPulse, 200);

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



113

5.2.20 OS_DeleteTimerEx()

Description

Stops and deletes an extended software timer.

Prototype

void OS_DeleteTimerEx (OS_TIMER_EX *pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure which contains the
data of the timer.
Table 5.20: OS_DeleteTimerEx() parameter list

pTimerEx

Additional Information

The extended software timer is stopped and removed from the linked list of running
timers. In debug builds of embOS, the timer is also marked as invalid.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



114

CHAPTER 5 Software timers

5.2.21 OS_GetTimerPeriodEx()

Description
Returns the current reload value of an extended software timer.

Prototype

OS_TIME OS_GetTimerPeriodEx (OS_TIMER_EX *pTimerEXx) ;

Parameter Description

Pointer to the os_TIMER_ EX data structure which contains the
data of the extended timer.
Table 5.21: OS_GetTimerPeriodEx() parameter list

pTimerEx

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs and as an integer between

1 and <= 231-1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a «call of
0S_SetTimerPeriodEx (). This reload value will be used as time period when the
timer is retriggered by 0S_RetriggerTimerEx ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



115

5.2.22 0OS_GetTimerValueEx()

Description
Returns the remaining timer value of an extended software timer.

Prototype
OS_TIME OS_GetTimerValueEx (0OS_TIMER_EX *pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure which contains the
data of the timer.
Table 5.22: OS_GetTimerValueEx() parameter list

pTimerEx

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs and as an integer between

1 and <= 231-1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer
values.

The returned time value is the remaining timer value in embOS tick units until expi-
ration of the extended software timer.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



116 CHAPTER 5 Software timers

5.2.23 0OS_GetTimerStatusEx()

Description
Returns the current timer status of an extended software timer.
Prototype
unsigned char OS_GetTimerStatusEx (OS_TIMER_EX *pTimerEx) ;
Parameter Description
- - Pointer to the os_TIMER_ EX data structure which contains the
p-imerhx data of the extended timer.

Table 5.23: OS_GetTimerStatusEx parameter list

Return value

Denotes whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



117

5.2.24 0OS_GetpCurrentTimerEx()

Description
Returns a pointer to the data structure of the extended timer that just expired.

Prototype

OS_TIMER_EX* 0OS_GetpCurrentTimerEx (void) ;

Return value
A pointer to the control structure of an extended software timer.
Additional Information

The return value of 0S_GetpCurrentTimerEx () is valid during execution of a timer
callback function; otherwise it is undefined. If one callback function should be used
for multiple extended timers, this function can be used for examining the timer that
expired.

Example

#include "RTOS.H"

OS_TIMER_EX MyTimerEX;

/********************************************************
*

* Local Functions

*/

void cbTimerEx (void *pData) { /* Timer callback function for multiple timers */
OS_TIMER_EX *pTimerEx;
pTimerEx = 0OS_GetpCurrentTimerEx() ;
0S_SignalEvent (0x01, (OS_TASK *) pData);
OS_RetriggerTimer (pTimerEx); /* Retrigger timer */
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



118 CHAPTER 5 Software timers

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



119

Chapter 6

Resource semaphores

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



120

6.1

CHAPTER 6 Resource semaphores

Introduction

Resource semaphores are used for managing resources by avoiding conflicts caused
by simultaneous use of a resource. The resource managed can be of any kind: a part
of the program that is not reentrant, a piece of hardware like the display, a flash
prom that can only be written to by a single task at a time, a motor in a CNC control
that can only be controlled by one task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the 0S_Use() or 0S_Request ()
routines of embOS. If the resource is available, the program execution of the task
continues, but the resource is blocked for other tasks. If a second task now tries to
use the same resource while it is in use by the first task, this second task is sus-
pended until the first task releases the resource. However, if the first task that uses
the resource calls 0s_use () again for that resource, it is not suspended because the
resource is blocked only for other tasks.

The following diagram illustrates the process of using a resource:

OS_Use()

v

Access resource

v

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times the
resource has been claimed by calling 0S_Request () or 0S_Use () by a particular task.
It is released when that counter reaches zero, which means the 0s_uUnuse () routine
must be called exactly the same number of times as 0S_Use () or 0S_Request (). If it
is not, the resource remains blocked for other tasks.

On the other hand, a task cannot release a resource that it does not own by calling
0S_Unuse (). In debug builds of embOS, a call of 0s_unuse () for a semaphore that is
not owned by this task will result in a call to the error handler 0s_Error ().

Example of using resource semaphores

Here, two tasks access an LC display completely independently from each other. The
LCD is a resource that needs to be protected with a resource semaphore. One task
may not interrupt another task which is writing to the LCD, because otherwise the
following might occur:

e Task A positions the cursor
e Task B interrupts Task A and repositions the cursor
e Task A writes to the wrong place in the LCD's memory.

To avoid this type of situation, every time the LCD must be accessed by a task, it is
first claimed by a call to 0s_use () (and is automatically waited for if the resource is
blocked). After the LCD has been written to, it is released by a call to 0S_Unuse ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



121

/*

*  Demo program to illustrate the use of resource semaphores
*/

static OS_STACKPTR int StackMain[100], StackClock[50];
static OS_TASK TaskMain, TaskClock;

static OS_RSEMA Semal.CD;

void TaskClock (void) {

char t = -1;
char s[] = "00:00";
while (1) {
while (TimeSec == t) {
Delay (10) ;
}
t = TimeSec;
s[4] = TimeSec % 10 + '0';
s[3] = TimeSec / 10 + '0';
s[1] = TimeMin % 10 + '0';
s[0] = TimeMin / 10 + '0';
0S_Use (&SemaLlCD) ; /* Make sure noone else uses LCD */
LCD _Write (10, 0, s);
0OS_Unuse (&SemalCD) ; /* Release LCD */

}
}

void TaskMain (void) {
signed char pos ;
LCD_Write(0, 0, "Software tools by Segger!”);
0S_Delay (2000) ;
while (1) {

for ( pos=14 ; pos >=0 ; pos-- ) {
0S_Use (&Semal.CD) ; /* Make sure noone else uses LCD */
LCD_Write(pos, 1, "train"); /* Draw train */
0OS_Unuse (&SemalLCD) ; /* Release LCD */

0S_Delay (500) ;
}

0OS_Use (&SemaLCD) ; /* Make sure noone else uses LCD */
LCD_Write(O, 1, ™" ")
0S_Unuse (&Semal.CD) ; /* Release LCD */

}
}

void InitTask (void) {
0S_CreateRSema (&Semal.CD) ; /* Creates resource semaphore */
OS_CREATETASK (&TaskMain, 0, Main, 50, StackMain) ;
OS_CREATETASK (&TaskClock, 0, Clock, 100, StackClock) ;

}

In most applications the routines that access a resource should automatically call
0S_Use () and 0S_unuse () so that when using the resource you do not need to worry
about it and can use it just as you would in a single-task system. The following is an
example of how to implement a resource into the routines that actually access the

display:

/*

*  Simple example when accessing single line dot matrix LCD

*

séatic OS_RSEMA RDisp; /* Define resource semaphore */
void UseDisp() { /* Simple routine to be called before using display */

0S_Use (&RDisp) ;
}

void UnuseDisp () { /* Simple routine to be called after using display */
0S_Unuse (&RDisp) ;
}

void DispCharAt (char ¢, char x, char y) {
UseDisp() ;
LCDGoto (x, V) ;
LCDWritel (ASCII2LCD(c)) ;
UnuseDisp () ;

}
void DISPInit (void) {

0S_CreateRSema (&RDisp) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



122 CHAPTER 6 Resource semaphores

6.2 API functions

3 o= 3
Routine Description o B3
5 = P o
0S_CreateRSema Creates a resource semaphore. X | X
0S_Use () Claims a resource and blocks it for other tasks.| X | X
0S_UseTimed () Tries to claim a resource within a given time. |X|X
0S. Unuse () Releases a semaphore currently in use by a x| x
task.
Requests a specified semaphore, blocks it for
0S_Request () other tasks if it is available. Continues execu- | X | X

tion in any case.

Returns the value of the usage counter of a
specified resource semaphore.

Returns a pointer to the task that is currently
using (blocking) a resource.

0S_DeleteRSema () Deletes a specified resource semaphore.
Table 6.1: Resource semaphore API functions

0S_GetSemaValue ()

0S_GetResourceOwner ()

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



123

6.2.1 OS CreateRSema

Description

Creates a resource semaphore.

Prototype
void OS_CreateRSema (OS_RSEMA *pRSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 6.2: OS_CreateRSema() parameter list

Additional Information

After creation, the resource is not blocked; the value of the counter is zero.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



124 CHAPTER 6 Resource semaphores

6.2.2 0OS_Use()

Description
Claims a resource and blocks it for other tasks.

Prototype
int OS_Use (OS_RSEMA *pRSema) ;

Parameter Description

PRSema Pointer to the data structure for a resource semaphore.
Table 6.3: OS_Use() parameter list

Return value

The counter value of the semaphore.
A value greater than one denotes the resource was already locked by the calling task.

Additional Information

The following situations are possible:

e Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is zero, the resource will be blocked for other tasks by incrementing the counter
and writing a unique code for the task that uses it into the semaphore.

e (Case B: The resource is used by this task.
The counter of the semaphore is incremented. The program continues without a
break.

e (Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher pri-
ority than the task blocking the semaphore, the blocking task is assigned the pri-
ority of the task requesting the resource semaphore. This is called priority
inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource the task with the high-
est priority will acquire the resource and continue program execution.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



The following diagram illustrates how 0s_Use () works:

OS_Use(...)

Resource
in use?

Yes, by this task

Yes, by
other task

Wait for resource
to be released

Mark current task
as owner

v v

Increase Usage
counter

Usage counter = 1

return return

UMO01001 User & Reference Guide for embOS

125

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



126 CHAPTER 6 Resource semaphores

6.2.3 OS_UseTimed()

Description

Tries to claim a resource and blocks it for other tasks if it is available within a speci-
fied time.

Prototype
int OS_UseTimed (0OS_RSEMA *pRSema, OS_TIME TimeOut)

Parameter Description

PRSema Pointer to the data structure of a resource semaphore.

Maximum time until the resource semaphore should be available.
Timer period in basic embOS time units (nominal ms):

The data type os_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs.

Table 6.4: OS_UseTimed() parameter list

Return value

0: Failed, semaphore not available before timeout.

>0: Success, resource semaphore was available. The counter value of the sema-
phore.

A value greater than one denotes the resource was already locked by the calling task.

Additional Information

The following situations are possible:

e Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is zero, the resource will be blocked for other tasks by incrementing the counter
and writing a unique code for the task that uses it into the semaphore.

e Case B: The resource is used by this task.
The counter of the semaphore is incremented. The program continues without a
break.

e Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released
or the timeout time expired. In the meantime if the task blocked by the resource
semaphore has a higher priority than the task blocking the semaphore, the
blocking task is assigned the priority of the task requesting the resource sema-
phore. This is called priority inheritance. Priority inheritance can only temporarily
increase the priority of a task, never reduce it.
If the resource semaphore becomes available during the timeout, the calling task
claims the resource and the function returns a value greater than zero, other-
wise, if the resource does not become available, the function returns zero.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that the resource semaphore becomes available before
the calling task is resumed. Anyhow, the function will not claim the semaphore
because it was not availbale within the requested time.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource the task with the high-
est priority will acquire the resource and continue program execution.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



127

6.2.4 OS_Unuse()

Description
Releases a semaphore currently in use by a task.
Prototype
void OS_Unuse (OS_RSEMA *pRSema)
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 6.5: OS_Unuse() parameter list

Additional Information

0S_Unuse () may be used on a resource semaphore only after that semaphore has
been used by calling 0S_Use () or 0S_Request (). 0S_Unuse () decrements the usage
counter of the semaphore which must never become negative. If this counter
becomes negative, a debug build will call the embOS error handler 0s_Error () with
error code 0OS_ERR_UNUSE_BEFORE_USE. In a debug build 0s_Error () will also be
called if os_unuse() is called from a task which does not own the resource. The
error code is OS_ERR_RESOURCE_OWNER in this case.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



128 CHAPTER 6 Resource semaphores

6.2.5 OS_Request()

Description

Requests a specified semaphore and blocks it for other tasks if it is available. Contin-
ues execution in any case.

Prototype
char 0S_Request (OS_RSEMA *pRSema) ;

Parameter Description

PRSema Pointer to the data structure for a resource semaphore.
Table 6.6: OS-Request() parameter list

Return value

1: Resource was available, now in use by the calling task.
0: Resource was not available.

Additional Information

The following diagram illustrates how 0S_Request () works:

OS_Request (RSEMA*ps)

Resource in use by other task ?

No

Mark current task

In use by this task ?

as owner
Yes
Inc Usage counter Usage counter = 1

Example
if (OS_Request (&RSEMA_LCD) ) {
DispTime () ; /* Access the resource LCD */
0OS_Unuse (&RSEMA_LCD) ; /* Resource LCD is no longer needed */
} else {

// Do something else

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



129

6.2.6 OS_GetSemaValue()

Description

Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (const OS_SEMA *pSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 6.7: OS_GetSemaValue() parameter list

Return value

The counter of the semaphore.
A value of zero means the resource is available.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



130 CHAPTER 6 Resource semaphores

6.2.7 OS_GetResourceOwner()

Description
Returns a pointer to the task that is currently using (blocking) a resource.
Prototype
OS_TASK* 0OS_GetResourceOwner (const OS_RSEMA *pSema) ;
Parameter Description
pPRSema Pointer to the data structure for a resource semaphore.

Table 6.8: OS_GetResourceOwner() parameter list

Return value

Pointer to the task that holds the resource.
A value of NULL means the resource is available.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



131

6.2.8 OS_DeleteRSema()

Description

Deletes a specified resource semaphore. The memory of that semaphore may be
reused for other purposes or may be used for creating another resources semaphore
using the same memory.

Prototype
void OS_DeleteRSema (OS_RSEMA *pRSema) ;

Parameter Description
PRSema Pointer to a data structure of type 0S_RSEMA.

Table 6.9: OS_DeleteRSema parameter list

Additional Information

Before deleting a resource semaphore, make sure that no task is claiming the
resource semaphore. A debug build of embOS will call os_Error() with the error
code OS_DEL_RSEMA_DELETE if a resource semaphore is deleted when it is already in
use. In systems with dynamic creation of resource semaphores, you must delete a
resource semaphore before recreating it. Failure to so may cause semaphore han-
dling to work incorrectly.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



132 CHAPTER 6 Resource semaphores

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



133

Chapter 7

Counting Semaphores

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



134

7.1 Introduction

CHAPTER 7 Counting Semaphores

Counting semaphores are counters that are managed by embOS. They are not as
widely used as resource semaphores, events or mailboxes, but they can be very
useful sometimes. They are used in situations where a task needs to wait for
something that can be signaled one or more times. The semaphores can be accessed
from any point, any task, or any interrupt by any means.

Example of using counting semaphores

OS_STACKPTR int Stack0[96], Stackl[64];
/* Data-area for tasks (task-control-blocks) */

OS_TASK TCBO, TCB1;
OS_CSEMA SEMALCD;

void TaskO (void) {
while (1) {

/* Task stacks */

Disp("Task0 will wait for task 1 to signal");

0OS_WaitCSema (&SEMALCD) ;

Disp("Taskl has signaled !'!");

0S_Delay (100) ;
}
}

void Taskl (void) {
while (1) {
0S_Delay (5000) ;
0S_SignalCSema (&SEMALCD) ;
}
}

void InitTask (void) {
OS_CREATECSEMA (&SEMALCD) ;

OS_CREATETASK (&TCBO, NULL, TaskO,
OS_CREATETASK (&TCB1, NULL, Taskl,

}

UMO01001 User & Reference Guide for embOS

/* Create Semaphore */

Stack0) ; /* Create TaskO0 */
Stackl); /* Create Taskl */

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



7.2 API functions

135

phore.

- _— 3 o= 2
Routine Description D p @3
5 = P o
0. CREATECSEMA () Ma<_:r<_3 _that creates a counting semaphore with x| x
an initial count value of zero.
0S_CreatecSema () _Cr_e_ates a counting semaphore with a specified x| x
initial count value.
0S_SignalCSema () Increments the counter of a semaphore. X| X[ X
0S._SignalCSemaMax () Incren’_le_nts the _counter of a semaphore up to x| x
a specified maximum value.
0S_WaitCSema () Decrements the counter of a semaphore. X| X
Decrements the counter of a semaphore, if
0S_CSemaRequest () . X | X| X
available.
0S. WaitCSemaTimed () Decrer1_1ents a semaph_ore count_e_r if t_he sema- |y |y
phore is available within a specified time.
0S. GetCSemavalue () Returns the counter value of a specified sema- x| x| x

0S_SetCSemaValue ()

Sets the counter value of a specified sema-
phore.

O0S_DeleteCSema ()

Deletes a specified semaphore.

Table 7.1: Counting semaphores API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



136 CHAPTER 7 Counting Semaphores

7.21 OS_CREATECSEMA()

Description
Macro that creates a counting semaphore with an initial count value of zero.
Prototype
void OS_CREATECSEMA (OS_CSEMA *pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 7.2: OS_CREATECSEMA() parameter list

Additional Information

To create a counting semaphore a data structure of the type os_cseMa must be
defined in memory and initialized using 0S_CREATECSEMA (). The value of a sema-
phore created by using this macro is zero. If for any reason you need create a sema-
phore with an initial counting value greater than zero, use the function
0S_CreateCSema ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



137

7.2.2 OS_CreateCSema()

Description

Creates a counting semaphore with a specified initial count value.

Prototype

void OS_CreateCSema (OS_CSEMA *pCSema,
OS_UINT InitValue) ;

Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.
Initial count value of the semaphore:
Initvalue 0 <= Initvalue <= 216-1 = OxFFFF for 8/16 bit CPUs
0 <= Initvalue <= 232-1 = OXFFFFFFFF for 32 bit CPUs

Table 7.3: OS_CreateCSema() parameter list

Additional Information

To create a counting semaphore a data structure of the type 0s_CSEMA must be
defined in memory and initialized using 0S_CreateCSema ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



138 CHAPTER 7 Counting Semaphores

7.2.3 0OS_SignalCSema()

Description
Increments the counter of a semaphore.
Prototype
void OS_SignalCSema (OS_CSEMA *pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 7.4: OS_SignalCSema() parameter list

Additional Information

0S_SignalCSema () signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the task
with the highest priority becomes the running task. The counter can have a maxi-
mum value of OxFFFF for 8/16 bit CPUs or OxFFFFFFFF for 32 bit CPUs. It is the
responsibility of the application to make sure that this limit is not exceeded. A debug
build of embOS detects a counter overflow and calls 0s_Error () with error code
OS_ERR_CSEMA_OVERFLOW if an overflow occurs.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



139

7.2.4 0OS_SignalCSemaMax()

Description
Increments the counter of a semaphore up to a specified maximum value.

Prototype

void OS_SignalCSemaMax (OS_CSEMA *pCSema,
OS_UINT MaxValue) ;

Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.
Limit of semaphore count value.
MaxValue 1 <= Maxvalue <= 216-1 = OxFFFF for 8/16 bit CPUs
1 <= Maxvalue <= 232-1 = OxFFFFFFFF for 32 bit CPUs

Table 7.5: OS_SignalCSemaMax() parameter list

Additional Information

As long as current value of the semaphore counter is below the specified maximum
value, 0S_SignalCSemaMax () Sighals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this sema-
phore, the tasks are placed into the READY state and the task with the highest prior-
ity becomes the running task.

Calling 0s_signalCSemaMax () with a Maxvalue of 1 makes a counting semaphore
behave like a binary semaphore. Consider using a binary resource instead.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



140 CHAPTER 7 Counting Semaphores

7.2.5 0OS_WaitCSema()

Description
Decrements the counter of a semaphore.

Prototype
void OS_WaitCSema (OS_CSEMA *pCSema) ;

Parameter Description

pCSema Pointer to a data structure of type 0S_CSEMA.
Table 7.6: OS_WaitCSema() parameter list

Additional Information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, WwaitCSema () waits until the counter is incremented by another
task, a timer or an interrupt handler by a call to 0s_signalcSema (). The counter is
then decremented and program execution continues.

An unlimited number of tasks can wait for a semaphore. According to the rules of the
scheduler, of all the tasks waiting for the semaphore, the task with the highest prior-
ity will continue program execution.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



141

7.2.6 0OS_WaitCSemaTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified
time.

Prototype

int OS_WaitCSemaTimed (OS_CSEMA *pCSema,
OS_TIME TimeOut) ;

Parameter Description

pCSema Pointer to a data structure of type 0s_CSEMA.

Maximum time until semaphore should be available

Timer period in basic embOS time units (nominal ms):

_ The data type 0s_TIME is defined as an integer, therefore valid
TimeOut values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs.
Table 7.7: OS_WaitCSemaTimed parameter list

Return value

0: Failed, semaphore not available before timeout.
1: OK, semaphore was available and counter decremented.

Additional Information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, WaitCSemaTimed () waits until the semaphore is sighaled by
another task, a timer, or an interrupt handler by a call to 0S_SignalcSema (). The
counter is then decremented and program execution continues. If the semaphore was
not signaled within the specified time the program execution continues, but returns a
value of zero. An unlimited number of tasks can wait for a semaphore. According to
the rules of the scheduler, of all the tasks waiting for the semaphore, the task with
the highest priority will continue program execution.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that the counting semaphore becomes available after
the timeout expired, but before the calling task is resumed. Anyhow, the function
returns with timeout, because the semaphore was not availbale within the requested
time. In this case, the state of the semaphore is not modified by
O0S_WaitCSemaTimed ().

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



142 CHAPTER 7 Counting Semaphores

7.2.7 0OS_CSemaRequest()

Description
Decrements the counter of a semaphore, if it is signaled.
Prototype
char 0S_CSemaRequest (OS_CSEMA *pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 7.8: OS_CSemaRequest() parameter list

Return value

0: Failed, semaphore was not signaled.
1: OK, semaphore was available and counter was decremented once.

Additional Information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, 0S_CSemaRequest () does not wait and does not modify the
semaphore counter. The function returns with error state.

Because this function never blocks a calling task, this function may be called from an
interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



143

7.2.8 0OS_GetCSemaValue()

Description

Returns the current counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (const OS_SEMA *pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 7.9: OS_GetCSemaValue() parameter list

Return value

The current counter value of the semaphore.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



144 CHAPTER 7 Counting Semaphores

7.2.9 0OS_SetCSemaValue()

Description

Sets the counter value of a specified semaphore.

Prototype

0S_U8 0S_SetCSemaValue (OS_SEMA *pCSema,
OS_UINT Value);

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.
Count value of the semaphore:
value 0 <= Initvalue <= 216-1 = OxFFFF for 8/16 bit CPUs
0 <= Initvalue <= 232-1 = OxFFFFFFFF for 32 bit CPUs

Table 7.10: OS_SetCSemaValue() parameter list

Return value

0: In any case.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



145

7.2.10 OS_DeleteCSema()

Description

Deletes a specified semaphore.

Prototype
void OS_DeleteCSema (OS_CSEMA *pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.

Table 7.11: OS_DeleteCSema() parameter list

Additional Information

Before deleting a semaphore, make sure that no task is waiting for it and that no
task will signal that semaphore at a later point.
A debug build of embOS will reflect an error if a deleted semaphore is signaled.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



146 CHAPTER 7 Counting Semaphores

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



147

Chapter 8

Mailboxes

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



148

8.1

CHAPTER 8 Mailboxes

Introduction

In the preceding chapters task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to another.
If we need to transfer data between tasks for example via a buffer, we could use a
resource semaphore every time we accessed the buffer. But doing so would make the
program less efficient. Another major disadvantage would be that we could not
access the buffer from an interrupt handler, because the interrupt handler is not
allowed to wait for the resource semaphore.

One solution would be the usage of global variables. In this case we would need to
disable interrupts each time and in each place that we accessed these variables. This
is possible, but it is a path full of pitfalls. It is also not easy for a task to wait for a
character to be placed in a buffer without polling the global variable that contains the
number of characters in the buffer. Again, there is solution — the task could be noti-
fied by an event signaled to the task each time a character is placed in the buffer.
This is why there is an easier way to do this with a real-time OS:

The use of mailboxes.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



149

8.2 Basics

A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can deposit something (called a message) and
retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a message that
is deposited first will usually be retrieved first. "Message” might sound abstract, but
very simply it means “item of data”. It will become clearer in the typical applications
explained in the following section.

A mailbox can be used by more than one producer but should be used by one con-
sumer only. This means that more than one task or interrupt handler is allowed to
deposit new data into the mailbox, but it does not make sense to retrieve messages
by multiple tasks.

Limitations:

The number of mailboxes and buffers is limited only by the amount of available mem-
ory.

The message size, number of messages and buffer size per mailbox are limited by
software design.

Message size: 1 <= x <= 32767 bytes.

Number of messages: 1 <= x <= 32767 on 8 or 16bit CPUs.

Number of messages: 1 <= x <= 231-1 on 32bit CPUs.

Maximum buffer size for one mailbox: 65536 bytes (64KB) on 16bit CPUs

Maximum buffer size for one mailbox: 232 bytes on 32bit CPUs

These limitations have been placed on mailboxes to guarantee efficient coding and
also to ensure efficient management. These limitations are normally not a problem.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



150 CHAPTER 8 Mailboxes

8.3 Typical applications
8.3.1 A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt handler to
check the keyboard. When a key has been pressed, that key is deposited into a mail-
box that is used as a keyboard buffer. The message is then retrieved by the task that
handles keyboard input. The message in this case is typically a single byte that holds
the key code; the message size is therefore one byte.

The advantage of a keyboard buffer is that management is very efficient; you do not
need to worry about it, because it is reliable, proven code and you have a type-ahead
buffer at no extra cost. In addition, a task can easily wait for a key to be pressed
without having to poll the buffer. It simply calls the 0s_GetMail () routine for that
particular mailbox. The number of keys that can be deposited in the type-ahead
buffer depends only on the size of the mailbox buffer, which you define when creating
the mailbox.

8.3.2 A buffer for serial 1/0

In most cases, serial I/O is done with the help of interrupt handlers. The communica-
tion to these interrupt handlers is very easy with mailboxes. Both your task programs
and your interrupt handlers deposit or retrieve data into/from the same mailbox. As
with a keyboard buffer, the message size is one character.

For interrupt-driven sending, the task deposits the character(s) in the mailbox using
0S_PutMail () or 0S_PutMailCond(); the interrupt handler that is activated when a
new character can be sent retrieves the character(s) with 0s_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received deposits it in the mailbox using 0S_PutMailCond(); the task
receives it using 0S_GetMail () Or OS_GetMailCond().

8.3.3 A buffer for commands sent to a task

Assume you have one task controlling a motor, as you might have in applications that
control a machine. A simple way to give commands to this task would be to define a
structure for commands. The message size would then be the size of this structure.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



151

8.4 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer
single-byte messages. This is the case, for example, with a mailbox that takes the
character received or sent via serial interface, or normally with a mailbox used as a
keyboard buffer. In some of these cases, time is very critical, especially if a lot of
data is transferred in short periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions 0S_PutMail (), OS_PutMailCond (), 0S_GetMail (), and 0S_GetMailCond () can
transfer messages of sizes between 1 and 32767 bytes each.

Their single-byte equivalents 0S_PutMaill (), OS_PutMailCondl (), OS_GetMaill (),
and 0S_GetMailCondl () work the same way with the exception that they execute
much faster because management is simpler. It is recommended to use the single-
byte versions if you transfer a lot of single-byte data via mailboxes.

The routines 0S_PutMaill(), 0S_PutMailCondl (), 0S_GetMaill(), and
0S_GetMailCondl () work exactly the same way as their universal equivalents and
are therefore not described separately. The only difference is that they can only be
used for single-byte mailboxes.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



152 CHAPTER 8 Mailboxes

8.5 API functions

3 o= 3
Routine Explanation o p I3
5 x P
o
0S_CreateMB () Creates a new mailbox. X | X
OS_PutMail () / Stores a new message of a predefined size in x| x
0S_PutMaill () a mailbox.
0S_ PutMailCond() / Stores a new message of a predefined size in
—rurrat ton a mailbox, if the mailbox is able to accept X|X|X]|X
OS_PutMailCondl ()
one more message.
. Stores a new message of a predefined size
0S_PutMailFront () / - . .
. into a mailbox in front of all other messages. | X | X
OS_PutMailFrontl () . . . R
This new message will be retrieved first.
Stores a new message of a predefined size
0S_PutMailFrontCond() / |into a mailbox in front of all other messages, X% x
OS_PutMailFrontCondl () if the mailbox is able to accept one more
message.
0S_GetMail() / Retrieves a message of a predefined size X
0S_GetMaill () from a mailbox.
0S_GetMailCond () / Retrieves a message of a predefined size
: i ! . - X| X| XX
0S_GetMailCondl () from a mailbox, if a message is available.
Retrieves a new message of a predefined size
0S_GetMailTimed () from a mailbox, if a message is available X | X
within a given time.
0S. WaitMail () Waits until a mail is available, but does not x| x
—fattrat retrieve the message from the mailbox.
Suspends the calling task until a mail is
05 WaitMailTimed () available or L!ntll the timeout expires, but Cixlx
does not retrieve the message from the mail-
box.
0S. Peckuail () :Rnegaci:lts a mail from a mailbox without remov- X% x %
. Gets a pointer to the next mail without
0S_Mail_GetPtr () . . X
removing it
05 Mail GetPtrCond () Gets a p0|_nte_r to the next_mall wlthout x| x| x| x
removing it, if a message is available
. Removes a message which was read by
0s Mail Purge () 0S_Mail_GetPtr()/0S_Mail_GetPtrCond() | X X
0S_ClearMB () Clears all messages in a specified mailbox. XX
0S_GetMessagecCnt () Retu_rljs num_ber of messages currently in a x| x
specified mailbox.
0S_DeleteMB () Deletes a specified mailbox. X | X

Table 8.1: Mailboxes API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



153

8.5.1 OS_CreateMB()

Description
Creates a new mailbox.
Prototype
void OS_CreateMB (0OS_MAILBOX *pMB,
unsigned short sizeofMsg,
unsigned int maxnofMsg,
void *pMsg) ;
Parameter Description
MEB Pointer to a data structure of type 0s_MAILBOX reserved for man-
p aging the mailbox.
sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 32767)
maxnoMsg Maximum number of messages. (1 <= MaxnofMsg <= 32767)
Pointer to a memory area used as buffer. The buffer must be big
pMsg enough to hold the given number of messages of the specified
Size: sizeofMsg * maxnoMsg bytes.

Table 8.2: OS_CreateMB() parameter list

Example

Mailbox used as keyboard buffer:

OS_MAILBOX MBKey;

char MBKeyBuffer[6];

void InitKeyMan (void) {
/* Create mailbox, functioning as type ahead buffer */
0S_CreateMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);

}

Mailbox used for transferring complex commands from one task to another:

/*

* Example of mailbox used for transferring commands to a task
* that controls a motor

*/

typedef struct {
char Cmd;
int Speed[2];
int Position([2];

} MOTORCMD ;

OS_MAILBOX MBMotor;

#define NUM_MOTORCMDS 4

char BufferMotor[sizeof (MOTORCMD) * NUM_MOTORCMDS] ;

void MOTOR_Init (void) {
/* Create mailbox that holds commands messages */
0S_CreateMB (&MBMotor, sizeof (MOTORCMD), NUM_MOTORCMDS, &BufferMotor) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



154

CHAPTER 8 Mailboxes

8.5.2 OS_PutMail()/ OS_PutMail1()

Description
Stores a new message of a predefined size in a mailbox.

Prototype

void OS_PutMail (OS_MAILBOX *pMB,
const void *pMail) ;

void OS_PutMaill (OS_MAILBOX *pMB,
const char *pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 8.3: OS_PutMail() / OS_PutMaill() parameter list

Additional Information

If the mailbox is full, the calling task is suspended.

Because this routine might require a suspension, it must not be called from an inter-
rupt routine. Use 0S_PutMailCond()/0S_PutMailCondl () instead if you need to
store data in a mailbox from within an ISR.

When using a debug build of embQS, calling from an interrupt routine will call the error
handler 0S_Error () with error code 0S_ERR_IN_ISR.

Important

This function must not be called from within an interrupt handler.
Example

Single-byte mailbox as keyboard buffer:

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey (char k) {
0S_PutMaill (&MBKey, &k); /* Store key, wait if no space in buffer */
}

void KEYMAN_ Init (void) {
/* Create mailbox functioning as type ahead buffer */
0S_CreateMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



155

8.5.3 OS_PutMailCond() / OS_PutMailCond1()

Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able to
accept one more message.

Prototype

char OS_PutMailCond (OS_MAILBOX *pMB,
const void *pMail) ;

char OS_PutMailCondl (OS_MAILBOX *pMB,
const char *pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 8.4: OS_PutMailCond() / OS_PutMailCond1() overview

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from an
interrupt routine.

Example

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
return OS_PutMailCondl (&MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mail-
box as keyboard buffer.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



156 CHAPTER 8 Mailboxes

8.5.4 OS_PutMailFront() / OS_PutMailFront1()

Description

Stores a new message of a predefined size at the beginning of a mailbox in front of
all other messages. This new message will be retrieved first.

Prototype

void OS_PutMailFront (OS_MAILBOX *pMB,
const void *pMail) ;

void OS_PutMailFrontl (OS_MAILBOX *pMB,
const char *pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 8.5: OS_PutMailFront() / OS_PutMailFront1() parameter list

Additional Information

If the mailbox is full, the calling task is suspended. Because this routine might
require a suspension, it must not be called from an interrupt routine. Use
0OS_PutMailFrontCond()/0S_PutMailFrontCondl () instead if you need to store data
in @ mailbox from within an ISR.

This function is useful to store “emergency” messages into a mailbox which must be
handled quickly.

It may also be used in general instead of 0s_pPutMail () to change the FIFO structure
of a mailbox into a LIFO structure.

Important

This function must not be called from within an interrupt handler.
Example

Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

OS_MAILBOX MBCmd;
char MBCmdBuffer[6];

void KEYMAN_ StoreCommand (char k) {
0S_PutMailFrontl (&MBCmd, &k); /* Store command, wait if no space in buffer*/

void KEYMAN_ Init (void) {
/* Create mailbox for command buffer */
0S_CreateMB (&MBCmd, 1, sizeof (MBCmdBuffer), &MBCmdBuffer);

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



157

8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()

Description

Stores a new message of a predefined size into a mailbox in front of all other mes-
sages, if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype

char OS_PutMailFrontCond (OS_MAILBOX *pMB,
const void *pMail) ;

char OS_PutMailFrontCondl (OS_MAILBOX *pMB,
const char *pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 8.6: OS_PutMailFrontCond() / OS_PutMailFrontCond1() parameter list

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored. This function never suspends the
calling task. It may therefore be called from an interrupt routine. This function is
useful to store "emergency” messages into a mailbox which must be handled quickly.
It may also be used in general instead of 0s_pPutMailCond() to change the FIFO
structure of a mailbox into a LIFO structure.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



158

CHAPTER 8 Mailboxes

8.5.6 0OS_GetMail() / OS_GetMail1()

Description

Retrieves a new message of a predefined size from a mailbox.

Prototype

void OS_GetMail (OS_MAILBOX *pMB,
void *pDest) ;

void 0S_GetMaill (OS_MAILBOX *pMB,
char *pDest) ;

Parameter Description

PMB Pointer to the mailbox.
Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there

pDest . ot . . .
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 8.7: OS_GetMail() / OS_GetMaill() parameter list

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it must not be called from an
interrupt routine. Use 0S_GetMailCond/OS_GetMailCondl instead if you need to
retrieve data from a mailbox from within an ISR.

Important
This function must not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;

char WaitKey (void) {
char c;
0S_GetMaill (&MBKey, &c);
return c;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



159

8.5.7 0OS_GetMailCond() / OS_GetMailCond1()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is

available.
Prototype
char 0S_GetMailCond (OS_MAILBOX *pMB,
void *pDest) ;
char 0S_GetMailCondl (OS_MAILBOX *pMB,
char *pDest) ;
Parameter Description
PMB Pointer to the mailbox.
Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
pDest . . . K . .
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 8.8: OS_GetMailCond() / OS_GetMailCond1() parameter list

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved and pbDest remains unchanged, but
the program execution continues. This function never suspends the calling task. It
may therefore also be called from an interrupt routine.

Example

OS_MATILBOX MBKey;

/*
* Tf a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise zero is returned.
*/
char GetKey (void) {
char ¢ = 0;
0S_GetMailCondl (&MBKey, &cC);
return c;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



160 CHAPTER 8 Mailboxes

8.5.8 0OS_GetMailTimed()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is avail-
able within a given time.

Prototype
char 0S_GetMailTimed (OS_MAILBOX *pMB,

void *pDest,

OS_TIME Timeout) ;

Parameter Description
PMB Pointer to the mailbox.
Pointer to the memory area that the message should be stored

pDest at. Make sure that it points to a valid memory area and that there

is sufficient space for an entire message. The message size (in
bytes) has been defined upon creation of the mailbox.

Maximum time in timer ticks until the requested mail must be
available. The data type 0s_TIME is defined as an integer, there-
Timeout fore valid values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 8.9: OS_GetMailTimed() parameter list

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, pbest remains unchanged and the
task is suspended for the given timeout. The task continues execution according to
the rules of the scheduler as soon as a mail is available within the given timeout, or
after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that mail becomes available after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout,
because the mail was not availbale within the requested time. In this case, no mail is
retrieved from the mailbox.

Important
This function must not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;

/*
* If a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise, zero is returned.

*/

char GetKey(void) {
char ¢ = 0;
0S_GetMailTimed (&MBKey, &c, 10); /* Wait for 10 timer ticks */
return c;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



161

8.5.9 OS_WaitMail()

Description
Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
void OS_WaitMail (OS_MAILBOX *pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 8.10: OS_WaitMail() parameter list

Additional Information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the
task continues. The task continues execution according to the rules of the scheduler
as soon as a mail is available, but the mail is not retrieved from the mailbox.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



162 CHAPTER 8 Mailboxes

8.5.10 OS_WaitMailTimed()

Description

Waits until a mail is available or the timeout has expired, but does not retrieve the
message from the mailbox.

Prototype
char 0OS_WaitMailTimed (OS_MAILBOX *pMB,
OS_TIME Timeout);
Parameter Description
PMB Pointer to the mailbox.

Maximum time in timer ticks until the requested mail must be
available. The data type 0os_TIME is defined as an integer, there-
T mEeuiE fore valid values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 23!-1 = Ox7FFFFFFF for 32 bit CPUs
Table 8.11: OS_WaitMail() parameter list

Return value

0: Success; message available.
1: Timeout; no message available within the given timeout time.

Additional Information

If the mailbox is empty, the task is suspended for the given timeout. The task contin-
ues execution according to the rules of the scheduler as soon as a mail is available
within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that mail becomes available after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout,
because the mail was not availbale within the requested time.

Important

This function must not be called from within an interrupt handler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



163

8.5.11 OS_PeekMail()

Description

Peeks a mail from a mailbox without removing the mail.

Prototype
char 0S_PeekMail (OS_MAILBOX *pMB,
void *pDest);
Parameter Description
PMB Pointer to the mailbox.
pDest Pointer to a buffer that should receive the mail

Table 8.12: OS_PeekMail() parameter list

Return value

0: Success; message available.
1: Message could not be retrieved (mailbox is empty).

Additional Information

This function is non-blocking and never suspends the calling task. It may therefore
be called from an interrupt routine.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



164

CHAPTER 8 Mailboxes

8.5.12 OS_Mail_GetPtr()

Description

Retrieves a pointer to a new message of a predefined size from a mailbox.

Prototype

void 0OS_Mail_GetPtr (OS_MAILBOX *pMB, void **ppDest) ;

Parameter Description

PMB Pointer to the mailbox.
Pointer to the memory area that a pointer to the message should

ppDest be stored at. The message size (in bytes) was defined when the
mailbox was created.

Table 8.13: OS_Mail_GetPtr() parameter list

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it must not be called from an
interrupt routine. Use OS_Mail_GetPtrCond() instead if you need to retrieve data
from a mailbox from within an ISR.

Important
This function must not be called from within an interrupt handler.

Example

0S_MAILBOX MBKey;

void PrintMessage (void) {
char *p;
0S_Mail_GetPtr (&MBKey, (void**)&p);
printf ("%d\n", *p);
0S_Mail_Purge (&MBKey) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



165

8.5.13 OS_Mail_GetPtrCond()

Description

Retrieves a pointer to a new message of a predefined size from a mailbox, if a mes-
sage is available.

Prototype
char 0S_Mail_GetPtrCond (OS_MAILBOX *pMB, void **ppDest) ;

Parameter Description
PMB Pointer to the mailbox.
Pointer to the memory area that a pointer to the message should
ppDest be stored at. The message size (in bytes) was defined when the
mailbox was created.

Table 8.14: OS_Mail_GetPtrCond() parameter list

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains

unchanged.
Additional Information

If the mailbox is empty, no message is retrieved and ppDest remains unchanged, but
the program execution continues. This function never suspends the calling task. It
may therefore also be called from an interrupt routine.

Example

OS_MAILBOX MBKey;

void PrintMessage (void) {
char *p;
char r;
r = 0S_Mail_GetPtrCond (&MBKey, (void**)&p);
if (r == 0) {
printf ("%d\n", *p);
0S_Mail_Purge (&MBKey) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



166

CHAPTER 8 Mailboxes

8.5.14 OS_Mail_Purge()

Description
Deletes the last retrieved message in a mailbox.
Prototype
void 0OS_Mail_Purge (OS_MAILBOX *pMB) ;

Parameter Description
PMB Pointer to the mailbox.

Table 8.15: OS__WaitMail() parameter list

Additional Information

This routine should be called by the task that retrieved the last message from the
mailbox, after the message is processed.

Once a message was retrieved by a call of 0s_Mail _GetPtr() or
0S_Mail_GetPtrCond (), the message must be removed from the mailbox by a call of
0S_Mail_purge() before a following message can be retrieved from the mailbox.
Consecutive calls of 0S_Mail_GetPtr() Or 0S_Mail_GetPtrCond() will call the
embOS error handler 0s_Error () in embOS debug builds.

Consecutive calls of 0s_Mail_purge() or calling 0s_Mail_purge() without having
retrieved a message from the mailbox will also call the embOS error handler
0S_Error () in embOS debug builds.

Example

OS_MAILBOX MBKey;

void PrintMessage (void) {
char *p;
0S_Mail_GetPtr (&MBKey, (void**)&p);
printf ("%d\n", *p);
0S_Mail_Purge (&MBKey) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



167

8.5.15 OS_ClearMB()

Description
Clears all messages in a specified mailbox.

Prototype
void OS_ClearMB (OS_MAILBOX *pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 8.16: OS_ClearMB() parameter list

Additional Information
0S_ClearMB () may cause a task switch.
Example

OS_MAILBOX MBKey;

/*

* Clear keyboard type ahead buffer

*/

void ClearKeyBuffer (void) {
0S_ClearMB (&MBKey) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



168 CHAPTER 8 Mailboxes

8.5.16 OS_GetMessageCnt()

Description

Returns the number of messages currently available in a specified mailbox.

Prototype

unsigned int OS_GetMessageCnt (OS_MAILBOX *pMB) ;
Parameter Description

PMB Pointer to the mailbox.

Table 8.17: OS_GetMessageCnt() parameter list

Return value

The number of messages in the mailbox.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



169

8.5.17 OS_DeleteMB()

Description

Deletes a specified mailbox.

Prototype
void 0OS_DeleteMB (OS_MAILBOX *pMB) ;

Parameter Description
PMB Pointer to the mailbox.

Table 8.18: OS_DeleteMB() parameter list

Additional Information

To keep the system fully dynamic, it is essential that mailboxes can be created
dynamically. This also means there must be a way to delete a mailbox when it is no
longer needed. The memory that has been used by the mailbox for the control struc-
ture and the buffer can then be reused or reallocated.

It is the programmer's responsibility to:

e make sure that the program no longer uses the mailbox to be deleted
e make sure that the mailbox to be deleted actually exists (i.e. has been created
first).

In a debug build os_grror () will also be called, if 0s_DeleteMB() is called while
tasks are waiting for new data from the mailbox. The error code in this case is
OS_ERR_MAILBOX_DELETE.

Example

OS_MAILBOX MBSerIn;

void Cleanup (void) {
0S_DeleteMB (&MBSerIn) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



170 CHAPTER 8 Mailboxes

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



171

Chapter 9

Queues

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



172 CHAPTER 9 Queues

9.1 Introduction

In the preceding chapter, intertask communication using mailboxes was described.
Mailboxes can handle small messages with fixed data size only.

Queues enable intertask communication with larger messages or with messages of
differing lengths.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



173

9.2 Basics

A queue consists of a data buffer and a control structure that is managed by the real-
time operating system. The queue behaves like a normal buffer; you can deposit
something (called a message) in the queue and retrieve it later. Queues work as
FIFO: first in, first out. So a message that is deposited first will be retrieved first.
There are three major differences between queues and mailboxes:

1. Queues accept messages of differing lengths. When depositing a message into a
queue, the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a
pointer to the message and its size. This enhances performance because the data
is copied only when the message is written into the queue.

3. The retrieving function must delete every message after processing it.

4. A new message can only be retrieved from the queue when the previous message
was deleted from the queue.

Both the number and size of queues is limited only by the amount of available
memory. Any data structure can be written into a queue, the message size is not
fixed.

Similar to mailboxes, queues can be used by more than one producer but should be
used by one consumer only. This means that more than one task or interrupt handler
is allowed to deposit new data into the queue, but it does not make sense to retrieve
messages by multiple tasks.

The queue data buffer contains the messages and some additional management
information. Each message has a message header containing the message size. The
define 0s_Q_sI1zEOF_HEADER defines the size of the message header.

Additionally, the queue buffer will be aligned for those CPUs which need data align-
ment. Therefore the queue data buffer size must be bigger than the sum of all mes-
sages.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



174 CHAPTER 9 Queues

9.3 API functions

3 o= 3
Routine Description o 8 ©3
5 = P o
0S_Q_Create() Creates and initializes a message queue. X | X|X| X
0S. 0. Put () Stores a new message of given size in a x| % x
queue.
Stores a new message of given size in a
0S_Q_PutBlocked () queue. Blocks the calling task when queue is X
full.
Stores a new message of given size in a queue
0S_Q_PutTimed () within a given timeout time. Suspends the XX

calling task when the queue is full.

Stores a new message, of which the distinct
0S_Q_PutEx() parts are distributed in memory as indicated X|X|X]|X
by a OS_Q_SRCLIST structure, in a queue.

Stores a new message, of which the distinct
parts are distributed in memory as indicated
by a OS_Q_SRCLIST structure, in a queue.
Blocks the calling task when queue is full.

Stores a new message, of which the distinct
parts are distributed in memory as indicated
0S_Q_PutTimedEx () by a OS_Q_SRCLIST structure, in a queue. X | X
Suspends the calling task for a given timeout
when the queue is full.

0S_Q PutBlockedEx ()

0S_Q_GetPtr() Retrieves a message from a queue. XX
Retrieves a message from a queue, if one

0S_Q_GetPtrCond() message is available or returns without sus- X| X | XX
pension.

Retrieves a message from a queue within a

0S_Q_GetPtrTimed DA . - i
—Q_GetPtrTimed() specified time, if one message is available.

X| X
0S_Q_Purge () Deletes the last retrieved message in a queue.| X | X | X | X
0S_Q_Clear () Deletes all message in a queue. X|X|X]|X
0S.0_GetMessagecnt () Returns the number of messages currently in a x| x| x| x
queue.
0S_Q_Delete() Deletes a specified queue. X|X|X]| X
08_0_TsInUse() Delivers information about the usage state of x| % x
the queue.
0S_0_GetMessageSize () Returns the size of the first message in the %I x %
queue.
0S.0_Peekptr () Retrle\_/es a message from a queue without x| x x
removing it.

Table 9.1: Queues API

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



175

9.3.1 0OS_Q_Create()

Description

Creates and initializes a message queue.

Prototype
void 0S_Q_Create (0S_Q *PQ,
void *pData,
OS_UINT Size);
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Table 9.2: 0OS_Q_Create() parameter list

Example

#define MESSAGE_CNT 100

#define MESSAGE_SIZE 100

#define MEMORY_QSIZE MESSAGE_CNT * (MESSAGE_SIZE + 0OS_Q_ SIZEOF_HEADER)
static 0S_Q _MemoryQ;

static char _acMemQBuffer [MEMORY_QSIZE];

void MEMORY_Init (void) {
0S_Q_Create (&_MemoryQ, &_acMemQBuffer, sizeof (_acMemQBuffer));

}
Additional Information

The define 0S_Q_SIZEOF_HEADER can be used to calculate the additional management
information bytes needed for each message in the queue data buffer. But it does not
account for the additional space needed for data alignment. Thus the number of mes-
sages that can actually be stored in the queue buffer depends on the message sizes.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



176 CHAPTER 9 Queues

9.3.2 0S_Q_Put()

Description
Deposits a new message of given size in a queue.
Prototype
int 0S_Q Put (0S_Q *pQ,
const void *pSrc,
OS_UINT Size);
Parameter Description
9 Pointer to a data structure of type 0s_qQ reserved for the manage-
P ment of the message queue.
pSrc Pointer to the message to store.
Size Size of the message to store.

Table 9.3: OS_Q_Put() parameter list

Return value

0: Success, message stored.
1: Message could not be stored (queue is full).

Additional Information

This routine never suspends the calling task and may therefore be called from an
interrupt routine.

When the message is deposited into the queue, the entire message is copied into the
queue buffer, not only the pointer to the data. Therefore the message content is pro-
tected and remains valid until it is retrieved and accessed by a task reading the mes-
sage.

Example

int MEMORY_Write (const char *pData, OS_UINT Len) {
return 0OS_Q_ Put (& MemoryQ, pData, Len);

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



177

9.3.3 0OS_Q_PutBlocked()

Description

Deposits a new message of given size in a queue.

Prototype
void 0OS_Q_ PutBlocked (0S_Q *P0,
const void *pSrc,
OS_UINT Size);
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
pSrc Pointer to the message to store.
Size Size of the message to store.

Table 9.4: OS_Q_PutBlocked() parameter list

Additional Information

If the queue is full, the calling task is suspended. Because this routine might require
a suspension, it must not be called from an interrupt routine. Use 0s_Q_Put ()
instead if you need to deposit messages in a queue from within an ISR.

Important

This function must not be called from within an interrupt handler.
When using a debug build of embOQOS, calling from an interrupt handler will call the
error handler 0s_Error () with error code 0S_ERR_IN_ISR .

Example

void StoreMessage (const char *pData, OS_UINT Len)
0S_Q_PutBlocked (& MemoryQ, pData, Len);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



178 CHAPTER 9 Queues

9.3.4 0S_Q_PutTimed()

Description
Deposits a new message of given size in a queue if space is available within a given
time.
Prototype
int 0S_Q_ PutTimed (0S_Q *PO,
const void *pSrc,
OS_UINT Size,
OS_TIME Timeout) ;
Parameter Description
9 Pointer to a data structure of type 0s_q reserved for the manage-
P ment of the message queue.
pSrc Pointer to the message to store.
Size Size of the message to store.

Maximum time in timer ticks until the requested message must
be stored into the queue.

. The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 9.5: 0S_Q_PutTimed() parameter list

Return value

0: Success, message stored.
1: Message could not be stored within the specified time (insufficient space).

Additional Information

If the queue holds insufficient space, the calling task is suspended until space for the
message is available, or the specified timeout time has expired.

If the message could be deposited into the queue within the sepcified time, the func-
tion returns zero.

As the calling function may be suspended, the function must not be called from an
interrupt routine or timer. A debug build of embOS will call the embOS error function
0S_Error () if this function is called from an interrupt handler or timer.

Example

int MEMORY_WriteTimed (const char *pData, OS_UINT Len, OS_TIME Timeout) {
return OS_Q PutTimed (&_MemoryQ, pData, Len, Timeout) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



179

9.3.5 0S_Q_PutEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indi-
cated by a OS_Q_SRCLIST structure, in a queue.

Prototype
int 0S_Q PutEx (0S_Q%* PQ,
OS_CONST_PTR OS_Q_SRCLIST* pSrcList,
OS_UINT NumSrc) ;
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
. Pointer to an array of 0s_Q_SRCLIST structures which contain
pSrcList .
pointers to the data to store.
NumSrc Number of 0S_Q_SRCLIST structures at pSrcList.

Table 9.6: OS_Q_PutEx() parameter list

Return value

0: Success, message stored.
1: Message could not be stored (queue is full).

Additional Information

This routine never suspends the calling task and may therefore be called from an
interrupt routine.

When the message is deposited into the queue, the entire message is copied into the
queue buffer, not only the pointer(s) to the data. Therefore the message content is
protected and remains valid until it is retrieved and accessed by a task reading the
message.

Example

OS_CONST_PTR OS_Q_SRCLIST aDataList[] = { {"Hello ", 6},
{"World!", 6}
Y
0S_Q_PutEx (& _MemoryQ, aDataList, 2);

9.3.5.1 The OS_Q_SRCLIST structure

The 0S_0Q_ SRCLIST structure consists of two elements:

Parameter Description
pSrc Pointer to a part of the message to store.
Size Size of the part of the message.

Table 9.7: Elements of the OS_Q_SRCLIST structure

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



180 CHAPTER 9 Queues

9.3.6 OS_Q_PutBlockedEXx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indi-
cated by a OS_Q_SRCLIST structure, in a queue. Blocks the calling task when queue

is full.
Prototype
void 0S_Q PutBlockedEx (0S_Q* P9,

OS_CONST_PTR OS_Q_SRCLIST* pSrcList,

OS_UINT NumSrc) ;

Parameter Description
9 Pointer to a data structure of type 0s_q reserved for the manage-
P ment of the message queue.
: Pointer to an array of 0S_Q_ SRCLIST structures which contain
pSrcList .
pointers to the data to store.

NumSrc Number of 0S_Q_SRCLIST structures at pSrcList.

Table 9.8: OS_Q_PutBlockedEx() parameter list

Additional Information

If the queue is full, the calling task is suspended. Because this routine might require
a suspension, it must not be called from an interrupt routine. Use 0S_Q_PutEx ()
instead if you need to deposit messages in a queue from within an ISR.

For more information on the 0s_Q_SRcLIST structure, refer to The OS_Q_SRCLIST
structure on page 179.

Important

This function must not be called from within an interrupt handler.
When using a debug build of embQOS, calling from an interrupt handler will call the
error handler 0s_Error () with error code 0S_ERR_IN_ISR .

Example

OS_CONST_PTR OS_Q_SRCLIST aDbataList[] = { {"Hello ", 6},
{"World!", 6}
Y
0S_Q_PutExX (&_MemoryQ, aDataList, 2);

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



181

9.3.7 0S_Q_PutTimedEXx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indi-
cated by a OS_Q_SRCLIST structure, in a queue. Suspends the calling task for a
given timeout when the queue is full.

Prototype
int O0S_Q PutTimedEx (0S_Q* PQ,
OS_CONST_PTR OS_Q_SRCLIST* pSrclList,
OS_UINT NumSrc,
OS_TIME Timeout) ;
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
. Pointer to an array of 0s_Q_SRCLIST structures which contain
pSrcList

pointers to the data to store.
NumSrc Number of 0S_Q_SRCLIST structures at pSrcList.

Maximum time in timer ticks until the requested message must
be stored into the queue.

_ The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 21°-1

1 <= Timeout <= 2311
Table 9.9: 0S_Q_PutTimedEx() parameter list

Ox7FFF = 32767 for 8/16 bit CPUs
Ox7FFFFFFF for 32 bit CPUs

Return value

0: Success, message stored.
1: Message could not be stored within the specified time (insufficient space).

Additional Information

If the queue holds insufficient space, the calling task is suspended until space for the
message is available or the specified timeout time has expired.

If the message could be deposited into the queue within the sepcified time, the func-
tion returns zero.

As the calling function may be suspended, the function must not be called from an
interrupt routine or timer. A debug build of embOS will call the embOS error function
0S_Error () if this function is called from an interrupt handler or timer.

For more information on the 0s_@Q_SRCLIST structure, refer to The OS_Q_SRCLIST
structure on page 179.

Example

OS_CONST_PTR OS_Q_SRCLIST aDbataList[] = { {"Hello ", 6},
{"World!'!", 6}
Y
0S_Q_PutEx (&MemoryQ, aDataList, 2, 100);

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



182

CHAPTER 9 Queues
9.3.8 0S_Q_GetPtr()

Description
Retrieves a message from a queue.
Prototype
int OS_Q GetPtr (0S_Q *pQ,

void **ppData) ;

Parameter Description

PO Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 9.10: 0OS_Q_GetPtr() parameter list

Return value

The size of the retrieved message.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty, the calling task is suspended until the queue receives a new
message. Because this routine might require a suspension, it must not be called from
an interrupt routine or timer. Use 0S_GetPtrCond() instead. The retrieved message
is not removed from the queue, this must be done by a call of 0s_Q_pPurge () after
the message was processed. Only one message can be processed at a time.

As long as the message is not removed from the queue, the queue is marked “in
use”.

A following call of 0S_Q_GetPtr() oOr 0S_Q_GetPtrCond() is not allowed before
0S_Q_Purge () is called as long as the queue is in use.

Consecutive calls of OS_Q_GetPtr() without calling OS_Q_Purge() will call the embOS
error handler 0s_Error () in debug builds of embOS.

Example

static void MemoryTask (void) {
int Len;
char *pData;

while (1) {

Len = 0S_Q_GetPtr (& MemoryQ, &pData); /* Get message */
Memory WritePacket (* (U32 *)pData, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



183

9.3.9 0S_Q_GetPtrCond()

Description
Retrieves a message from a queue if a message is available.

Prototype

int 0OS_Q_GetPtrCond (0S_Q *pQ,
void **ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 9.11: OS_Q_GetPtrCond() parameter list

Return value

0: No message available in queue.
>0: Size of the message that was retrieved from the queue.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty, the function returns zero and the value of ppbata is undefined.
This function never suspends the calling task. It may therefore be called from an
interrupt routine or timer. If a message could be retrieved it is not removed from the
queue, this must be done by a call of 0s_Q_Purge() after the message was pro-
cessed.

As long as the message is not removed from the queue, the queue is marked "“in
use”.

A following call of 0S_Q_GetPtrCond() Or 0S_Q_CetPtr() is not allowed before
0S_Q_Purge () is called as long as the queue is in use.

Consecutive calls of 0s_Q_GetPtrCond() without calling 0s_Q_pPurge () will call the
embOS error handler os_Error () in debug builds of embOS.

Example

static void MemoryTask (void) {
int Len;
char *pData;
while (1) {

Len = 0S_Q_GetPtrCond (& MemoryQ, &pData); /* Check message */
if (Len > 0) {

Memory_ WritePacket (* (U32 *)pData, Len); /* Process message */

0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else {

DoSomethingElse () ;

}
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



184 CHAPTER 9 Queues

9.3.10 OS_Q_GetPtrTimed()

Description
Retrieves a message from a queue within a specified time if a message is available.
Prototype
int O0S_Q GetPtrTimed (0S_Q *pQ,
void **ppDhata,
OS_TIME Timeout) ;
Parameter Description
1ol0) Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Maximum time in timer ticks until the requested message must
be available. The data type os_TIME is defined as an integer,
Timeout therefore valid values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16 bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32 bit CPUs
Table 9.12: OS_Q_GetPtrTimed() parameter list

Return value

0: No message available in queue.
>0: Size of the message that was retrieved from the queue.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty no message is retrieved, the task is suspended for the given
timeout and the value of ppbata is undefined. The task continues execution accord-
ing to the rules of the scheduler as soon as a message is available within the given
timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that a message becomes available after the timeout
expired, but before the calling task is resumed. Anyhow, the function returns with
timeout, because the message was not availbale within the requested time. In this
case the state of the queue is not modified by OS_Q_GetPtrTimed() and a pointer to
the message is not delivered.

As long as a message was retrieved and the message is not removed from the queue,
the queue is marked “in use”.

A following call of 0S_Q_GetPtrTimed () is not allowed before 0s_Q_pPurge () is called
as long as the queue is in use.

Consecutive calls of 0s_Q_GetPtrTimed () without calling 0s_Q_pPurge () after retriev-
ing a message call the embQOS error handler 0s_Error () in debug builds of embOS.

Example

static void MemoryTask (void) {
int Len;
char *pData;
while (1) {

Len = 0OS_Q_GetPtrTimed (&_MemoryQ, &pData, 10); /* Check message */
if (Len > 0) {
Memory_ WritePacket (* (U32 *)pData, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else { /* Timeout */
DoSomethingElse() ;

}
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



185

9.3.11 0OS_Q_Purge()

Description
Deletes the last retrieved message in a queue.

Prototype
void 0S_Q_Purge (0S_Q *pQ);

Parameter Description

pQ Pointer to the queue.
Table 9.13: 0S_Q_Purge() parameter list

Additional Information

This routine should be called by the task that retrieved the last message from the
queue, after the message is processed.

Once a message was retrieved by a call of 0S_Q_GetpPtr (), 0S_Q_GetPtrCond() Or
0S_Q_GetPtrTimed (), the message must be removed from the queue by a call of
0S_0Q_prurge () before a following message can be retrieved from the queue. Consec-
utive calls of 0S_Q_GetPtr(), 0S_Q_ GetPtrCond() Or 0S_Q_ GetPtrTimed() will call
the embOS error handler 0s_Error () in embOS debug builds.

Consecutive calls of 0s_Q_pPurge () or calling 0s_gQ_pPurge () without having retrieved
a message from the queue will also call the embOS error handler 0s_Error () in
embOS debug builds.

Example

static void MemoryTask (void) {
int Len;
char *pData;

while (1) {

Len = 0S_Q_GetPtr (& MemoryQ, &pData); /* Get message */
Memory_ WritePacket (* (U32 *)pData, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



186 CHAPTER 9 Queues

9.3.12 0OS_Q_Clear()

Description
Deletes all message in a queue.
Prototype
void 0OS_Q_Clear (0OS_Q *pQ) ;
Parameter Description
pQ Pointer to the queue.

Table 9.14: OS_Q_Clear() parameter list

Additional Information

When the queue is in use, a debug build of embOS will call 0S_Error () with error
code OS_ERR_QUEUE_INUSE.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



9.3.13 OS_Q_GetMessageCnt()

Description

187

Returns the number of messages that are currently stored in a queue.

Prototype
int OS_Q_GetMessageCnt (const 0S_Q *pQ);

Parameter Description
pQ Pointer to the queue.

Table 9.15: 0OS_Q_GetMessageCnt() parameter list

Return value

The number of messages in the queue.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



188 CHAPTER 9 Queues

9.3.14 0OS_Q_Delete()

Description
Deletes a specific queue.

Prototype
void 0S_Q_ Delete (0S_Q *pQ);

Parameter Description

pQ Pointer to the queue.
Table 9.16: OS_Q_Delete() parameter list

Additional Information

To keep the system fully dynamic, it is essential that queues can be created dynami-
cally. This also means there must be a way to delete a queue when it is no longer
needed. The memory that has been used by the queue for the control structure and
the buffer can then be reused or reallocated.

It is the programmer's responsibility to:

e make sure that the program no longer uses the queue to be deleted
e make sure that the queue to be deleted actually exists (i.e. has been created
first).

When the queue is in use, a debug build of embOS will call os_Error () with error
code OS_ERR_QUEUE_INUSE.

When tasks are waiting, a debug build of embQOS will call 0s_Error () with error code
OS_ERR_QUEUE_DELETE is called.

Example

0S_Q QSerIn;
void Cleanup (void) {

0S_Q_Delete (&QSerlIn) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



189

9.3.15 0OS_Q_IsInUse()

Description
Delivers information whether the queue is actually in use.
Prototype
OS_BOOL 0S_Q_IsInUse(const 0S_Q *pQ)

Parameter Description
pQ Pointer to the queue.

Table 9.17: 0S_Q_IsInUse() parameter list

Return value

0: Queue is not in use
1=0: Queue is in use and may not be deleted or cleared.

Additional Information

A queue must not be cleared or deleted when it is in use.

In use means a task or function actually accesses the queue and holds a pointer to a
message in the queue.

0S_Q_IsInUse() can be used to examine the state of the queue before it can be
cleared or deleted, as these functions must not be performed as long as the queue is

used.
Example
void DeleteQ(0S_Q *pQ) {
0S_IncDI(); // Avoid state change of the queue by task or interrupt
//
// Wait until queue is not used
//
while (OS_Q IsInUse(pQ) != 0) {
0S_Delay (1) ;

}
0S_Q_Delete (pQ) ;
0OS_DecRI() ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



190

CHAPTER 9 Queues

9.3.16 OS_Q_GetMessageSize()

Description
Returns the size of the first message.

Prototype
int OS_Q_GetMessageSize (0S_Q *pQ)

Parameter Description

pQ Pointer to the queue.
Table 9.18: OS_Q_GetMessageSize() parameter list

Return value
The size of the first message or zero when no message is available.
Additional Information

If the queue is empty OS_Q_GetMessageSize returns zero. If a message is available
0S_Q_GetMessageSize returns the size of that message. The message is not
retrieved from the queue.

Example

static void MemoryTask (void) {
int Len;

while (1) {
Len = 0OS_Q_GetMessageSize (& MemoryQ) ; /* Get message length */
if (Len > 0) {
printf (“*Message with size %d retrieved\n”, Len);
0S_Q_Purge (&_MemoryQ) ; /* Delete message */
}
0S_Delay (10) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



191

9.3.17 OS_Q_PeekPtr()

Description
Retrieves a message from a queue.

Prototype

int 0OS_Q_PeekPtr (0S_Q *pQ,
void **ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 9.19: OS_Q_PeekPtr() parameter list

Return value

The size of the retrieved message or zero when no new message is available.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty zero is returned.
The retrieved message is not removed from the queue. Use O0OS_GetPtr()/
0OS_Q_Purge() to retrieve and remove a message from the queue.

Example

static void MemoryTask (void) {
int Len;
char *pData;

while (1) {

0S_IncDI(); // Avoid state changes of the queue by task or interrupt
Len = 0S_Q_PeekPtr (&_MemoryQ, &pData); /* Get message */
if (Len > 0) {

Memory_ WritePacket (* (U32 *)pData, Len); /* Process message */

}
OS_RESTORE_TI () ;

}
Warning

Ensure the queues state is not altered as long as a message is processed. That is the
reason for calling 0s_IncDI() in the sample. Ensure no cooperative task switch is
performed, as this may also alter the queue state and buffer. 0S_EnterRegion()
does not inhibit cooperative task switches!

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



192 CHAPTER 9 Queues

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



193

Chapter 10

Task events

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



194

CHAPTER 10 Task events

10.1 Introduction

Task events are another way of communicating between tasks. In contrast to sema-
phores and mailboxes, task events are messages to a single, specified recipient. In
other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is sig-
naled by another task, a software timer or an interrupt handler. An event can be, for
example, the change of an input signal, the expiration of a timer, a key press, the
reception of a character, or a complete command.

Every task has an individual bit mask, which by default is the width of an usigned
interger, usually the word size of the target processor. This means that 32 or 8 differ-
ent events can be signaled to and distinguished by every task. By calling
0S_WaitEvent (), a task waits for one of the events specified as a bitmask. As soon
as one of the events occurs, this task must be signaled by calling 0S_SignalEvent ().
The waiting task will then be put in the READY state immediately. It will be activated
according to the rules of the scheduler as soon as it becomes the task with the high-
est priority of all tasks in the READY state.

By changing the definition of os_Task_EVENT, which is defined as unsigned long on
32 bit CPUs and unsigned char on 16 or 8 bit CPUs per default, the task events can
be expanded to 16 or 32 bits thus allowing more individual events, or reduced to
smaller data types on 32 bit CPUs.

Changing the definition of 0S_TASK_EVENT can only be done when using the embOS
sources in a project, or when the libraries are rebuilt from sources with the modified
definition.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



10.2 API functions

195

then clears the events of a specified task.

3 4|4
Routine Description D p @3
5 = P o
Waits for one of the events specified in
0S_WaitEvent () the bitmask and clears the event memory X
after an event occurs.
Waits for one of the events specified as
0S_WaitSingleEvent () bitmask and clears only that event after X
it occurs.
Waits for the specified events for a given
0S_WaitEventTimed () time, and clears the event memory after X
an event occurs.
Waits for the specified events for a given
0S_WaitSingleEventTimed () time; after an event occurs, only that X
event is cleared.
0S_SignalEvent () Signals event(s) to a specified task. X| X
0S_GetEventsoccurred () Returns a list of eve_:r)ts that have x| x
- occurred for a specified task.
0S. ClearEvents () Returns the actual state of events and x| x| x| x

Table 10.1: Events API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



196

CHAPTER 10 Task events

10.2.1 OS_WaitEvent()

Description

Waits for one of the events specified in the bitmask and clears the event memory
after an event occurs.

Prototype
OS_TASK_EVENT OS_WaitEvent (OS_TASK_EVENT EventMask) ;

Parameter Description

EventMask The events that the task will be waiting for.

Table 10.2: OS_WaitEvent() parameter list

Return value
All events that have been signaled.
Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a
software timer or an interrupt handler. Any bit that is set in the event mask enables
the corresponding event.

When a task waits on multiple events, all of the specified events shall be requested
by a single call of 0s_waitEvent () and all events must be be handled when the func-
tion returns.

Note that all events of the task are cleared when the function returns, even those
events that were not set in the parameters in the eventmask. Consecutive calls of
0S_WaitEvent () with different event masks will not work, as all events are cleared
when the function returns. Events may be lost. 0S_WaitSingleEvent () may be used
for this case.

Example

void Task (void) {
OS_TASK_EVENT MyEvents;

while(1l) {
MyEvents = OS_WaitEvent (3); /* Wait for event 0 or 1 to be signaled */
/* Handle ALL events */

if (MyEvents & (1 << 0)) {
_HandleEventO () ;

}

if (MyEvents & (1 << 1)) {
_HandleEventl () ;

}

}
}

For a further example, see OS_SignalEvent() on page 200.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



197

10.2.2 OS_WaitSingleEvent()

Description

Waits for one or more of the events specified by the Eventmask and clears only those
events that were specified in the eventmask.

Prototype
OS_TASK_EVENT OS_WaitSingleEvent (OS_TASK_EVENT EventMask) ;

Parameter Description

EventMask The events that the task will be waiting for.
Table 10.3: OS_WaitSingleEvent() parameter list

Return value
All requested events that have been signaled.
Additional Information

If none of the specified events are signhaled, the task is suspended. The first of the
requested events will wake the task. These events are signaled by another task, a
software timer, or an interrupt handler. Any bit in the event mask may enable the
corresponding event. When the function returns, it delivers all of the requested
events. The requested events are cleared in the event state of the task. All other
events remain unchanged and will not be returned.

0S_WaitSingleEvent () may be used in consecutive calls with individual requests.
Only requested events will be handled, no other events can get lost.

When the function waits on multiple events, the returned value must be evaluated
because the function returns when at least one of the requested events was signaled.
When the function requests a single event, the returned value does not need to be
evaluated.

Example

void Task(void) {
OS_TASK_EVENT MyEvents;

while(1l) {
MyEvents = 0S_WaitSingleEvent (3); /* Wait for event 0 or 1 to be signaled */
/* Handle ALL events */

if (MyEvents & (1 << 0)) {
_HandleEventO () ;

}

if (MyEvents & (1 << 1)) {

_HandleEventl () ;
}
0S_WaitSingleEvent (1 << 2); /* Wait for event 2 to be signaled */
_HandleEvent2 () ;
0S_WaitSingleEvent (1 << 3); /* Wait for event 3 to be signaled */
_HandleEvent3 () ;

}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



198 CHAPTER 10 Task events

10.2.3 OS_WaitEventTimed()

Description

Waits for the specified events for a given time, and clears the event memory after
one of the requsted events occurs, or after the timeout expired.

Prototype
OS_TASK_EVENT OS_WaitEventTimed (OS_TASK_EVENT EventMask,
OS_TIME TimeOut) ;
Parameter Description
EventMask The events that the task will be waiting for.
TimeOut Maximum time in timer ticks waiting for events to be signaled.

Table 10.4: OS_WaitEventTimed() parameter list

Return value

The events that have been signaled within the specified time.
0 if no events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the requested events will wake the task if the event is signaled by
another task, a software timer, or an interrupt handler within the specified Timeout
time.

If none of the requested events is signaled, the task is activated after the specified
timeout and all signaled events are returned and then cleared.

Note that the function returns all events that were signaled within the given timeout
time, even those which were not requested.

The calling function must handle the returned value.

Consecutive calls of 0s_waitEventTimed () with different event masks will not work,
as all events are cleared when the function returns. Events may got lost.
0S_WaitSingleEventTimed () may be used for this case.

Example

void Task(void) {
OS_TASK_EVENT MyEvents;

while(1l) {
MyEvents = 0OS_WaitEvent_Timed (3, 10); /* Wait for events 0+1 for 10 ms */
if ((MyEvents & 0x3) == 0) {
_HandleTimeout () ;
} else {
if (MyEvents & (1 << 0)) {
_HandleEventO () ;
}
if (MyEvents & (1 << 1)) {
_HandleEventl () ;
}
}
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



199

10.2.4 OS_WaitSingleEventTimed()

Description

Waits for the specified events for a given time; after an event occurs, only the
requested events are cleared.

Prototype
OS_TASK_EVENT OS_WaitSingleEventTimed (OS_TASK_EVENT EventMask,
OS_TIME TimeOut) ;
Parameter Description
EventMask The events that the task will be waiting for.
TimeOut Maximum time in timer ticks until the events must be signaled.

Table 10.5: OS_WaitSingleEventTimed() parameter list

Return value

The masked events that have are signaled within the specified time.
Zero if no masked events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Timeout
time.

If no event is signaled, the task is activated after the specified timeout and the
function returns zero. Any bit in the event mask may enable the corresponding event.
All unmasked events remain unchanged.

Example

void Task(void) {
OS_TASK_EVENT MyEvents;

while (1) {
MyEvents = 0S_WaitSingleEventTimed (3, 10); /* Wait for event 0 or 1 to be
signaled within 10ms */
/* Handle requested events */

if (MyEvents == 0) {
_HandleTimeout;
} else {
if (MyEvents & (1 << 0)) {
_HandleEventO () ;
}
if (MyEvents & (1 << 1)) {
_HandleEventl () ;
}
}
if (0OS_WaitSingleEvent ((1l << 2), 10) == 0) {
_HandleTimeout () ;
} else {
_HandleEvent2 () ;
}
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



200 CHAPTER 10 Task events

10.2.5 OS_SignalEvent()

Description
Signals event(s) to a specified task.
Prototype
void 0OS_SignalEvent (OS_TASK_EVENT Event,
OS_TASK *pTask) ;
Parameter Description
The event(s) to signal:
1 means event 1
2 means event 2
4 means event 3
Event

128 means event 8.

Multiple events can be signaled as the sum of the single events
(for example, 6 will signal events 2 & 3).

pTask Task that the events are sent to.

Table 10.6: OS_SignalEvent() parameter list

Additional Information

If the specified task is waiting for one of these events, it will be put in the READY
state and activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be
received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*k

* Just a small demo for events

*/

#define EVENT_KEYPRESSED (1 << 0)
#define EVENT_SERIN (1 << 1)

OS_STACKPTR int Stack0[96]; // Task stacks
OS_TASK TCBO; // Data area for tasks (task control blocks)

void Task0 (void) {
OS_TASK_EVENT MyEvent;
while (1)
MyEvent = 0OS_WaitEvent (EVENT_KEYPRESSED | EVENT_SERIN)
if (MyEvent & EVENT_KEYPRESSED) {
/* handle key press *x/
}
if (MyEvent & EVENT_SERIN) {
/* Handle serial reception */
}
}
}

void TimerKey (void) {

/* More code to find out if key has been pressed */

0S_SignalEvent (EVENT_SERIN, &TCBO); /* Notify Task that key was pressed */
}

void InitTask(void) {
OS_CREATETASK (&TCBO, 0, Task0, 100, StackO); /* Create Task0 */
}

If the task was only waiting for a key to be pressed, 0S_GetMail () could simply be
called. The task would then be deactivated until a key is pressed. If the task has to
handle multiple mailboxes, as in this case, events are a good option.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



201

10.2.6 OS_GetEventsOccurred()

Description
Returns a list of events that have occurred for a specified task.

Prototype
OS_TASK_EVENT 0OS_GetEventsOccurred (const OS_TASK *pTask) ;

Parameter Description

The task whose event mask is to be returned,
NULL means current task.
Table 10.7: OS_GetEventsOccurred() parameter list

pTask

Return value
The event mask of the events that have been signaled.
Additional Information

By calling this function, all events remain signaled: event memory is not cleared.
This is one way for a task to query which events are signaled. The task is not sus-
pended if no events are signaled.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



202 CHAPTER 10 Task events

10.2.7 OS_ClearEvents()

Description
Returns the actual state of events and then clears the events of a specified task.

Prototype
OS_TASK_EVENT OS_ClearEvents (OS_TASK *pTask);

Parameter Description

The task whose event mask is to be returned,
NULL means current task.
Table 10.8: OS_ClearEvents() parameter list

pTask

Return value

The events that were signaled before clearing.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



203

Chapter 11

Event objects

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



204 CHAPTER 11 Event objects

11.1 Introduction

Event objects are another type of communication and synchronization object. In con-
trast to task-events, event objects are standalone objects which are not owned by
any task.

The purpose of an event object is to enable one or multiple tasks to wait for a partic-
ular event to occur. The tasks can be kept suspended until the event is set by another
task, a software timer, or an interrupt handler. An event can be, for example, the
change of an input signal, the expiration of a timer, a key press, the reception of a
character, or a complete command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



11.2 API functions

205

3 4|4
Routine Description D p @3
5 = P o
Creates an event object. Must be called
OS_EVENT_Create () before the event object can be used. XX X)X
Creates an event object and allows selection
OS_EVENT_CreateEx () of the reset behavior of the event. XX X| X
OS_EVENT_Wait () Waits for an event.
Waits for an event with timeout and option-
OS_EVENT WaitTimed () ally resets the event according the reset XX
mode.
OS_EVENT_Set () Sets the events, or resumes waiting tasks. X[ X|X]|X
OS_EVENT_Reset () Resets the event to non-sighaled state. X | X|X| X
0S_EVENT Pulse () Sets the event, resumes waiting tasks, if any, x| x
and then resets the event.
OS_EVENT_Get () Returns the state of an event object. X| X
OS_EVENT_Delete () Deletes the specified event object. XX
0S_EVENT SetResetMode () Sets_ the reset behawqur of events to auto- x| x| x| x
matic, manual or semiauto.
0S. EVENT GetResetMode () Retrieves the current_ the reset behavior x| %% x
mode of an event object.

Table 11.1: Event object API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



206 CHAPTER 11 Event objects

11.2.1 OS_EVENT_Create()

Description
Creates an event object and resets the event.
Prototype
void OS_EVENT_Create (OS_EVENT *pEvent)
Parameter Description
pEvent Pointer to an event object data structure.

Table 11.2: OS_EVENT_Create() parameter list

Additional Information

Before the event object can be wused, it must be created by a call of
OS_EVENT_Create (). On creation, the event is set in non-signaled state, and the list
of waiting tasks is empty. Therefore, 0S_EVENT_Create() must not be called for an
event object which is already created.

A debug build of embOS cannot check whether the specified event object was already
created.

The event is created with the default reset behavior which is semiauto.

Since version 3.88a of embOS, the reset behavior of the event can be modified by a
call of the function 0S_EVENT_SetResetMode ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



207

11.2.2 OS_EVENT_CreateEXx()

Description
Creates an event object with specified rest behavior and resets the event.

Prototype
void OS_EVENT CreateEx (OS_EVENT *pEvent, OS_EVENT RESET MODE ResetMode)

Parameter Description

pEvent Pointer to an event object data structure.

Specifies the reset behavior of the event object. One of the pre-
defined reset modes can be used:
OS_EVENT_RESET_MODE_SEMIAUTO

OS_EVENT_RESET_MODE_AUTO

OS_EVENT_RESET_MODE_MANUAL

which are dscribed under Additional information

Table 11.3: OS_EVENT_CreateEx() parameter list

ResetMode

Additional Information

Before the event object can be wused, it must be created by a call of
OS_EVENT Create() or OS_EVENT CreateEx(). On creation, the event is set in non-
signaled state, and the list of waiting tasks is empty.

Therefore, 0S_EVENT_CreateEx() must not be called for an event object which is
already created.

A debug build of embOS cannot check whether the specified event object was already
created.

Since version 3.88a of embOS, the reset behavior of the event can be controlled by
different reset modes which may be passed as parameter to the new function
OS_EVENT_CreateEx () or may be modified by a call of 0S_EVENT_SetResetMode ().

e OS_EVENT_RESET_MODE_SEMIAUTO:
This reset mode is the default mode used with all previous versions of embOS.
The reset behavior unfortunately is not consistent and depends on the function
called to set or wait for an event. This reset mode is defined for compatibility
with older embOS versions (prior version 3.88a). Calling OS_EVENT_Create()
sets the reset mode to 0S_EVENT_RESET_MODE_SEMIAUTO to be compatible with
older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an
event is set, all waiting tasks are resumed and the event is cleared automatically.
An exception to this is when a task called 0S_EVENT waitTimed() and the time-
out expired before the event was signaled, in which case the function returns
with timeout and the event is not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL.:
This mode sets the event to manual reset mode. When an event is set, all waiting
tasks are resumed and the event object remains signaled. The event must be
reset by one task which was waiting for the event.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



208

CHAPTER 11 Event objects

11.2.3 OS_EVENT_Wait()

Description
Waits for an event and suspends the calling task until the event is signaled.
Prototype
void OS_EVENT Wait (OS_EVENT *pEvent)
Parameter Description
pEvent Pointer to the event object that the task will be waiting for.

Table 11.4: OS_EVENT_Wait() parameter list

Additional Information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Wwait (). A debug build of embOS will check whether pEvent addresses a
valid event object and will call os_Error () with error code 0OS_ERR_EVENT_INVALID in
case of an error.

The state of the event object after calling 0S_EVENT_Wwait () depends on the reset
mode of the event object wich was set by creating the event object by a call of
OS_EVENT_CreateEx () Or OS_EVENT_SetResetMode().

With reset mode 0S_EVENT_RESET_MODE_SEMIAUTO:

This is the default mode when the event object was created with
OS_EVENT_Create (). This was the only mode available in embOS versions prior
version 3.88a.

If the specified event object is already set, the calling task resets the event and
continues operation.

If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. The event is not reset when the task resumes.
With reset mode 0S_EVENT_RESET_MODE_AUTO:

If the specified event object is already set, the calling task resets the event and
continues operation.

If the specified event object is not set, the calling task is suspended until the
event object becomes signaled and then the event object is reset when the wait-
ing task resumes.

With reset mode 0S_EVENT_RESET_MODE_MANUAL:

If the specified event object is already set, the calling task continues operation.
The event object remains signaled.

If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. Then the waiting task is resumed and the event
object remains signaled. The event object must be reset by the calling task.

Important

This function must not be called from within an interrupt handler or software timer.
A debug build of embOS will call 0os_Error () when 0S_EVENT_wWait () is called from
an ISR or timer.

Example
OS_EVENT Wait (& HW_Event) ; // Wait for event object
OS_EVENT_Reset (& _HW_Event) ; // Reset the event

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



209

11.2.4 OS_EVENT WaitTimed)()

Description

Waits for an event and suspends the calling task for a specified time as long as the
event is not signaled.

Prototype

char OS_EVENT_WaitTimed (OS_EVENT *pEvent,
OS_TIME TimeOut)

Parameter Description
pEvent Pointer to the event object that the task will be waiting for.
TimeOut Maximum time in timer ticks until the event must be signaled.

Table 11.5: OS_EVENT_WaitTimed() parameter list

Return value

0 success, the event was signaled within the specified time.
1 if the event was not signaled within the specified time.

Additional Information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_WaitTimed (). A debug build of embOS will check whether pEvent
addresses a valid event object and will call 0s_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

If the specified event object is not set, the calling task is suspended until the event
object becomes signaled or the timeout time has expired.

When the timeout expired and the event was not signaled during the specified time-
out time, OS_EVENT_WaitTimed() returns 1.

If the specified event object is already set, or becomes signaled within the specified
timeout time, the state of the event depends on the reset mode of the event.

e With reset mode 0S_EVENT_RESET_MODE_SEMIAUTO:
This is the default mode when the event object was created with
OS_EVENT_Create (). This was the only mode available in embOS versions prior
version 3.88a.
If the specified event object is already set, the calling task resets the event and
continues operation.
If the event object becomes signaled within the specified timeout time, the event
is reset and the function returns without timeout result.

e With reset mode 0S_EVENT_RESET_MODE_AUTO:
If the specified event object is already set, the calling task resets the event and
continues operation.
If the event object becomes signaled within the specified timeout time, the event
is reset and the function returns without timeout result.

e With reset mode 0S_EVENT_RESET_MODE_MANUAL:
If the specified event object is already set, the calling task continues operation.
The event object remains signaled.
If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. When the event object is signaled within the
specified timeout time, the waiting task is resumed and the event object remains
signaled. The event object must be reset by the calling task.
The function returns without timeout result.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that the event is signaled after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout,
because the event was not singnaled within the requested time, and the state of the
event is not modified by 0S_EVENT_WaitTimed().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



210 CHAPTER 11 Event objects

Important

This function must not be called from within an interrupt handler or software timer.

A debug build of embOS will call 0s_Error () when 0S_EVENT_wait () is called from
an ISR or timer.

Example

if (OS_EVENT WaitTimed (& _HW_Event, 10) == 0) {
/* event was signaled within timeout time, handle event */
} else {
/* event was not signaled within timeout time, handle timeout */

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



211

11.2.5 OS_EVENT Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the
event object.

Prototype
void OS_EVENT_Set (OS_EVENT *pEvent)
Parameter Description
pEvent Pointer to the event object which should be set to signaled state.

Table 11.6: OS_EVENT_Set() parameter list

Additional Information

pEvent must address an existing event object, which must be created before by a call
of OS_EVENT_Create(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call os_Error () with error code 0S_ERR_EVENT_INVALID in
case of an error.

If no tasks are waiting at the event object, the event object is set to signaled state.

If at least one task is already waiting at the event object, all waiting tasks are
resumed. The state of the event object after calling OS_EVENT_Set() then depends
on the reset mode of the event object.

e With reset mode 0S_EVENT_RESET_MODE_SEMIAUTO:
This is the default mode when the event object was created with
OS_EVENT_Create (). This was the only mode available in embQOS versions prior
version 3.88a.
If tasks were waiting, the event is reset when the waiting tasks are resumed.

e With reset mode 0S_EVENT_RESET_MODE_AUTO:
The event object is automatically reset when waiting tasks are resumed and con-
tinue operation.

e With reset mode 0S_EVENT_RESET_MODE_MANUAL:
The event object remains signaled when waiting tasks are resumed and continue
operation. The event object must be reset by the calling task.

Example

Examples on how to use the OS_EVENT_Set() function are shown in the section
“Examples”.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



212 CHAPTER 11 Event objects

11.2.6 OS_EVENT_Reset()

Description
Resets the specified event object to non-signaled state.
Prototype
void OS_EVENT_Reset (OS_EVENT *pEvent)
Parameter Description
pEvent :;J;?ét.ar to the event object which should be reset to non-signhaled

Table 11.7: OS_EVENT_Reset() parameter list

Additional Information

pEvent must address an existing event object, which has been created before by a
call of OS_EVENT_Create(). A debug build of embOS will check whether pEevent
addresses a valid event object and will call os_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



213

11.2.7 OS_EVENT Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to
non-signaled state.

Prototype
void OS_EVENT_Pulse (OS_EVENT *pEvent) ;
Parameter Description
pEvent Pointer to the event object which should be pulsed.

Table 11.8: OS_EVENT_Pulse() parameter list

Additional Information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.

A debug build of embOS will check whether pEvent addresses a valid event object
and will call os_Error () with the error code 0OS_ERR_EVENT_ INVALID in case of an
error.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



214 CHAPTER 11 Event objects

11.2.8 OS_EVENT Get()

Description
Returns the state of an event object.
Prototype
unsigned char OS_EVENT_Get (const OS_EVENT *pEvent) ;
Parameter Description
pEvent Pointer to an event object who’s state should be examined.

Table 11.9: OS_EVENT_Get() parameter list

Return value

0: Event object is not set to signaled state
1: Event object is set to signaled state.

Additional Information

By calling this function, the actual state of the event object remains unchanged.
pEvent must address an existing event object, which has been created before by a
call of OS_EVENT_Create().

A debug build of embOS will check whether pEvent addresses a valid event object
and will call os_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



215

11.2.9 OS_EVENT Delete()

Description
Deletes an event object.

Prototype
void OS_EVENT Delete (OS_EVENT *pEvent) ;

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 11.10: OS_EVENT_Delete() parameter list

Additional Information

To keep the system fully dynamic, it is essential that event objects can be created
dynamically. This also means there must be a way to delete an event object when it
is no longer needed. The memory that has been used by the event object’s control
structure can then be reused or reallocated.

It is your responsibility to make sure that:

e the program no longer uses the event object to be deleted
e the event object to be deleted actually exists (has been created first)
e no tasks are waiting at the event object when it is deleted.

pEvent must address an existing event object, which has been created before by a
call of OS_EVENT_Create()Or OS_EVENT_CreateEx ().

A debug build of embOS will check whether pEvent addresses a valid event object
and will call os_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.

If any task is waiting at the event object which is deleted, a debug build of embOS
calls 0s_Error () with error code 0S_ERR_EVENT_DELETE.

To avoid any problems, an event object should not be deleted in a normal application.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



216

CHAPTER 11 Event objects

11.2.10 OS_EVENT_SetResetMode()

Description
Used to set the reset behavior mode of an event object.

Prototype
void OS_EVENT_SetResetMode (OS_EVENT *pEvent, OS_EVENT RESET MODE ResetMode)

Parameter Description

pEvent Pointer to an event object which should be deleted.

Specifies the reset behavior of the event object. One of the pre-
defined reset modes can be used:
OS_EVENT_RESET_MODE_SEMIAUTO

OS_EVENT_RESET_MODE_AUTO

OS_EVENT_RESET_MODE_MANUAL

which are described under Additional information

Table 11.11: OS_EVENT_SetResetMode() parameter list

ResetMode

Additional Information

pEvent must address an existing event object, which has been created before by a
call of 0OS_EVENT_Create()0Or OS_EVENT_CreateEx().

A debug build of embOS will check whether pEvent addresses a valid event object
and will call os_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.

Implementation of event objects in embOS versions before 3.88a unfortunately was
not consistent with respect to the state of the event after calling OS_EVENT_Set() or
OS_EVENT_Wait() functions.

The state of the event was different when tasks were waiting or not.

Since embOS version 3.88a, the state of the event (reset behavior) can be controlled
after creation by the new function 0S_EVENT_SetResetMode (), or during creation by
the new 0S_EVENT_CreateEx () function.

The following reset modes are defined and can be used as parameter:

e OS_EVENT_RESET_MODE_SEMIAUTO:
This reset mode is the default mode used with all previous versions of embOS.
The reset behavior unfortunately is not consistent and depends on the function
called to set or wait for an event. This reset mode is defined for compatibility
with older embQOS versions (prior version 3.88a). Calling OS_EVENT_Create()
sets the reset mode to 0S_EVENT_RESET_MODE_SEMIAUTO to be compatible with
older embQOS versions.

® O0S_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an
event is set, all waiting tasks are resumed and the event is cleared automatically.
An exception to this is when a task called 0S_EVENT_waitTimed() and the time-
out expired before the event was signaled, in which case the function returns
with timeout and the event is not cleared automatically.

® OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting
tasks are resumed and the event object remains signaled. The event must be
reset by one task which was waiting for the event.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



217

11.2.11 OS_EVENT_GetResetMode()

Description
Retrieves the current reset mode of an event object.

Prototype
OS_EVENT_RESET_MODE OS_EVENT_ GetResetMode (OS_EVENT *pEvent) ;

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 11.12: OS_EVENT_GetResetMode() parameter list

Additional Information

pEvent must address an existing event object, which has been created before by a
call of OS_EVENT_Create()0Or OS_EVENT_CreateEx ().

A debug build of embOS will check whether pEvent addresses a valid event object
and will call os_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.
Since version 3.88a of embOS, the reset mode of an event object can be controlled
by the new 0S_EVENT_CreateEx () function or set after creation using the new func-
tion 0OS_EVENT_SetResetMode (). If needed, the current setting of the reset mode can
be retrieved with 0S_EVENT_CetResetMode ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



218

CHAPTER 11

11.3 Examples of using event objects

This section shows some examples on how to use event objects in an application.

11.3.1 Activate a task from interrupt by an event object

UMO01001 User & Reference Guide for embOS

Event objects

The following code example shows usage of an event object which is signaled from an

ISR handler to activate a task.
The waiting task should reset the event after waiting for it.

static OS_EVENT _HW_ Event;

/************************************************************

*

* _ISRhandler

*x/

static void _ISRhandler (void) {
//

// Perform some simple & fast processing in ISR //
//

//

// Wake up task to do the rest of the work

//
OS_EVENT_Set (&_Event) ;

/************************************************************

*

* _Task
*/
static void _Task(void) {
while (1) {
OS_EVENT _Wait (&_Event) ;
OS_EVENT_Reset (&_Event) ;
//

// Do the rest of the work (which has not been done in the ISR)

/7

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



219

11.3.2 Activating multiple tasks using a single event object

The following sample program shows how to synchronize multiple tasks with one
event object. The sample program is delivered with embOS in the “Application” or
“Samples” folder.

/********‘k*‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**********‘k‘k*******‘k*‘k*‘k*‘k********‘k*

* SEGGER Microcontroller GmbH & Co. KG

* Solutions for real time microcontroller applications
LR SRR R R R R R R R I I I I I I I I I I I I I I b a2

File : OS_EventObject.c
Purpose : Sample program for embOS using EVENT object
————————— END-OF-HEADER ——=- == === === —mmmm e m e e %/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/*****************‘k**************************************************/

/****** Interface to HW module **************************************/

void HW _Wait (void) ;
void HW_Free(void) ;
void HW_Init (void);

/********************************************************************/

/****** HW module ***************************************************/

OS_STACKPTR int _StackHW[128]; /* Task stacks */
OS_TASK _TCBHW; /* Task-control-blocks */

/****** local data **************************************************/

static OS_EVENT _HW_ Event;

/****** lOCal functions ~k********************************************/

static void _HWTask (void) {
/* Initialize HW functionality */
0S_Delay (100) ;
/* Init done, send broadcast to waiting tasks */
HW_Ready () ;
while (1) {
OS_Delay (40);

/****** global functions ********************************************/

void HW Wait (void) {
OS_EVENT_Wait (& _HW_Event) ;

void HW_Free (void) {
OS_EVENT_Set (&_HW_Event) ;

void HW_Init (void) {
OS_CREATETASK (&_TCBHW, "HWTask", _HWTask, 25, _StackHW);
OS_EVENT _ Create (&_HW_Event) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



220

UMO01001 User & Reference Guide for embOS

CHAPTER 11

/‘k‘k‘k‘k‘k‘k‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*******‘k‘k‘k‘k‘k*‘k**‘k***‘k*‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k***/

/****** Main application ********************************************/

static void HPTask (void) {
HW_Wait () ; /* Wait until HW module is set up */
while (1) {
0S_Delay (50);

static void LPTask(void) {
HW_Wait () ; /* Wait until HW module is set up */
while (1) {
0S_Delay (200);

/‘k‘k‘k‘k‘k‘k‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**‘k*‘k*‘k****************‘k*‘k*‘k******‘k*‘k*****‘k*‘k
*

* main

*

**********************************************************************/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* Initialize 0OS */
0OS_InitHW() ; /* Initialize Hardware for OS */
HW_Init(); /* Initialize HW module */
/* You need to create at least one task before calling 0OS_Start() */

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);
0S_SendString("Start project will start multitasking !\n");

0S_Start () ; /* Start multitasking */
return O;

Event objects

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



221

Chapter 12

Heap type memory management

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



222 CHAPTER 12 Heap type memory management

12.1 Introduction

ANSI C offers some basic dynamic memory management functions. These are mal-
loc, free, and realloc.

Unfortunately, these routines are not thread-safe, unless a special thread-safe imple-
mentation exists in the compiler runtime libraries; they can only be used from one
task or by multiple tasks if they are called sequentially. Therefore, embQOS offer task-
safe variants of these routines. These variants have the same names as their ANSI
counterparts, but are prefixed os_; they are called 0S_malloc(), 0S_free(),
0S_realloc (). The thread-safe variants that embOS offers use the standard ANSI
routines, but they guarantee that the calls are serialized using a resource sema-
phore.

If heap memory management is not supported by the standard C libraries, embOS
heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use any
resources if it is not referenced by the application (that is, if the application does not
use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory used
for the functions (known as heap) may fragment. This can lead to a situation where
the total amount of memory is sufficient, but there is not enough memory available
in a single block to satisfy an allocation request.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



223

12.2 API functions

3 o= 3

API routine Description o B @3

5 = P o
0S_malloc () Allocates a block of memory on the heap. XX
0S_free() Frees a block of memory previously allocated. XX
0S_realloc() Changes allocation size. XX

Table 12.1: Heap type memory manager API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



224 CHAPTER 12 Heap type memory management

12.2.1 OS_malloc()

Description
0S_malloc () is a thread safe malloc function.
Prototype
void * OS_malloc(unsigned int Size);
Parameter Description
Size Size of memory block to be allocated in bytes.

Table 12.2: OS_malloc() parameter list

Return value

Upon successful completion with size not equal zero, 0Ss_malloc () returns a pointer
to the allocated space. Otherwise, it returns a NULL pointer.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



225

12.2.2 OS_free()

Description

0S_free () is a thread safe free function.

Prototype
void OS_free(void *pMemBlock) ;
Parameter Description
pMemBlock Pointer to a memory block previously allocated with 0s_Malloc().

Table 12.3: OS_free() parameter list

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



226 CHAPTER 12 Heap type memory management

12.2.3 OS_realloc()

Description
0S_realloc () is a thread safe reallocation function.
Prototype
void * 0OS_realloc(void *pMemBlock,
unsigned int NewSize);

Parameter Description
pMemBlock Pointer to a memory block previously allocated with 0s_Malloc().
NewSize New size for the memory block in bytes.

Table 12.4: OS_realloc() paramter list

Return value

Upon successful completion, 0S_realloc() returns a pointer to the reallocated
memory block. Otherwise, it returns a NULL pointer.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



227

Chapter 13

Fixed block size memory pools

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



228 CHAPTER 13 Fixed block size memory pools

13.1 Introduction

Fixed block size memory pools contain a specific number of fixed-size blocks of mem-
ory. The location in memory of the pool, the size of each block, and the number of
blocks are set at runtime by the application via a call to the 0s_MEMF_CREATE () func-
tion. The advantage of fixed memory pools is that a block of memory can be allo-
cated from within any task in a very short, determined period of time.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



13.2 API functions

All API functions for fixed block size memory pools are prefixed 0S_MEMF_.

229

3 o |=
API routine Description ® 5 23
5 = |2 o
Create / Delete
OS_MEMF_Create () Creates fixed block memory pool. X| X
OS_MEMF_Delete () Deletes fixed block memory pool. X| X
Allocation
Allocates memory block from a given pool.
OS_MEMF_Alloc() Wait indefinitely &i/f no block is a?/ailab?e. X|X
Allocates memory block from a given pool.
OS_MEMF_AllocTimed () Wait no longer than the given time limit if | X|X
no block is available.
0S8 MEMF Request () Alloca_tes memory bIoc'k from a given pool x| x!x!x
if available. Non-blocking.
Release
OS_MEMF_Release () Releases memory block from a given pool.| X| X| X | X
OS_MEMF_FreeBlock () Releases memory block from any pool. X[ X| X[ X
Info
Returns the number of available blocks in
OS_MEMF_GetNumFreeBlocks () a pool.
OS_MEMF_IsInPool () Indicates if a block is within a given pool.
Returns the maximum number of blocks in
OS_MEMF_GetMaxUsed () a pool that have been used simultaneously | X| X | X| X
since creation of the pool.
OS_MEMF_GetNumBlocks () Returns the number of blocks in a pool. X[ X|X|X
OS_MEMF_GetBlockSize () Returns the size of one block in a pool. X[ X|X|X

Table 13.1: Memory pools API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



230 CHAPTER 13 Fixed block size memory pools

13.2.1 OS_MEMF_Create()

Description
Creates and initializes a fixed block size memory pool.
Prototype
void OS_MEMF_Create (OS_MEMF *pMEMF,
void *pPool,
OS_UINT NumBlocks,
OS_UINT BlockSize);
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Pool Pointer to memory to be used for the memory pool. Required size
k2 is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).
NumBlocks Number of blocks in the pool.

BlockSize Size in bytes of one block.

Table 13.2: OS_MEMF_Create() parameter list

Additional Information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for control and
debug purposes. It is guaranteed to be zero in release or stack-check builds. Before
using any memory pool, it must be created. A debug build of libraries keeps track of
created and deleted memory pools. The release and stack-check builds do not.

The maximum number of blocks and the maximum block size is for 16Bit CPUs 32768
and for 32Bit CPUs 2147483648.

Example

#define NUM_BLOCKS (16)
#define BLOCK_SIZE (16)
#define POOL_SIZE (NUM_BLOCKS * (BLOCK_SIZE + OS_MEMF_SIZEOF_BLOCKCONTROL) )

0S_U8 aPool [POOL_SIZE] ;
OS_MEMF MyMEMF ;

void Init (void) {
/* Create 16 Blocks with size of 16 Bytes */
OS_MEMF_Create (&MyMEMF, aPool, NUM_BLOCKS, BLOCK_SIZE) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



231

13.2.2 OS_MEMF_Delete()

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory
blocks inside this pool can no longer be used.

Prototype
void OS_MEMF_Delete (OS_MEMF *pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 13.3: OS_MEMF_Delete() parameter list

Additional Information

This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory pools.
For most applications it is preferred to have a static memory pool design: memory
pools are created at startup (before calling os_start ()) and will never be deleted.

A debug build of embOS will mark the memory pool as deleted.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



232 CHAPTER 13 Fixed block size memory pools

13.2.3 OS_MEMF_Alloc()

Description

Requests allocation of a memory block. Waits until a block of memory is available.

Prototype

void * OS_MEMF_Alloc (OS_MEMF *pMEMF,

int Purpose) ;
Parameter Description

PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purposes only.
Its value has no effect on program execution, but may be

Purpose . . . .
remembered in debug builds to allow runtime analysis of memory
allocation problems.

Table 13.4: OS_MEMF_Alloc() parameter list

Return value
Pointer to the allocated block.
Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available. The retrieved pointer must be delivered to
OS_MEMF_Release () as a parameter to free the memory block. The pointer must not
be modified.

Note

The parameter purpose is never used because additional debug code is not imple-
mented. It is only designed for future use.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



233

13.2.4 OS_MEMF_AllocTimed()

Description

Requests allocation of a memory block. Waits until a block of memory is available or
the timeout has expired.
Prototype

void * OS_MEMF_AllocTimed (OS_MEMF *pMEMF,
OS_TIME TimeOut,

int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Time limit before timeout, given in ticks. Zero or negative values

TimeOut :

are permitted.

This is a parameter which is used for debugging purpose only. Its
Purpose value has no effect on program execution, but may be remem-

bered in debug builds to allow runtime analysis of memory allo-
cation problems.
Table 13.5: OS_MEMF_AllocTimed()

Return value

I=NULL pointer to the allocated block
NULL no block could be allocated within the specified time.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired. The returned pointer
must be delivered to 0S_MEMF_Release() as parameter to free the memory block.
The pointer must not be modified.

When the calling task is blocked by higher priority tasks for a period longer than the
timeout value, it may happen that the memory block becomes available after the
timeout expired, but before the calling task is resumed. Anyhow, the function returns
with timeout, because the memory block was not availbale within the requested time.

Note

The parameter purpose is never used because additional debug code is not imple-
mented. It is only designed for future use.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



234 CHAPTER 13 Fixed block size memory pools

13.2.5 OS_MEMF_Request()

Description
Requests allocation of a memory block. Continues execution without blocking.
Prototype
void * OS_MEMF_Request (OS_MEMF *pMEMF,
int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purpose only. Its
PUrbose value has no effect on program execution, but may be remem-
Bl bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 13.6: OS_MEMF_Request() parameter list

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

The calling task is never suspended by calling 0S_MEMF_Request (). The returned
pointer must be delivered to 0S_MEMF_Release () as parameter to free the memory
block. The pointer must not be modified.

Note

The parameter purpose is never used because additional debug code is not imple-
mented. It is only designed for future use.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



235

13.2.6 OS_MEMF_Release()

Description

Releases a memory block that was previously allocated.

Prototype
void OS_MEMF_Release (OS_MEMF *pMEMF,
void *pMemBlock) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Table 13.7: OS_MEMF_Release() parameter list

Additional Information

The pMemBlock pointer must be the one that was delivered from any memory block
allocation function. The pointer must not be modified between allocation and release.
The memory block becomes available for other tasks waiting for a memory block
from the pool. If any task is waiting for a fixed memory block, it is activated accord-
ing to the rules of the scheduler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



236 CHAPTER 13 Fixed block size memory pools

13.2.7 OS_MEMF_FreeBlock()

Description

Releases a memory block that was previously allocated. The memory pool does not
need to be denoted.

Prototype
void OS_MEMF_FreeBlock (void *pMemBlock) ;

Parameter Description
pMemBlock Pointer to the memory block to free.

Table 13.8: OS_MEMF_FreeBlock() parameter list

Additional Information

The pMemBlock pointer must be the one that was delivered form any allocation func-
tion described above. The pointer must not be modified between allocation and
release. This function may be used instead of 0S_MEMF_Release (). It has the advan-
tage that only one parameter is needed and embOS will find the associated memory
pool. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



237

13.2.8 OS_MEMF_GetNumBIlocks()

Description
Inquires the total number of memory blocks in the pool.
Prototype
int OS_MEMF_GetNumBlocks (const OS_MEMF *pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 13.9: 0OS_MEMF_GetNumBlocks() parameter list

Return value

Returns the number of blocks in the specified memory pool. This is the value that
was given as parameter during creation of the memory pool.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



238 CHAPTER 13 Fixed block size memory pools

13.2.9 OS_MEMF_GetBlockSize()

Description
Inquires the size of one memory block in the pool.
Prototype
int OS_MEMF_GetBlockSize (const OS_MEMF *pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 13.10: OS_MEMF_GetBlockSize() parameter list

Return value

Size in bytes of one memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



239

13.2.10 OS_MEMF_GetNumFreeBlocks()

Description
Inquires the number of free memory blocks in the pool.
Prototype
int OS_MEMF_GetNumFreeBlocks (0OS_MEMF *pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 13.11: OS_MEMF_GetNumFreeBlocks() parameter list

Return value

The number of free blocks in the specified memory pool.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



240

CHAPTER 13 Fixed block size memory pools

13.2.11 OS_MEMF_GetMaxUsed()

Description

Inquires the maximum number of blocks in a pool that have been used simulta-
neously since creation of the pool.

Prototype

int OS_MEMF_GetMaxUsed (const OS_MEMF *pMEMF) ;

Parameter

Description

PMEMF

Pointer to the control data structure of memory pool.

Table 13.12: OS_MEMF_GetMaxUsed() parameter list

Return value

Maximum number of blocks in the specified memory pool that were used simulta-
neously since the pool was created.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



241

13.2.12 0S_MEMF_IsInPool()

Description

Information routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype
char OS_MEMF_IsInPool (const OS_MEMF *pMEMF,
const void *pMemBlock) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block that should be checked

Table 13.13: OS_MEMF_IsInPool() parameter list

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



242 CHAPTER 13 Fixed block size memory pools

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



243

Chapter 14
Stacks

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



244

CHAPTER 14 Stacks

14.1 Introduction

The stack is the memory area used for storing the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt routines
also use the stack to save the return address and flag registers, except in cases
where the CPU has a separate stack for interrupt functions. Refer to the CPU &
Compiler Specifics manual of embOS documentation for details on your processor's
stack. A “normal” single-task program needs exactly one stack. In a multitasking
system, every task must have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of
the memory that is not reserved for the stack will be overwritten, and a serious pro-
gram failure is most likely to occur. Therefore, the debug and stack-check builds of
embOS monitor the stack size (and, if available, also interrupt stack size) and call
0S_Error () if they detect stack overflows.

To detect a stack overflow, the stack is filled with control characters upon its cre-
ation, thereby allowing for a check on these characters every time a task is deacti-
vated. However, embOS does not guarantee to reliably detect all stack overflows. A
stack that has been defined larger than necessary, on the other hand, does no harm;
even though it is a waste of memory.

14.1.1 System stack

Before embOS takes control (before the call to 0s_start()), a program uses the so-
called system stack. This is the same stack that a non-embOS program for this CPU
would use. After transferring control to the embOS scheduler by calling 0s_start (),
the system stack is used for the following (when no task is executing):

e embOS scheduler
e embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.

14.1.2 Task stack

Each embOS task has a separate stack. The location and size of this stack is defined
when creating the task. The minimum size of a task stack depends on the CPU and
the compiler. For details, see the CPU & Compiler Specifics manual of embQOS docu-
mentation.

14.1.3 Interrupt stack

To reduce stack size in a multitasking environment, some processors use a specific
stack area for interrupt service routines (called a hardware interrupt stack). If there
is no interrupt stack, you will need to add stack requirements of your interrupt ser-
vice routines to each task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may support a
separate stack for interrupts by calling the function 0S_EnterIntStack() at begin-
ning of an interrupt service routine and 0s_LeaveIntStack() at its very end. In case
the CPU already supports hardware interrupt stacks or if a separate interrupt stack is
not supported at all, these function calls are implemented as empty macros.

We recommend using 0S_EnterIntStack() and 0S_LeaveIntStack() even if there is
currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embOS with support for
an interrupt stack for your CPU. For details about interrupt stacks, see the CPU &
Compiler Specifics manual of embOS documentation.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



245

14.1.4 Stack size calculation

embOS includes stack size calculation routines. embQOS fills the task stacksand also
the system stack and the interrupt stack with a pattern byte.

embOS checks at runtime how many bytes at the end of the stack still include the
pattern byte. With it the amount of used and unused stack can be calculated.

14.1.5 Stack-check

embOS includes stack-check routines. embOS fills the task stacks and also the sys-
tem stack and the interrupt stack with a pattern byte.

embOS checks periodically if the last pattern byte at the end of the stack is overwrit-
ten. embOS calls OS_Error() when this bytes is overwritten.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



246 CHAPTER 14 Stacks

14.2 API functions

3 o= 3

Routine Description ®n |23

5 x| P o

0S_GetStackBase () Returns the base address of a task stack. XX | X[ X
0S_GetStackSize () Returns the size of a task stack. XX X|X
0S_GetStackSpace () Returns the unused portion of a task stack. X| X | XX
0S_GetStackUsed () Returns the used portion of a task stack. XX | X]| X
0S_GetSysStackBase () Returns the base address of the system stack. | X| X | X| X
0S_GetSysStackSize () Returns the size of the system stack. X| X | X[ X
0S_GetSysStackSpace () E;t(l:.lkrns the unused portion of the system x| x| x| x
0S_GetSysStackUsed () Returns the used portion of the system stack. | X| X | X| X
0S_GetIntStackBase () Returns the base address of the interrupt x| x x

stack.

0S_GetIntStackSize () Returns the size of the interrupt stack. X| X| X | X
0S._GetIntStackSpace () thiltéII:ns the unused portion of the interrupt x| x | x
0S. GetIntStackUsed () S;tgkrns the used portion of the interrupt x| % x

Table 14.1: Stacks API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



247

14.2.1 OS_GetStackBase()

Description
Returns a pointer to the base of a task stack.

Prototype
void * 0OS_GetStackBase (0OS_TASK *pTask) ;

Parameter Description

The task whose stack base should be returned.
NULL denotes the current task.
Table 14.2: OS_GetStackBase() parameter list

pTask

Return value
The pointer to the base address of the task stack.
Additional Information

This function is only available in the debug and stack-check builds of embOS,
because only these builds initialize the stack space used for the tasks.

Example

void CheckStackBase (void) {
printf ("Addr Stack[0] $p", OS_GetStackBase (&TCBI[O0]) ;
0S_Delay (1000) ;
printf ("Addr Stack[1] $p", OS_GetStackBase (&TCBI[1l]);
0S_Delay (1000) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



248

CHAPTER 14

14.2.2 OS_GetStackSize()

Description

Returns the size of a task stack.

Prototype

unsigned int OS_GetStackSize

(OS_TASK * pTask) ;

Stacks

Parameter

Description

pTask

The task whose stack size should be checked.

NULL means current task.

Table 14.3: OS_GetStackSize() parameter list

Return value

The size of the task stack in bytes.

Additional Information

This function is only available in the debug and stack-check builds of embOS,

because only these builds initialize the stack space used for the tasks.

Example

void CheckStackSize (void) {
printf("Size Stack[0] %u", 0OS_GetStackSize (&TCB[O0]) ;

0S_Delay (1000) ;

printf("Size Stack[1l] %u", 0OS_GetStackSize(&TCBI[1]);

0S_Delay (1000) ;
}

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



249

14.2.3 OS_GetStackSpace()

Description
Returns the unused portion of a task stack.

Prototype
unsigned int OS_GetStackSpace (OS_TASK * pTask);

Parameter Description

The task whose stack space should be checked.
NULL denotes the current task.
Table 14.4: OS_GetStackSpace() parameter list

pTask

Return value
The unused portion of the task stack in bytes.
Additional Information

In most cases, the stack size required by a task cannot be easily calculated because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.

However, the required stack size can be calculated using the function
0S_GetStackSpace (), which returns the number of unused bytes on the stack. If
there is a lot of space left, you can reduce the size of this stack.

This function is only available in the debug and stack-check builds of embOS.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackSpace (void) {
printf ("Unused Stack[0] $u", 0OS_GetStackSpace (&TCB[0]) ;
0S_Delay (1000) ;
printf ("Unused Stack[1] $u", 0OS_GetStackSpace (&TCB[1]);
0S_Delay (1000) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



250

CHAPTER 14 Stacks

14.2.4 OS_GetStackUsed()

Description
Returns the used portion of a task stack.

Prototype
unsigned int OS_GetStackUsed (OS_TASK * pTask);

Parameter Description

The task whose stack usage should be checked.

Task
pras NULL denotes the current task.

Table 14.5: OS_GetStackUsed() parameter list

Return value
The used portion of the task stack in bytes.
Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.

However, the required stack size can be calculated using the function
0S_GetStackUsed (), which returns the number of used bytes on the stack. If there is
a lot of space left, you can reduce the size of this stack.

This function is only available in the debug and stack-check builds of embOS.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackUsed (void) {
printf ("Used Stack[0] $u", 0OS_GetStackUsed (&TCB[0]) ;
0S_Delay (1000) ;
printf ("Used Stack[1] $u", 0OS_GetStackUsed (&TCB[1]) ;
0S_Delay (1000) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



251

14.2.5 OS_GetSysStackBase()

Description
Returns a pointer to the base of the system stack.
Prototype

void * 0OS_GetSysStackBase (void);

Return value

The pointer to the base address of the system stack.

Example

void CheckSysStackBase (void) {
printf ("Addr System Stack %p", 0S_GetSysStackBase()) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



252 CHAPTER 14 Stacks

14.2.6 OS_GetSysStackSize()

Description
Returns the size of the system stack.
Prototype

unsigned int 0S_GetSysStackSize (void);

Return value

The size of the system stack in bytes.

Example

void CheckSysStackSize (void) {
printf("Size System Stack %u", 0OS_GetSysStackSize());

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



253

14.2.7 OS_GetSysStackSpace()

Description
Returns the unused portion of the system stack.

Prototype
unsigned int 0S_GetSysStackSpace (void);

Return value

The unused portion of the system stack in bytes.

Additional Information

This function is only available in the debug and stack-check builds of embOS.
Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackSpace (void) {
printf ("Unused System Stack %u", 0S_GetSysStackSpace());

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



254 CHAPTER 14 Stacks

14.2.8 OS_GetSysStackUsed()

Description
Returns the used portion of the system stack.

Prototype
unsigned int 0S_GetSysStackUsed (void);

Return value

The used portion of the system stack in bytes.

Additional Information

This function is only available in the debug and stack-check builds of embOS.
Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackUsed (void) {
printf ("Used System Stack %u", 0S_GetSysStackUsed());

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



255

14.2.9 OS_GetIntStackBase()

Description

Returns a pointer to the base of the interrupt stack.

Prototype
void * 0OS_GetIntStackBase (void);

Return value

The pointer to the base address of the interrupt stack.
Additional Information

This function is only available when an interrupt stack exists.

Example

void CheckIntStackBase (void) ({
printf ("Addr Interrupt Stack %p", 0S_GetIntStackBase());

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



256 CHAPTER 14 Stacks

14.2.10 OS_GetIntStackSize()

Description

Returns the size of the interrupt stack.

Prototype
unsigned int OS_GetIntStackSize (void);

Return value

The size of the interrupt stack in bytes.

Additional Information

This function is only available when an interrupt stack exists.

Example

void CheckIntStackSize (void) {
printf ("Size Interrupt Stack %u", 0S_GetIntStackSize());

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



257

14.2.11 OS_GetIntStackSpace()

Description
Returns the unused portion of the interrupt stack.

Prototype
unsigned int OS_GetIntStackSpace (void);

Return value
The unused portion of the interrupt stack in bytes.
Additional Information

This function is only available in the debug and stack-check builds and when an inter-
rupt stack exists.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackSpace (void) {
printf ("Unused Interrupt Stack %u", 0OS_GetIntStackSpace()) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



258 CHAPTER 14 Stacks

14.2.12 OS_GetIntStackUsed()

Description
Returns the used portion of the interrupt stack.

Prototype
unsigned int 0S_GetIntStackUsed (void);

Return value
The used portion of the interrupt stack in bytes.
Additional Information

This function is only available in the debug and stack-check builds and when an inter-
rupt stack exists.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackUsed (void) {
printf ("Used Interrupt Stack %u", 0OS_GetIntStackUsed()) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



259

Chapter 15

Interrupts

This chapter explains how to use interrupt service routines (ISRs) in cooperation with
embOS. Specific details for your CPU and compiler can be found in the CPU & Com-
piler Specifics manual of the embOS documentation.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



260 CHAPTER 15 Interrupts

15.1 What are interrupts?

Interrupts are interruptions of a program caused by hardware. When an interrupt
occurs, the CPU saves its registers and executes a subroutine called an interrupt ser-
vice routine, or ISR. After the ISR is completed, the program returns to the highest-
priority task in the READY state. Normal interrupts are maskable. Maskable inter-
rupts can occur at any time unless they are disabled. ISRs are also nestable — they
can be recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very
quickly to external events such as the status change on an input, the expiration of a
hardware timer, reception or completion of transmission of a character via serial
interface, or other types of events. Interrupts effectively allow events to be pro-
cessed as they occur.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



261

15.2 Interrupt latency

Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the interrupt service routine.

Every computer system has an interrupt latency. The latency depends on various fac-
tors and differs even on the same computer system. The value that one is typically
interested in is the worst case interrupt latency.

The interrupt latency is the sum of a number of individual smaller delays explained
below.

15.2.1 Causes of interrupt latencies

The first delay is typically in the hardware: The interrupt request signal needs to
be synchronized to the CPU clock. Depending on the synchronization logic, typi-
cally up to three CPU cycles can be lost before the interrupt request reaches the
CPU core.

The CPU will typically complete the current instruction. This instruction can take
multiple cycles to comeplete; on most systems, divide, push-multiple, or mem-
ory-copy instructions are the instructions which require most clock cycles. On top
of the cycles required by the CPU, there are in most cases additional cycles
required for memory access. In an ARM7 system, the instruction sTMDB SP!, {RO-
R11,LR}; typically is the worst case instruction. It stores thirteen 32 bit registers
to the stack, which, in an ARM7 system, takes 15 clock cycles to complete.

The memory system may require additional cycles for wait states.

After the current instruction is completed, the CPU performs a mode switch or
pushes registers (typically, PC and flag registers) to the stack. In general, mod-
ern CPUs (such as ARM) perform a mode switch, which requires fewer CPU cycles
than saving registers.

Pipeline fill

Most modern CPUs are pipelined. Execution of an instruction happens in various
stages of the pipeline. An instruction is executed when it has reached its final
stage of the pipeline. Because the mode switch flushes the pipeline, a few extra
cycles are required to refill the pipeline.

15.2.2 Additional causes for interrupt latencies

There can be additional causes for interrupt latencies.
These depend on the type of system used, but we list a few of them.

Latencies caused by cache line fill. If the memory system has one or multiple
caches, these may not contain the required data. In this case, not only the
required data is loaded from memory, but in a lot of cases a complete line fill
needs to be performed, reading multiple words from memory.

Latencies caused by cache write back. A cache miss may cause a line to be
replaced. If this line is marked as dirty, it needs to be written back to main mem-
ory, causing an additional delay.

Latencies caused by MMU translation table walks. Translation table walks can
take a considerable amount of time, especially as they involve potentially slow
main memory accesses. In real-time interrupt handlers, translation table walks
caused by the TLB not containing translations for the handler and/or the data it
accesses can increase interrupt latency significantly.

Application program. Of course, the application program can cause additional
latencies by disabling interrupts. This can make sense in some situations, but of
course causes additional latencies.

Interrupt routines. On most systems, one interrupt disables further interrupts.
Even if the interrupts are re-enabled in the ISR, this takes a few instructions,
causing additional latency.

Real-time Operating system (RTOS). An RTOS also needs to temporarily disable
the interrupts which can call API-functions of the RTOS. Some RTOSes disable all
interrupts, effectively increasing interrupt latency for all interrupts, some (like
embOS) disable only low-priority interrupts and do thereby not affect the latency
of high priority interrupts.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



262 CHAPTER 15 Interrupts

15.2.3 How to detect the cause for high interrupt latency

It is sometimes desirable to detect the cause for high interrupt latency. High inter-
rupt latency may occur if interrupts are disabled for a long time, or if a low level
interrupt handler is executed before the actual interrupt handler. In any case, this
can be avoided by using zero latency interrupts which will be explained later.

To investigate interrupt latency, a timer interrupt may be used. For example, in case
a timer counts upwards starting from zero after each compare match interrupt, the
current timer value indicates how much time has lapsed between the interrupt and
the actual interrupt handler. Using this information, a threshold may be defined to
limit the interrupt latency to an acceptable maximum: A breakpoint may be set for
when the current timer value exceeds the defined threshold:

void TimerIntHandler (void) {
OS_EnterInterrupt() ;
t = TIMER_CNT_VALUE; // Get current timer value
if (t > LATENCY_THRESHOLD) {
while (1); // Set a breakpoint here
}
0S_LeavelInterrupt () ;
}

Furthermore, if code trace information is available, the cause for the latency may be
checked through the trace log upon hitting the break point.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



263

15.3 Zero interrupt latency

Zero interrupt latency in the strict sense is not possible as explained above. What we
mean when we say “Zero interrupt latency” is that the latency of high-priority inter-
rupts is not affected by the RTOS; a system using embOS will have the same worst-
case interrupt latency for high priority interrupts as a system running without
embOS.

Why is Zero latency important?

In some systems, a maximum interrupt response time or latency can be clearly
defined. This maximum latency can arise from requirements such as maximum reac-
tion time for a protocol or a software UART implementation that requires very precise
timing.

For example a UART receiving at up to 800 kHz in software using ARM FIQ on a 48
MHz ARM7. This would be impossible to do if FIQ were disabled even for short periods
of time.

In many embedded systems, the quality of the product depends on event reaction
time and therefore latency. Typical examples would be systems which periodically
read a value from an A/D converter at high speed, where the accuracy depends on
accurate timing. Less jitter means a better product.

Why can a high priority ISR not use the OS API ?

embOS disables low priority interrupts when embOS data structures are modified.
During this time high priority ISR are enabled. If they would call an embOS function,
which also modifies embOS data, the embOS data structures would be corrupted.

How can a high priority ISR communicate with a task ?

The most common way is to use global variables, e.g. a periodical read from an ADC
and the result is stored in a global variable.

Another way is to assert an interrupt request for a low priority interrupt from within
the high priority ISR, which may then communicate or wake up one or more tasks.
This is helpful if you want to receive high amounts of data in your high priority ISR.
The low priority ISR may then store the data bytes e.g. in a message queue or in a
mailbox.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



264 CHAPTER 15 Interrupts

15.4 High /low priority interrupts

Most CPUs support interrupts with different priorities. Different priorities have two
effects:

e If different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and its ISR is executed first.

e Interrupts can never be interrupted by other interrupts of the same or lower pri-
ority.

The number of interrupt levels depends on the CPU and the interrupt controller.
Details are explained in the CPU/MCU/SoC manuals and the CPU & Compiler Specifics
manual of embOS. embOQOS distinguishes two different levels of interrupts: High and
low priority interrupts. The embOS port-specific documentations explain which inter-
rupts are considered high and which are considered low priority for that specific port.
In general, the differences between those two are as follows:

Low priority interrupts
e May call embOS API functions

e Latencies caused by embOS
e Also called "embOS interrupts”

High priority interrupts
e May not call embOS API functions

e No latencies caused by embOS (Zero latency)
e Also called “Zero latency interrupts”

Example of different interrupt priority levels

Let's assume we have a CPU which supports eight interrupt priority levels. With
embOS, the interrupt levels are divided per default equal in low priority and high pri-
ority interrupt levels. The four highest priority levels are considered “High priority
interrupts” and the four lowest priority interrupts are considered as “Low priority
interrupts”. For ARM CPUs, which support regular interrupts (IRQ) and fast interrupt
(FIQ), FIQ is considered as “High priority interrupt” when using embOS.

For most implementations the high-priority threshold is adjustable. For details, refer
to the processor specific embOS manual.

15.4.1 Using OS functions from high priority interrupts

High priority interrupts are prohibited from using embOS functions. This is a conse-
quence of embOS’s zero-latency design, according to which embOS never disables
high priority interrupts. This means that high priority interrupts can interrupt the
operating system at any time, even in critical sections such as the modification of
RTOS-maintained linked lists. This design decision has been made because zero
interrupt latencies for high priority interrupts usually are more important than the
ability to call OS functions.

However, high priority interrupts may use OS functions in an indirect manner:

The high priority interrupt triggers a low priority interrupt by setting the appropiate
interrupt request flag. Subsequently, that low priority interrupt may call the OS func-
tions that the high priority interrupt was not allowed to use.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



265

Taskl Task2  High priority Low priority
interrupt interrupt

Task1 is interrupted
by a high priority interrupt

High priority interrupt
triggers low priority interrupt

Time <

Low priority interrupt calls embOS
API function to resume Task2

v

The task 1 is interrupted by a high priority interrupt. This high priority interrupt is
not allowed to call an embOS API function directly. Therefore the high priority inter-
rupt triggers a low priority interrupt, which is allowed to call embOS API functions.
The low priority interrupt calls an embOS API function to resume task 2.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



266 CHAPTER 15 Interrupts

15.5 Rules for interrupt handlers

15.5.1 General rules

There are some general rules for interrupt service routines (ISRs). These rules apply
to both single-task programming as well as to multitask programming using embOS.

e ISR preserves all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR must make sure
that all registers modified during interrupt execution are saved at the beginning
and restored at the end of the interrupt routine

e Interrupt handlers must finish quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt han-
dler should only be used for storing a received value or to trigger an operation in
the regular program (task). It should not wait in any form or perform a polling
operation.

15.5.2 Additional rules for preemptive multitasking

A preemptive multitasking system like embQOS needs to know if the program that is
executing is part of the current task or an interrupt handler. This is because embOS
cannot perform a task switch during the execution of an ISR; it can only do so at the
end of an ISR.

If a task switch were to occur during the execution of an ISR, the ISR would continue
as soon as the interrupted task became the current task again. This is not a problem
for interrupt handlers that do not allow further interruptions (which do not enable
interrupts) and that do not call any embOS functions.

This leads us to the following rule:

e ISRs that re-enable interrupts or use any embOS function need to «call
0S_EnterInterrupt () at the beginning, before executing anything else, and call
0S_LeaveInterrupt () immediately before returning.

If a higher priority task is made ready by the ISR, the task switch then occurs in the
routine 0s_LeaveInterrupt (). The end of the ISR is executed at a later point, when
the interrupted task is made ready again. If you debug an interrupt routine, do not
be confused. This has proven to be the most efficient way of initiating a task switch
from within an interrupt service routine.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



15.6 API functions

The following table lists all interrupt related API functions of embOS.

267

Routine

Description

urew
Jysel
Sl
FELINE

OS_DI()

Disables interrupts. Does not
change the interrupt disable
counter.

>

X

OS_EI()

Unconditionally enables Inter-
rupt.

0S_IncDI ()

Increments the interrupt dis-
able counter (0os_bIcnt) and
disables interrupts.

OS_RestoreI ()

Restores the state of the inter-
rupt flag, based on the inter-
rupt disable counter.

0S_DecRI ()

Decrements the counter and
enables interrupts if the
counter reaches 0.

OS_EnterInterrupt ()

Informs embOS that interrupt
code is executing.

0S_LeaveInterrupt ()

Informs embOS that the end
of the interrupt routine has
been reached; executes task
switching within ISR.

OS_EnterNestablelInterrupt ()

Informs embOS that interrupt
code is executing and reen-
ables interrupts.

0S_LeaveNestableInterrupt ()

Informs embOS that the end
of the interrupt routine has
been reached; executes task
switching within ISR.

0S_CallISR()

Interrupt entry function.

0S_CallNestableISR()

Interrupt entry function sup-
porting nestable interrupts.

OS_INTERRUPT_MaskGlobal ()

Disable all interrupts (high
and low priority) uncondition-
ally.

OS_INTERRUPT UnmaskGlobal ()

Enable all interrupts (high and
low priority) unconditionally.

OS_INTERRUPT_ PreserveGlobal ()

Preserves the current interrupt
enable state

OS_INTERRUPT_ PreserveAndMaskGlobal ()

Preserves the current interrupt
enable state and then disables
all interrupts.

OS_INTERRUPT RestoreGlobal ()

Restores the interrupt enable
state which was preserved
before.

OS_INT_PRIO_PRESERVE ()

Preserves the embQOS interrupt
state.

OS_INT_ PRIO_RESTORE ()

Restores the embOS interrupt
state.

Table 15.1: Interrupt API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



268 CHAPTER 15 Interrupts

15.6.1 OS_CallISR()

Description
Entry function for use in an embOS interrupt handler. Nestable interrupts disabled.

Prototype
void 0S_CallISR (void (*pRoutine) (void)) ;

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 15.2: OS_CallISR() parameter list

Additional Information

0S_CallISR() can be used as an entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embQOS interrupt.
0S_CallIsr() sets the interrupt priority of the CPU to the user definable ‘fast’ inter-
rupt priority level, thus locking any other embOS interrupt.

Fast interrupts are not disabled.

Note: For some specific CPUs 0s_CcallIsr() must be used to call an interrupt
handler because 0S_EnterInterrupt() / 0OS_LeaveInterrupt() may not be avail-
able.

Refer to the CPU specific manual.

Example

#pragma interrupt

void OS_ISR_Tick (void) {
0S_CallISR(_IsrTickHandler) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



269

15.6.2 OS_CallNestablelSR()

Description

Entry function for use in an embOS interrupt handler. Nestable interrupts enabled.

Prototype
void 0OS_CallNestableISR (void (*pRoutine) (void));
Parameter Description
pRoutine Pointer to a routine that should run on interrupt.

Table 15.3: OS_CallNestableISR() parameter list

Additional Information

0S_CallNestableISR() can be used as an entry function in an embOS interrupt han-
dler, when interruption by higher prioritized embOS interrupts should be allowed.
0S_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Note: For some specific CPUs 0S_callNestableISR() must be used to call an
interrupt handler because 0S_EnterNestableInterrupt () /
0S_LeaveNestableInterrupt () may not be available.

Refer to the CPU specific manual.

Example

#pragma interrupt

void OS_ISR_Tick(void) {
0S_CallNestableISR(_IsrTickHandler) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



270 CHAPTER 15 Interrupts

15.6.3 OS_Enterinterrupt()

Note: This function may not be available in all ports.
Description
Informs embOS that interrupt code is executing.

Prototype

void OS_EnterInterrupt (void);

Additional Information

If 0S_EnterInterrupt () is used, it should be the first function to be called in the
interrupt handler. It must be paired with 0S_LeaveInterrupt() as the last function
called. The use of this function has the following effects:

e disables task switches
e keeps interrupts in internal routines disabled.

An example is shown in the the description of 0S_LeaveInterrupt ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



271

15.6.4 OS_Leavelnterrupt()

Note: This function may not be available in all ports.

Description

Informs embOS that the end of the interrupt routine has been reached; executes
task switching within ISR.
Prototype

void OS_LeavelInterrupt (void);

Additional Information

If 0S_LeaveInterrupt () is used, it should be the last function to be called in the
interrupt handler. If the interrupt has caused a task switch, that switch is performed
immediately (unless the program which was interrupted was in a critical region).

Example using OS_Enterinterrupt()/OS_Leavelnterrupt()

void ISR_Timer (void) {
OS_EnterInterrupt () ;
0S_SignalEvent (1, &Task); /* Any functionality could be here */
0S_LeavelInterrupt () ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



272 CHAPTER 15 Interrupts

15.7 Enabling / disabling interrupts from C

During the execution of a task, maskable interrupts are normally enabled. In certain
sections of the program, however, it can be necessary to disable interrupts for short
periods of time to make a section of the program an atomic operation that cannot be
interrupted. An example would be the access to a global volatile variable of type long
on an 8/16 bit CPU. To make sure that the value does not change between the two or
more accesses that are needed, interrupts must be temporarily disabled:

Bad example:

volatile long lvar;

void IntHandler (voi
lvar++;

}

void routine (void) {
lvar++;

}
Good example:

volatile long lvar;

void IntHandler (voi
lvar++;

}

void routine (void) {
0OS_DI();
lvar++;
OS_EI();

}

The problem with disabling and re-enabling interrupts is that functions that disable/
enable the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended to use the functions that
embOS offers (to be precise, they only look like functions, but are macros in reality).
If you do not use these recommended embOS functions, you may run into a problem
if routines which require a portion of the code to run with disabled interrupts are
nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also,
you should not call functions when interrupts are disabled, because this could lead to
long interrupt latency times (the longer interrupts are disabled, the higher the inter-
rupt latency). You may also safely use the compiler-provided intrinsics to disable
interrupts but you must ensure to not call embOS functions with disabled interrupts.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



273

15.7.1 OS_IncDI() / OS_DecRI()

The following functions are actually macros defined in RT0S.h, so they execute very
quickly and are very efficient. It is important that they are used as a pair: first
0S_IncDI (), then 0S_DecRI ().

0OS_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable
counter (0os_bpicnt) and disables interrupts.

0S_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and
enables interrupts if the disable counter reaches zero.

Example

volatile long lvar;

void routine (void) {
0S_IncDI();
lvar ++;
0S_DecRI();

}

0S_IncDI () increments the interrupt disable counter which is used for the entire OS
and is therefore consistent with the rest of the program in that any function can be
called and the interrupts will not be switched on before the matching 0s_bDecRI() is
executed.

If you need to disable interrupts for a instant only where no routine is called, as in
the example above, you could also use the pair 0s_DI() and 0S_RestoreI(). These
are slighly more efficient because the interrupt disable counter os_bpicnt is not mod-
ified twice, but only checked once. They have the disadvantage that they do not work
with functions because the status of os_bpicnt is not actually changed, and they
should therefore be used with great care. In case of doubt, use 0s_IncDI() and
OS_DecRI().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



274 CHAPTER 15 Interrupts

15.7.2 OS_DI() / OS_EI() / OS_Restorel()
0S_DI()

Short for Disable Interrupts. Disables interrupts. Does not change the interrupt
disable counter.

OS_EK()

Short for Enable Interrupts. Refrain from using this function directly unless you are
sure that the interrupt enable count has the value zero, because it does not take the
interrupt disable counter into account.

OS_Restorel()

Short for Restore Interrupts. Restores the status of the interrupt flag, based on the
interrupt disable counter.

Example

volatile long lvar;

void routine (void) {
0S_DI();
lvar++;
OS_RestoreI();

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



275

15.8 Definitions of interrupt control macros (in RTOS.h)

#define 0S_IncDI () { OS_ASSERT DICnt(); OS_DI(); OS_DICnt++; }
#define 0OS_DecRI () { OS_ASSERT DICnt(); i1f (--0S_DICnt==0) OS_EI(); }
#define OS_RestoreI() { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); 1}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



276 CHAPTER 15 Interrupts

15.9 Nesting interrupt routines

By default, interrupts are disabled in an ISR because the CPU disables interrupts with
the execution of the interrupt handler. Re-enabling interrupts in an interrupt handler
allows the execution of further interrupts with equal or higher priority than that of
the current interrupt. These are known as nested interrupts, illustrated in the dia-
gram below:

Task ISR1 ISR2 ISR3

< Interrupt 1

< Interrupt 2

Interrupt 3

Time

ID

For applications requiring short interrupt latency, you may re-enable interrupts inside
an ISR by using 0S_EnterNestableInterrupt () and 0S_LeaveNestableInterrupt ()
within the interrupt handler.

Nested interrupts can lead to problems that are difficult to debug; therefore it is not
recommended to enable interrupts within an interrupt handler. As it is important that
embOS keeps track of the status of the interrupt enable/disable flag, enabling and
disabling of interrupts from within an ISR must be done using the functions that
embOS offers for this purpose.

The routine 0S_EnterNestableInterrupt() enables interrupts within an ISR and
prevents further task switches; 0S_LeaveNestableInterrupt () disables interrupts
immediately before ending the interrupt routine, thus restoring the default condition.
Re-enabling interrupts will make it possible for an embOS scheduler interrupt to
interrupt this ISR. In this case, embOS needs to know that another ISR is still active
and that it may not perform a task switch.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



277

15.9.1 OS_EnterNestablelnterrupt()

Note: This function may not be available in all ports.
Description

Re-enables interrupts and increments the embOS internal critical region counter,
thus disabling further task switches.

Prototype

void OS_EnterNestableInterrupt (void);

Additional Information

This function should be the first call inside an interrupt handler when nested inter-
rupts are required. The function 0S_EnterNestableInterrupt () is implemented as a
macro and offers the same functionality as 0S_EnterInterrupt() in combination
with 0s_DecR1I (), but is more efficient, resulting in smaller and faster code.

Example
Refer to the example for OS_LeaveNestableInterrupt() on page 278.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



278 CHAPTER 15 Interrupts

15.9.2 OS_LeaveNestableilnterrupt()

Note: This function may not be available in all ports.
Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero.

Prototype

void OS_LeaveNestableInterrupt (void) ;

Additional Information

This function is the counterpart of 0S_EnterNestableInterrupt (), and must be the
last function call inside an interrupt handler when nested interrupts have been
enabled by 0S_EnterNestableInterrupt ().

The function 0S_LeaveNestableInterrupt () is implemented as a macro and offers
the same functionality as 0S_LeaveInterrupt() in combination with 0S_IncDI(),
but is more efficient, resulting in smaller and faster code.

Example using OS_EnterNestablelnterrupt()/OS_LeaveNestablelnterrupt()

_interrupt void ISR_Timer (void) {
OS_EnterNestableInterrupt () ;
0S_SignalEvent (1, &Task) ; /* Any functionality could be here */
0S_LeaveNestableInterrupt () ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



279

15.9.3 OS_lIninterrupt()

Description

This function can be called to examine if the calling function is running in an interrupt
context. For application code, it may be useful to know if it is called from interrupt or
task, because some functions must not be called from an interrupt-handler.

Prototype
OS_BOOL 0OS_InInterrupt (void);

Return value

0: Code is not executed in interrupt handler.
1=0: Code is executed in an interrupt handler.

Additional Information

The function delivers the interrupt state by checking the according CPU registers.
This function is not included in all embOS ports! It is only implemented for
those CPUS where it is possible to read the interrupt state from CPU registers. In
case of doubt please contact the embOS support.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



280

CHAPTER 15 Interrupts

15.10 Global interrupt enable / disable

The embOS interrupt enable and disable functions enable and disable embQOS inter-
rupts only. If a system is set up to support high and low priority interrupts and
embOS is configured to suppport “zero latency” interrupts, the embQOS functions to
enable and disable interrupts affect the low priority interrupts only.

High priority interrupts, called “zero latency interrupts” are never enabled or disabled
by embOS functions.

In an application it may be required to disable and enable all interrupts.

Since version 3.90, embOS has API functions which allow enabling and disabling all
interrupts. These functions have the prefix os_INTERRUPT_ and allow a “global” han-
dling of the interrupt enable state of the CPU.

These functions affect the state of the CPU unconditionally and should be used with
care.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



281

15.10.1 OS_INTERRUPT_MaskGlobal()

Description
This function disables high and low priority interrupts unconditionally.

Prototype
void OS_INTERRUPT MaskGlobal (void);

Additional Information

OS_INTERRUPT MaskGlobal () disables all interrupts in a fast and efficient way.

Note that the system does not track the interrupt state when calling the function.
Therefore the function should not be called when the state is unknown.

Interrupts can be re-enabled by calling 0S_INTERRUPT_ UnmaskGlobal ().

After calling 0S_INTERRUPT_MaskGlobal (), no embOS function except the interrupt
enable function 0S_INTERRUPT_UnmaskGlobal () should be called, because the inter-
rupt state is not saved by the function. An embOS API function may re-enable inter-
rupts. The exact interrupt enable behaviour depends on the CPU.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



282 CHAPTER 15 Interrupts

15.10.2 OS_INTERRUPT_UnmaskGlobal()

Description
This function enables high and low priority interrupts unconditionally.

Prototype
void OS_INTERRUPT UnmaskGlobal (void);

Additional Information

This function re-enables interrupts which were disabled before by a call of
OS_INTERRUPT_MaskGlobal ().

The function re-enables high and low priority interrupts unconditionally.
OS_INTERRUPT MaskGlobal () and OS_INTERRUPT_ UnmaskGlobal () should be used as
a pair. The call cannot be nested, because the state is not saved.

This kind of global interrupt disable/enable should only be used when the interrupt
enable state is well known and interrupts are enabled.

Between 0S_INTERRUPT MaskGlobal() and OS_INTERRUPT_UnmaskGlobal(), no
function should be called when it is not known if the function alters the interrupt
enable state.

If the interrupt state is not known, the functions 0S_INTERRUPT_PreserveGlobal ()
Or OS_INTERRUPT_ PreserveAndMaskGlobal () and OS_INTERRUPT_RestoreGlobal ()
shall be used as decribed later on.

Example

void Sample(void) {
OS_INTERRUPT_ MaskGlobal () ; // Disable interrupts
//

// Execute any code that should be executed with interrupts disabled
// No embOS function should be called
//

OS_INTERRUPT_UnmaskGlobal(); // Re-enable interrupts unconditionally

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



283

15.10.3 OS_INTERRUPT_PreserveGlobal()

Description

This function can be called to preserve the current interrupt enable state of the CPU.

Prototype
void OS_INTERRUPT_ PreserveGlobal (0S_U32 *pState);
Parameter Description
pState Pointer to an OS_U32 variable that receives the interrupt state.

Table 15.4: OS_CallNestableISR() parameter list

Additional Information

If the interrupt enable state is not known and interrupts should be disabled by a call
of OS_INTERRUPT_MaskGlobal (), the current interrupt enable state can be preserved
and restored later by a call of 0S_INTERRUPT_RestoreGlobal ().

Note that the interrupt state is not stored by embQOS. After disabling the interrupts
using a call of OS_INTERRUPT_MaskGlobal(), no embOS API function should be called
because embOS functions might re-enable interrupts.

Example

void Sample(void) {
0S_U32 IntState;

OS_INTERRUPT_PreserveGlobal (&IntState) ; // Remember the interrupt enable state.
OS_INTERRUPT MaskGlobal () ; // Disable interrupts
//

// Execute any code that should be executed with interrupts disabled
// No embOS function should be called
//

OS_INTERRUPT RestoreGlobal (&IntState); // Restore the interrupt enable state

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



284

CHAPTER 15 Interrupts

15.10.4 OS_INTERRUPT_PreserveAndMaskGlobal()

Description

This function preserves the current interrupt enable state of the CPU and then dis-
ables high and low priority interrupts.

Prototype
void OS_INTERRUPT PreserveAndMaskGlobal (0S_U32 *pState);
Parameter Description
pState Pointer to an OS_32 variable that receives the interrupt state.

Table 15.5: OS_CallNestableISR() parameter list

Additional Information

The function store the current interrupt enable state into the variable pointed to by
pState and then disables high and low priority interrupts.

The interrupt state can be restored later by a corresponding call of
OS_INTERRUPT_RestoreGlobal().

The pair of function calls 0S_INTERRUPT_PreserveAndMaskGlobal() and
OS_INTERRUPT_RestoreGlobal () can be nested, as long as the interrupt enable state
is stored into an individual variable on each call of

OS_INTERRUPT_PreserveAndMaskGlobal ().
This function pair should be used when the interrupt enable state is not known when
interrupts shall be enabled.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



285

15.10.5 OS_INTERRUPT_RestoreGlobal()

Description

This function must be called to restore the interrupt enable state of the CPU which
was preserved before.

Prototype
void OS_INTERRUPT RestoreGlobal (0S_U32 *pState);

Parameter Description

pState Pointer to an OS_U32 that holds the interrupt enable state.
Table 15.6: OS_CallNestableISR() parameter list

Additional Information

Restores the interrupt enable state which was saved before by a call of
OS_INTERRUPT_PreserveGlobal () Or OS_INTERRUPT_PreserveAndMaskGlobal ().

If interrupts were enabled before they were disabled globally, the function reenables
them.

Example

void Sample(void) {
0S_U32 IntState;

OS_INTERRUPT_PreserveGlobal (&IntState) ; // Remember the interrupt enable state.
OS_INTERRUPT_ MaskGlobal () ; // Disable interrupts
//

// Execute any code that should be executed with interrupts disabled
// No embOS function should be called
//

OS_INTERRUPT RestoreGlobal (&IntState) ; // Restore the interrupt enable state

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



286 CHAPTER 15 Interrupts

15.10.6 OS_INT_PRIO_PRESERVE()

Description
This function can be called to preserve the current embOS interrupt enable state of
the CPU.
Prototype
void OS_INT_PRIO_PRESERVE (0S_U32 *pState);
Parameter Description
pState Pointer to an OS_U32 variable that receives the interrupt state.

Table 15.7: OS_CallNestableISR() parameter list

Additional Information

If the interrupt enable state is not known and interrupts should be disabled by a call
of 0s_D1(), the current embOS interrupt enable state can be preserved and restored
later by a call of 0S_INT_PRIO_RESTORE ().

Example

void Sample (void) {
0S_U32 IntState;

OS_INT_PRIO_PRESERVE (&IntState) ; // Remember the interrupt enable state.
0S_DI(); // Disable embOS interrupts

//

// Execute any code that should be executed with embOS interrupts disabled
//

OS_INT_PRIO_RESTORE (&IntState) ; // Restore the interrupt enable state

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



287

15.10.7 OS_INT_PRIO_RESTORE()

Description

This function must be called to restore the embOS interrupt enable state of the CPU
which was preserved before.

Prototype
void OS_INT_PRIO_RESTORE (0S_U32 *pState);
Parameter Description
pState Pointer to an OS_U32 that holds the interrupt enable state.

Table 15.8: OS_CallNestableISR() parameter list

Additional Information

Restores the embOS interrupt enable state which was saved before by a call of
OS_INT_PRIO_PRESERVE ().

If embOS interrupts were enabled before they were disabled, the function reenables
them.

Example

void Sample(void) {
0S_U32 IntState;

OS_INT PRIO_PRESERVE (&IntState) ; // Remember the interrupt enable state.
0S_DI(); // Disable embOS interrupts

//

// Execute any code that should be executed with embOS interrupts disabled
//

OS_INT PRIO_RESTORE (&IntState) ; // Restore the interrupt enable state

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



288 CHAPTER 15 Interrupts

15.11 Non-maskable interrupts (NMis)

embOS performs atomic operations by disabling interrupts. However, a non-maskable
interrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations.
Therefore, NMIs should be used with great care and are prohibited from calling any
embOS routines.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



289

Chapter 16

Critical Regions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



290 CHAPTER 16 Critical Regions

16.1 Introduction

Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed except
in situations where the running task must wait. Effectively, preemptions are turned
off.

A typical example for a critical region would be the execution of a program section
that handles a time-critical hardware access (for example writing multiple bytes into
an EEPROM where the bytes must be written in a certain amount of time), or a sec-
tion that writes data into global variables used by a different task and therefore
needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outermost
region is left. Interrupts are still legal in a critical region. Software timers and inter-
rupts are executed as critical regions anyhow, so it does not hurt but does not do any
good either to declare them as such. If a task switch becomes due during the execu-
tion of a critical region, it will be performed immediately after the region is left.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



16.2 API functions

201

Routine

Description

urew
yselL
HSlI
FETTINE

OS_EnterRegion ()

Indicates to the OS the beginning of a critical

region.

0S_LeaveRegion ()

Indicates to the OS the end of a critical region.

x| X
x| X
x

x| X

Table 16.1: Critical regions API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



292

CHAPTER 16 Critical Regions

16.2.1 OS_EnterRegion()

Description
Indicates to the OS the beginning of a critical region.

Prototype

void OS_EnterRegion (void);

Additional Information

Note: OS_EnterRegion () is not actually a function but a macro. However, it
behaves very much like a function but is much more efficient. Using the macro indi-
cates to embOS the beginning of a critical region.

A critical region counter (OS_Global.Counters.Cnt.Region), which is zero by default,
is incremented so that critical regions can be nested. The counter will be decre-
mented by a call to the routine 0s_LeaveRegion (). When this counter reaches zero
again, the critical region ends.

Interrupts are not disabled using 0S_EnterRegion(); however, preemptive task
switches are disabled in a critical region.

If any interrupt triggers a task switch, the task switch is delayed and kept pending
until the final call of 0s_LeaveRegion(). When the 0s_RegionCnt reaches zero, any
pending task switch is executed.

Cooperative task switches are not affected and will be executed in critical regions.
When a task is running in a critical region and calls any blocking embOS function, the
task will be suspended.

When the task is resumed, the task-specific 0S_RegionCnt is restored, the task con-
tinues to run in a critical region until 0s_LeaveRegion () is called.

Example

void SubRoutine(void) {
OS_EnterRegion();
/* The following code will not be interrupted by the 0S */
/* Preemptive task switches are blocked until a call of 0OS_leaveRegion() */

OS_LeaveRegion();
b

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



293

16.2.2 OS_LeaveRegion()

Description
Indicates to the OS the end of a critical region.

Prototype

void OS_LeaveRegion (void) ;

Additional Information

0S_LeaveRegion () is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Usage of the macro indicates to
embOS the end of a critical region.

A critical region counter (OS_Global.Counters.Cnt.Region), which is zero by default,
is decremented. If this counter reaches zero, the critical region ends.

A task switch which became pending during a critical region will be executed in
0S_EnterRegion () when the 0S_RegionCnt reaches zero.

Example

Refer to the example for 0S_EnterRegion () .

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



294 CHAPTER 16 Critical Regions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



295

Chapter 17

Time measurement

embOS supports two types of time measurement:

e Low resolution (using a time variable)
e High resolution (using a hardware timer)

Both are explained in this chapter.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



296 CHAPTER 17 Time measurement

17.1 Introduction

embOS supports two basic types of run-time measurement which may be used for
calculating the execution time of any section of user code. Low-resolution measure-
ments use a time base of ticks, while high-resolution measurements are based on a
time unit called a cycle. The length of a cycle depends on the timer clock frequency.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



297

17.2 Low-resolution measurement

The system time variable 0S_Global.Time is measured in ticks, or milliseconds. The
low-resolution functions 0S_GetTime () and 0S_GetTime32 () are used for returning
the current contents of this variable. The basic concept behind low-resolution mea-
surement is quite simple: The system time is returned once before the section of
code to be timed and once after, and the first value is subtracted from the second to
obtain the time it took for the code to execute.

The term low-resolution is used because the time values returned are measured in
completed ticks. Consider the following: with a normal tick of one ms, the variable
0S_Time is incremented with every tick-interrupt, or once every ms. This means that
the actual system time can potentially be later than the low-resolution function
returns (for example, if an interrupt actually occurs at 1.4 ticks, the system will still
have measured only one tick as having elapsed). The problem becomes even greater
with runtime measurement, because the system time must be measured twice. Each
measurement can potentially be up to one tick less than the actual time, so the dif-
ference between two measurements could theoretically be inaccurate by up to one
tick.

The following diagram illustrates how low-resolution measurement works. We can see
that the section of code begins at 0.5 ms and ends at 5.2 ms, which means that its
exact execution time is (5.2 - 0.5) = 4.7 ms. However with a tick of one ms, the first
call to 0s_GetTime () returns 0, and the second call returns 5. The measured execu-
tion time of the code would therefore result in (5 - 0) = 5 ms.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS_Tlme 0.5ms 5.2ms

0O ms 1 ms 2ms 3ms 4ms 5ms 6 ms

For many applications, low-resolution measurement may be sufficient for your needs.
In some cases, it may be more desirable than high-resolution measurement due to
its ease of use and faster computation time.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



298

17.2.1 API functions

CHAPTER 17 Time measurement

Routine

Description

0S_GetTime ()

Returns the current system time in ticks.

0S_GetTime32 ()

Returns the current system time in ticks as a

32 bit value.

< || urew
< | x| ASEelL
x |x| dSI
> || 49WiL

Table 17.1: Low-resolution measurement API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



299

17.2.1.1 OS_GetTime()
Description

Returns the current system time in ticks.

Prototype

int OS_GetTime (void);

Return value
The system variable 0S_Global.Time as a 16 or 32 bit integer value.
Additional Information

This function returns the system time as a 16 bit value on 8/16 bit CPUs, and as a 32
bit value on 32 bit CPUs. The 0S_Global.Time variable is a 32 bit value. Therefore, if
the return value is 32 bit, it is simply the entire contents of the 0s_Time variable. If
the return value is 16 bit, it is the lower 16 bits of the 0S_Global.0S_Time variable.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



300 CHAPTER 17 Time measurement

17.2.1.2 OS_GetTime32()
Description

Returns the current system time in ticks as a 32 bit value.

Prototype
int OS_GetTime32 (void);

Return value
The system variable 0S_Global.Time as a 32 bit integer value.
Additional Information

This function always returns the system time as a 32 bit value. Because the
0S_Global.Time variable is also a 32 bit value, the return value is simply the entire
contents of the 0s_Global.Time variable.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



301

17.3 High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling
builds of embOS, allowing fine-tuning of time measurement. While system resolution
depends on the CPU used, it is typically about one ps, making high-resolution mea-
surement 1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the illustra-
tion below, which measures the execution time of the same code used in the low-res-
olution calculation. For this example, we assume that the CPU has a timer running at
10 MHz and is counting up. The number of cycles per tick is therefore (10 MHz / 1
kHz) = 10,000. This means that with each tick-interrupt, the timer restarts at zero
and counts up to 10,000.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS_Tlme 0.5ms 5.2ms

0O ms 1ms 2ms 3ms 4ms 5 ms 6 ms

The call to os_Timing_Start () calculates the starting value at 5,000 cycles, while
the call to os_Timing_End() calculates the ending value at 52,000 cycles (both val-
ues are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 - 5,000) = 47,000 cycles, which corresponds to
4.7 ms.

Although the function 0s_Timing_GetCycles () may be used for returning the execu-
tion time in cycles as above, it is typically more common to use the function
0S_Timing_Getus (), which returns the value in microseconds (us). In the above
example, the return value would be 4,700 ps.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



302

CHAPTER 17 Time measurement
17.3.1 API functions
3 -4 d
Routine Description o 2 (:ﬁ 3
5 = °
0S.Timing Start () IV_Iarks the beginning of a code section to be x| x X
timed.
0S_Timing End() Marks the end of a code section to be timed. XX X
Returns the execution time of the code
0S_Timing Getus () between 0s_Timing Start () and X| X | XX
0S_Timing_End() in microseconds.
Returns the execution time of the code
0S_Timing_GetCycles () between 0S_Timing_Start () and XX X[ X
0S_Timing_End() in cycles.

Table 17.2: High-resolution measurement API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG




303

17.3.1.1 OS_Timing_Start()
Description
Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start (OS_TIMING* pCycle);

Parameter Description

pCycle Pointer to a data structure of type 0S_TIMING.
Table 17.3: OS_TimingStart() parameter list

Additional Information

This function must be used with 0s_Timing_ End().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



304 CHAPTER 17 Time measurement

17.3.1.2 OS_Timing_End()

Description

Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End (OS_TIMING* pCycle);
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 17.4: OS_TimingEnd() parameter list

Additional Information

This function must be used with 0s_Timing_Start ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



305

17.3.1.3 OS_Timing_Getus()

Description

Returns the execution time of the code between 0S_Timing_Start() and
0S_Timing_End() in microseconds.
Prototype
0S_U32 0OS_Timing_Getus (const OS_TIMING* pCycle);
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 17.5: OS_Timing_Getus() parameter list

Additional Information

The execution time in microseconds (Ps) as a 32 bit integer value.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



306 CHAPTER 17 Time measurement

17.3.1.4 OS_Timing_GetCycles()

Description
Returns the execution time of the code between 0S_Timing_Start() and
0S_Timing_End () in cycles.
Prototype
0S_U32 0OS_Timing_GetCycles (OS_TIMING* pCycle) ;
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 17.6: OS_Timing_GetCycles() parameter list

Return value

The execution time in cycles as a 32 bit integer.
Additional Information

Cycle length depends on the timer clock frequency.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



UMO01001 User & Reference Guide for embOS

17.4 Example

307

The following sample demonstrates the use of low-resolution and high-resolution

measurement to return the execution time of a section of code:

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*‘k*‘k*‘k********‘k*‘k***‘k*‘k

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
R R S I I S R I I R S R I R R I R S R S R

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
—————————————— END-OF -HEADER-——-—————————————— e _% /

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode (void) {

for (Dummy=0; Dummy < 11000; Dummy++) ; /* Burn some time */
}
/*k
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes (void) {
OS_TIME t;
t = 0S_GetTime();
UserCode () ; /* Execute the user code to be benchmarked */

t = 0S_GetTime() - t;
return (int)t;

}

/*
* Measure the execution time with hi resolution and return it in us
*/
0S_U32 BenchmarkHiRes (void) {
OS_TIMING t;
OS_Timing_Start (&t) ;
UserCode () ; /* Execute the user code to be benchmarked */
OS_Timing_End(&t) ;
return 0OS_Timing_Getus (&t) ;
}

void Task(void) {
int tLo;
0S_U32 tHi;
char ac[80];
while (1) {
tLo = BenchmarkLoRes () ;
tHi = BenchmarkHiRes () ;
sprintf (ac, "LoRes: %d ms\n", tLo);
0S_SendString(ac) ;
sprintf (ac, "HiRes: %d us\n", tHi);
0S_SendString(ac) ;
}
}

/*~k~k~k~k~k~k***********~k~k~k~k~k~k**********************************
*

* main

*
~k~k~k~k~k~k~k~k***********~k~k~k~k~k~k*********************************/

void main(void) {

0OS_InitKern() ; /* Initialize OS */
0OS_InitHW() ; /* Initialize Hardware for 0S */
/* You need to create at least one task here ! */
OS_CREATETASK (&TCB, "HP Task", Task, 100, Stack);

0S_Start () ; /* Start multitasking */

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



308 CHAPTER 17 Time measurement

The output of the sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



309

17.5 Microsecond precise system time

The following functions return the current system time in micro second resolution.
The function OS_Config_SysTimer() sets up the necessary parameters.

The following functions are not available when the compiler does not support a 64 bit
data type (long long).

17.5.1 API functions

Routine Description

urew
yselL
HSlI
FETTINE

Returns the current system time in usec as a

0S_GetTime_us () 32 bit value. X | X| X[ X
Returns the current system time in usec as a

0S_GetTime_us64 () 64 bit value. This function is not available with | X | X| X | X
all embOS ports.

0S._Config SysTimer () Configures system time parameters. In gen- x| x| x| x

eral called from RTOSInit.c.
Table 17.7: Micro second accurate system time API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



310 CHAPTER 17 Time measurement

17.5.2 OS_GetTime_us()

Description

Returns the current system time in microseconds as a 32 bit value.

Prototype
0S_U32 0OS_GetTime_us () ;

Return value
The execution time in micro seconds as a 32 bit unsigned integer value.
Additional Information

0OS_GetTime_us() returns only correct values if the function OS_Config_SysTimer()
was called at initialization time.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



311

17.5.3 OS_GetTime_us64()

Description

Returns the current system time in micro seconds as a 64 bit value.

Prototype
0S_U6b4 0OS_GetTime_us () ;

Return value
The execution time in micro seconds as a 64 bit unsigned integer value.
Additional Information

OS_GetTime_us64() returns only correct values if the function
0OS_Config_SysTimer() was called at initialization time. This function is not available
with all embOS ports.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



312 CHAPTER 17 Time measurement

17.5.4 OS_Config_SysTimer()

Description

Configures the system time parameters for the functions OS_GetTime_us() and
0S_GetTime_us64(). This function should be called once at initialization time, e.g. in

RTOSInit.c.

Prototype

void 0S_Config SysTimer (const OS_SYSTIMER_CONFIG *pConfig)
Parameter Description

pConfig Pointer to a data structure of type 0S_SYSTIMER_CONFIG

Table 17.8: OS_Config_SysTimer() parameter list

Additional Information

0S_Config_SysTimer() uses the struct 0S_SYSTIMER_CONFIG:

Member Description
TimerFreq Timer frequency in Hz
TickFreg Tick frequency in Hz

0: for hardware timer which counts down
1: for hardware timer which counts up

Pointer to a function which returns the current hardware
timer count value

Pointer to a function which returns if the hardware timer
interrupt pending flag is set
Table 17.9: OS_Config_SysTimer() parameter list

17.5.4.1 pfGetTimerCycles()
Description

IsUpCounter

pfGetTimerCycles

pfGetTimerIntPending

This callback function must be implemented by the user. It returns the current hard-
ware timer count value.

Prototype

unsigned int (*pfGetTimerCycles) (void);

Return value
The current hardware timer count value.

17.5.4.2 pfGetTimerintPending()
Description

This callback function must be implemented by the user. It returns a value unequal to
zero if the hardware timer interrupt pending flag is set.

Prototype

unsigned int (*pfGetTimerIntPending) (void) ;

Return value

It returns zero if the hardware timer interrupt pending flag is not set and any other
value when the pending flag is set.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



313

17.5.4.3 Example

#define OS_FSYS 72000000u // 72 MHz CPU main clock
#define OS_PCLK_TIMER (OS_FSYS) // HW timer runs at CPU speed
#define OS_TICK_FREQ 1000u // 1 KHz => 1 msc per system tick

static unsigned int _0S_GetHWTimer_Cycles(void) {
return HW_TIMER_VALUE_REG;
}

static unsigned int _O0S_GetHWTimer_IntPending(void) {
return HW_TIMER_INT_REG & (luL << PENDING_BIT) ;
}

const OS_SYSTIMER_CONFIG Tick_Config = { OS_PCLK_TIMER,
OS_TICK_FREQ,
0,
_0S_GetHWTimer_Cycles
_0S_GetHWTimer_IntPending };

void OS_InitHW (void) {

0OS_Config_SysTimer (&Tick_Config) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



314 CHAPTER 17 Time measurement

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



315

Chapter 18
MPU - Memory protection

This chapter describes embOS-MPU. embOS-MPU is a separate product which adds
memory protection to embOS.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



316 CHAPTER 18 MPU - Memory protection

18.1 Introduction

Memory protection is a way to control memory access rights, and is a part of most
modern processor architectures and operating systems. The main purpose of memory
protection is to prevent a task from accessing memory that has not been allocated to
it. This prevents a bug or malware within a task from affecting other tasks, or the
operating system itself.

embOS-MPU uses the hardware MPU and additional checks to avoid that a task
affects the remaining system. Even if a bug in one task occurs all other tasks and the
OS continue execution. The task which caused the issue is suspended automatically
and the application is informed via an optional callback function.

Since a hardware MPU is required embOS MPU support is unavailable for some
embOS ports. The MPU support is included in separate embOS ports and is not part
of the general embOS port. The following embOS-MPU ports are currently available:

embOS port Version

embOS-MPU Cortex-M ES V4.20

Table 18.1: embOS-MPU ports

18.1.1 Privilege states

Application tasks which may affect other tasks or the OS itself must not have the
permission to access the whole memory, special function registers or embOS control
structures. Such application code could be e.g. unreliable software from a third party
vendor.

Therefore, those application tasks do not run on the same privilege state like the OS.
The OS runs in privilige state which means that it has full access to all memory,
peripherals and CPU features. Application tasks, on the other hand, run in unprivi-
leged state and have restricted access only to the memory. To access peripherals and
memory from unprivileged tasks, additional API and specific device drivers may be

used.
State Description
Priviliged Full access to memory, peripheral and CPU features
Unoriviliaed Only restricted access to memory, no direct access
P 9 to peripherals, no access to some CPU features

Table 18.2: Privilege states

18.1.2 Code organization

embOS-MPU assumes that the application code is divided into two parts. The first
part runs in privileged state: it initializes the MPU settings and includes the device
driver. It contains critical code and must be verified for full reliability by the responsi-
ble developers. Usually, this code consists of only a few simple functions which may
be located in one single C file.

The second part is the application itself which doesn’t need to or in some cases can’t
be verified for full reliability. As it runs in unprivileged state, it can’t affect the
remaining system. Usually, this code is organized in several C files.

This can e.g. simplify a certification.

Part Description
Task and MPU initialization
Device drivers

2nd part Application code from e.g. third party vendor
Table 18.3: Code organization

1st part

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



317

18.2 Memory Access permissions

All privileged tasks have full access to the whole memory. An unprivileged task, how-
ever, can have access to several memory regions with different access permissions.
Access permissions for RAM and ROM can be used combined, e.g. a ROM region could
be readable and code execution could be allowed. In that case the permission defines
would be used as 0S_MPU_READONLY | OS_MPU_EXECUTION_ALLOWED.

The following memory access permissions exist:

Permission Description
OS_MPU_NOACCESS No access to a memory region
0S_MPU_READONLY Read only access to a memory region
OS_MPU_READWRITE Read and write access to a memory region

Table 18.4: RAM Region access permissions

Permission Description

0S_MPU_EXECUTION_ ALLOWED Code execution is allowed

0S_MPU_EXECUTION_DISALLOWED | Code execution is not allowed
Table 18.5: ROM Region access permissions

18.2.1 Default memory access permissions

A newly created unprivileged task has per default only access to the following mem-

ory regions:
Region Permissions
ROM OS_MPU_READONLY, OS_MPU_EXECUTION_ALLOWED
RAM OS_MPU_READONLY, OS_MPU_EXECUTION_DISALLOWED
Task stack OS_MPU_READWRITE, OS_MPU_EXECUTION_DISALLOWED

Table 18.6: Default task memory access permissions

An unprivileged task can read the whole RAM and ROM. It can execute code in the
ROM only. Write access is restricted to its own task stack.

18.2.2 Interrupts

Interrupts are always privileged and can access the whole memory.

18.2.3 Access to additional memory regions

An unprivileged task can have access to additional memory regions. This could be
necessary e.g when a task needs to write LCD data to a framebuffer in RAM. Using a
device driver could be too inefficient. Additional memory regions can be added with
the API function 0S_MPU_AddRegion ().

It is CPU specific if the region has to be aligned. Pleaser refer to the according CPU/
compiler specific embOS manual for more details.

18.2.4 Access to OS objects

An unprivileged task has no direct write access to embOS objects. It also has per
default no access via embOS API functions.

Access to OS objects can be added with 0s_MPU_SetAllowedObjects (). The object
list must be located in ROM memory.

The OS object must be created in the privileged part of the task.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



318 CHAPTER 18 MPU - Memory protection

18.3 ROM placement of embOS

embOS must be placed in one memory section. embOS-MPU needs this information
to e.g. check that supervisor calls are made from embOS API functions only.

The address and the size of this section must be passed to embOS with
0S_MPU_ConfigMem(). __os_start__ and __os_size__ are linker symbols which are
defined in the linker file.

Example

This example is for the GCC compiler and linker.

Linker file:

__os_load_start_ = ALIGN(__ text_end__ , 4);

.0s ALIGN(__text_end__ , 4) : AT(ALIGN(__text_end__ , 4))
{ __os_start_ = .;

*(.08 .0S.%*)

}

__os_end__ = _ os_start_ + SIZEOF(.o0s);

__oOs_size__ = SIZEOF(.o0s);

__os_load_end_ = _ os_end__ ;

C Code:

void OS_InitHW() {

0S_MPU_ConfigMem(0x08000000u, 0x00100000u, // ROM base addr and size

0x20000000u, 0x00020000u, // RAM base addr and size
___o0s_start__, os_size ); // OS base addr and size

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



319

18.4 Allowed embOS API in unprivileged tasks

Not all embOS API functions are allowed to be called from an unprivileged task. Only
the following API must be called from an unprivileged task:

Allowed embOS API

Task API

0OS_Delay()
OS_Delayuntil()
0OS_Delayus()
0S_GetNumTasks()
OS_GetpCurrentTask()
0OS_GetPriority()
0OS_GetSuspendCnt()
OS_GetTaskID()
0S_GetTaskName()
0S_GetTimeSliceRem()
OS_IsRunning()
0S_IsTask()
OS_Resume()
0OS_Suspend()
OS_TaskIndex2Ptr()
0S_WakeTask()
OS_Yield()

Software timer API
OS_StartTimer()
OS_StopTimer()
OS_RetriggerTimer()
OS_SetTimerPeriod()
OS_GetTimerPeriod()
OS_GetTimerValue()
OS_GetTimerStatus()
OS_GetpCurrentTimer()
OS_TriggerTimer()
OS_StartTimerEx()
OS_StopTimerEx()
OS_RetriggerTimerEx()
OS_SetTimerPeriodEx()
0OS_GetTimerPeriodEx()
0OS_GetTimerValueEx()
0OS_GetTimerStatusEx()
OS_GetpCurrentTimerEx()
OS_TriggerTimerEx()
Resource Semaphore API
0S_Use()
OS_UseTimed()
0OS_Unuse()
0OS_Request()
0S_GetSemaValue()
0OS_GetResourceOwner()
Counting Semaphore API
0S_SignalCSemal()
0S_SignalCSemaMax()

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



320

CHAPTER 18 MPU - Memory protection

Allowed embOS API

0OS_WaitCSema()
0S_CSemaRequest()
0OS_WaitCSemaTimed()
0S_GetCSemaValue()
0S_SetCSemaValue()
Mailbox API
OS_PutMail()
OS_PutMail1()
OS_PutMailCond()
OS_PutMailCond1()
OS_PutMailFront()
OS_PutMailFrontl1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()
0S_GetMail()
0S_GetMaill()
0S_GetMailCond()
0S_GetMailCond1()
0S_GetMailTimed()
0OS_WaitMail()
OS_WaitMailTimed()
0S_PeekMail()
0OS_ClearMB()
0S_GetMessageCnt()
OS_Mail_GetPtr()
0S_Mail_GetPtrCond()
OS_Mail_Purge()
Queue API
0S_Q_Put()
0S_Q_PutBlocked()
0S_Q_PutTimed()
0S_Q_GetPtr()
0S_Q_GetPtrCond()
0S_Q_GetPtrTimed()
0S_Q_Purge()
0S_Q_Clear()
0S_Q_GetMessageCnt()
0S_Q_IsInUse()
0S_Q_GetMessageSize()
0S_Q_PeekPtr()

Task events API
0OS_WaitEvent()
OS_WaitSingleEvent()
OS_WaitEventTimed()
0OS_WaitSingleEventTimed()
0OS_SignalEvent()
OS_GetEventsOccurred()
0OS_ClearEvents()
Event objects API
OS_EVENT_Wait()
OS_EVENT_WaitTimed()

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



321

Allowed embOS API

OS_EVENT_Set()
OS_EVENT_Reset()
OS_EVENT_Pulse()
OS_EVENT_Get()
OS_EVENT_SetResetMode()
OS_EVENT_GetResetMode()
Fixed block size memory pool API
OS_MEMF_Alloc()
OS_MEMF_AllocTimed()
OS_MEMF_Request()
OS_MEMF_Release()
OS_MEMF_FreeBlock()
OS_MEMF_GetNumFreeBlocks()
OS_MEMF_IsInPool()
0OS_MEMF_GetMaxUsed()
OS_MEMF_GetNumBlocks()
OS_MEMF_GetBlockSize()
Stack info API
0OS_GetStackBase()
0OS_GetStacksSize()
0OS_GetStackSpace()
0OS_GetStackUsed()
0S_GetSysStackBase()
0S_GetSysStackSize()
0S_GetSysStackSpace()
0OS_GetSysStackUsed()
0S_GetIntStackBase()
OS_GetIntStackSize()
0OS_GetIntStackSpace()
0OS_GetIntStackUsed()
Timing API

0S_GetTime()
0S_GetTime32()
OS_Timing_Start()
OS_Timing_End()
OS_Timing_Getus()
OS_Timing_GetCycles()
0OS_GetTime_us()
0OS_GetTime_us64()
OS_ConvertCycles2us()
Debug API
0S_SendString()

Info routines API
OS_WAIT_OBJ_GetSize()
OS_WAIT_OBJ_EX_GetSize()
OS_WAIT_LIST_GetSize()
OS_EXTEND_TASK_CONTEXT_GetSize()
OS_TASK_GetSize()
OS_REGS_GetSize()
OS_TICK_HOOK_GetSize()
OS_RSEMA_GetSize()

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



322

UMO01001 User & Reference Guide for embOS

CHAPTER 18

MPU - Memory protection

Allowed embOS API

OS_CSEMA_GetSize()
OS_MAILBOX_GetSize()
0S_Q_GetSize()
OS_MEMF_GetSize()
OS_EVENT_GetSize()
OS_TRACE_ENTRY_GetSize()
OS_TIMER_GetSize()
OS_TIMER_EX_GetSize()
0OS_GetCPU()
0OS_GetLibMode()
OS_GetLibName()
0S_GetModel()
OS_GetVersion()

MPU API1
OS_MPU_GetThreadState()
OS_MPU_CallDeviceDriver()
Low power API
OS_POWER_Usagelnc()
OS_POWER_UsageDec()
OS_POWER_GetMask()

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



323

18.5 Device driver
18.5.1 Concept

An unprivileged task has no access to any peripheral. Thus a device driver is neces-
sary to use peripherals like UART, SPI or port pins.

A device driver consists of two parts, an unprivileged part and a privileged part.
embOS ensures there is only one explicit and safe way to switch from the unprivi-
leged part to the privileged part. The application must call driver functions only in the
unprivileged part. The actual peripheral access is performed in the privileged part
only.

0S_MPU_CallDeviceDriver () is used to call the device driver. The first parameter is
the index of the device driver function. Optional parameters can be passed to the
device driver.

Example

A device driver for a LED should be developed. The LED driver can toggle a LED with
a given index number. The function BSP_Toggle_LED() is the unprivileged part of the
driver. It can be called by the unprivileged application.

typedef struct BSP_LED_PARAM STRUCT {
BSP_LED_DRIVER_API Action;
0S_U32 Index;

} BSP_LED_PARAM;

void BSP_ToggleLED(int Index) {
BSP_LED_PARAM p;
p.Action = BSP_LED_TOGGLE;
p.Index = Index;
0OS_MPU_CallDeviceDriver (Ou, &p);
}

The device driver itself runs in privileged state and accesses the LED port pin.

void BSP_LED_DeviceDriver (void* Param) {
BSP_LED_PARAM* p;
p = (BSP_LED_PARAMY*)Param;
switch (p->Action) {
case BSP_LED_SET:
BSP_SetLED_SVC (p->Index) ;
break;
case BSP_LED_CLR:
BSP_ClrLED_SVC (p->Index) ;
break;
case BSP_LED_TOGGLE:
BSP_ToggleLED_SVC (p->Index) ;
break;
default:
break;
}
}

All device driver addresses are stored in one const list which is passed to embOS-
MPU with 0S_MPU_SetDeviceDriverList ().

static const OS_MPU_DEVICE_DRIVER_FUNC _DeviceDriverList[] =
{ BSP_LED_ DeviceDriver,
NULL }; // Last item must be NULL

void BSP_Init (void) {
0OS_MPU_SetDeviceDriverList (_DeviceDriverList) ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



324 CHAPTER 18 MPU - Memory protection

18.6 API functions

(=

oS

o

< |2

Routine Description 0 <

e

]

(1]
0S_MPU_Enable () Enables embOS-MPU X
0S_MPU_ConfigMem/() Configures RAM/ROM and OS regions X
0S_MPU_SetAllowedObjects () Sets a list of allowed OS objects X
0S_MPU_AddRegion () Adds an additonal memory region X
0S_MPU_SetErrorCallback() Application error callback function X
0S_MPU_SwitchToUnprivState ()| Switches to unprivileged state X
0S_MPU_SetDeviceDriverList () | Sets the device driver list X

0S_MPU_CallDeviceDriver () Calls a device driver X

0S_MPU_GetThreadState () Returns the privilege state XX
0S_MPU_ExtendTaskContext () Extends the context for MPU registers X

Table 18.7: embOS-MPU API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



325

18.6.1 OS_MPU_Enable()

Description
Enables embOS-MPU.

Prototype
void OS_MPU_Enable (void) ;

Additional Information

This function must be called before any embOS-MPU related function is used or any
task is created.

Example

void main(void) {
OS_MPU_Enable () ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



326 CHAPTER 18 MPU - Memory protection

18.6.2 OS_MPU_EnableEx()

Description
Enables embOS-MPU and sets the MPU API list.

Prototype

void OS_MPU_EnableEx (const OS_MPU_API_LIST* pAPIList);
Parameter Description

PAPIList Pointer to the MPU API list

Table 18.8: OS_MPU_EnableEx() parameter list

Additional Information

This function must be called before any embOS-MPU related function is used or any
task is created.

Example

void main (void) {
0OS_MPU_EnableEx (&0S_ARMv7M_MPU_APT) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



327

18.6.3 OS_MPU_ConfigMem()

Description
Configures the device memory regions.

Prototype

void OS_MPU_ConfigMem(0OS_U32 ROM_BaseAddr,
0S_U32 ROM_Size,
0S_U32 RAM_BaseAddr,
0S_U32 RAM_Size,
0S_U32 0OS_BaseAddr,
0S_U32 0S_Size);

Parameter Description
ROM_BaseAddr ROM base address
ROM_Size ROM size
RAM_BaseAddr RAM base address
RAM_Size RAM size
0S_BaseAddr embOS ROM region base address
0S_Size embOS ROM region size

Table 18.9: OS_MPU_ConfigMem() parameter list

Additional Information
This function must be called before any task is created.
Example

void main(void) {
0S_MPU_ConfigMem (0x08000000u,
0x00100000u,
0x20000000u,
0x00020000u,
__os_start__,
__os_size_ );

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



328 CHAPTER 18 MPU - Memory protection

18.6.4 OS_MPU_SetAllowedObijects()

Description

Sets a task specific list of objects to which the task has access via embOS API func-
tions.

Prototype
void OS_MPU_SetAllowedObjects (0OS_TASK* pTask, const OS_MPU_OBJ* pObjList);

Parameter Description
pTask Pointer to task control block
pObjList Pointer to list of allowed objects

Table 18.10: OS_MPU_SetAllowedObjects() parameter list

Additional Information

Per default a task has neither direct nor indirect write access via embOS API func-
tions to any embOS object like a task control block. Even if the object is in the list of
allowed objects a direct write access to a control structure is not possible. But if an
object is in the list the task can access the object via embOS API functions. This can
be e.g. the own task control block, a mailbox control structure which is mutual used
by different taks or even the task control block of another task. It is the developer
reponsibility to only add objects which are necessary for the unprivileged task.

The list is NULL terminated which means the last entry must always be:

{NULL, OS_MPU_OBJTYPE_INVALID}.

The following object types exists:

Object type

OS_MPU_OBJTYPE_TASK
OS_MPU_OBJTYPE_RSEMA
OS_MPU_OBIJTYPE_RCEMA
OS_MPU_OBJTYPE_EVENT
OS_MPU_OBJTYPE_QUEUE
OS_MPU_OBJTYPE_MAILBOX
OS_MPU_OBJTYPE_SWTIMER
OS_MPU_OBJTYPE_MEMF

OS_MPU_OBJTYPE_TIMING
Table 18.11: embOS-MPU object types

Example

static const OS_MPU_OBJ _ObjList[] = {{(0S_U32)&TCBHP, OS_MPU_OBJTYPE_TASK},
{ (0OS_U32)NULL, OS_MPU_OBJTYPE_INVALID}};

static void _Unpriv(void) {
0S_SetTaskName (&TCBHP, "Segger") ;
while (1) {
0S_Delay (10) ;
}
}

static void HPTask (void) {
0S_MPU_SetAllowedObjects (&TCBHP, _ObjList);
0S_MPU_SwitchToUnprivState() ;
_Unpriv();

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



18.6.5 OS_MPU_AddRegion()

Description

Adds a memory region to which the task has access.

Prototype

void OS_MPU_AddRegion (0OS_TASK* pTask,

0S_U32 BaseAddr,
0S_U32 Size,

329

0S_U32 Permissions) ;
Parameter Description
pTask Pointer to a task control block
BaseAddr Region base address
Size Region size
Permissions Access permissions

Table 18.12: OS_MPU_AddRegion() parameter list

Additional Information

A memory region can have the following access permissions:

Permission Description

OS_MPU_NOACCESS
OS_MPU_READONLY
OS_MPU_READWRITE
0S_MPU_EXECUTION_ALLOWED Code execution is allowed
0S_MPU_EXECUTION_DISALLOWED | Code execution is not allowed

No access to memory region
Read only access to memory region
Read and write access to memory region

Table 18.13: Region access permissions

Per default an unprivileged task has only access to the following memory regions:

Region Permission

ROM
RAM
Task stack

Read only access for complete RAM
Read and write access to the task stack

Read and execution access for complete ROM

Table 18.14: Default task memory access permissions

This function can be used if a task needs access to additional RAM regions. This RAM
region can be e.g. a LCD frame buffer or a queue data buffer.
It is CPU specific if the region has to be aligned. Pleaser refer to the according CPU/
compiler specific embOS manual for more details.

Example

static void HPTask(void) {
0S_MPU_AddRegion (&TCBHP, (0S_U32)MyQBuffer, 512, OS_MPU_READWRITE) ;

}

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



330 CHAPTER 18 MPU - Memory protection

18.6.6 OS_MPU_SetErrorCallback()

Description

Sets a user callback function which is called when the MPU detects an error.

Prototype

void OS_MPU_SetErrorCallback (OS_MPU_ERROR_CALLBACK pFunc) ;
Parameter Description

pFunc Pointer callback function

Table 18.15: OS_MPU_SetErrorCallback() parameter list

Additional Information

embOS suspends a task when it detects an invalid access. The internal error function
0S_MPU_Error () calls the user callback function in order to inform the application.
The application can e.g. turn on an error LED or write the fault into a log file. The
callback function is called with the following parameter:

Parameter type Description
Pointer to task control block of the unprivileged task which
caused the MPU error

0OS_MPU_ERRORCODE Error code which describes the cause for the MPU error
Table 18.16: Callback function parameter list

OS_TASK*

Example

static void _ErrorCallback (OS_TASK* pTask, OS_MPU_ERRORCODE ErrorCode) {
printf ("%s has been stopped due to error %d\n",
pTask->Name,
ErrorCode) ;

}

int main(void) {
0OS_MPU_SetErrorCallback (& ErrorCallback) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



18.6.6.1 embOS-MPU error codes

331

Value

Define

Explanation

OS_MPU_ERROR_INVALID_RANGE

The object adress is within an
allowed task region. This is not
allowed. This can e.g. happen when
the object was placed on the task
stack.

OS_MPU_ERROR_INVALID_OBJECT

The unprivileged task is not allowed
to access this object.

O0S_MPU_ERROR_SVC

The supervisor call was not made
within an embOS API function. This
is not allowed.

O0S_MPU_ERROR_MEMFAULT

An illegal memory access was per-
formed. A unprivileged task tried to
write memory without having the
access permission.

OS_MPU_ERROR_HARDFAULT

Indicates that the task caused a
hardfault.

OS_MPU_ERROR_INVALID_API

The unprivileged task tried to call an
embOS API function which is not
valid for an unprivileged task. For
example unprivileged tasks must not
call OS_EnterRegion().

Table 18.17: embOS-MPU error codes

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



332 CHAPTER 18 MPU - Memory protection

18.6.7 OS_MPU_SwitchToUnprivState()

Description
Switches a task to unprivileged state.

Prototype
void OS_MPU_SwitchToUnprivState (void)

Additional Information

The task code must be splitted into two parts. The first part runs in privileged state
and initialzes the embOS MPU settings. The second part runs in unprivileged state
and is called after the privileged part switched to the unprivileged state with
OS_MPU_SwitchToUnprivState().

Example

static void _Unsecure(void) {
while (1) {
0S_Delay (10) ;
}
}

static void HPTask (void) {

//

// Initialization, e.g. add memory regions
//

0S_MPU_SwitchToUnprivState() ;

_Unsecure() ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



333

18.6.8 OS_MPU_SetDeviceDriverList()

Description

0S_MPU_SetDeviceDriverList () sets the device driver list.

Prototype

void OS_MPU_SetDeviceDriverList (const OS_MPU_DEVICE_DRIVER_FUNC* pList)
Parameter Description

pList Pointer to device driver function address list

Table 18.18: OS_MPU_SetDeviceDriverList() parameter list

Additional Information

All device driver function adresses are stored in one list. The last item must be NULL.
A device driver is called with the according index to this list.

Example

static const OS_MPU_DEVICE_DRIVER_FUNC _DeviceDriverList[] =
{ BSP_LED_ DeviceDriver,
NULL }; // Last item must be NULL

void BSP_Init (void) {

0S_MPU_SetDeviceDriverList (_DeviceDriverList) ;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



334 CHAPTER 18 MPU - Memory protection

18.6.9 OS_MPU_CallDeviceDriver()

Description

OS_MPU_CallDeviceDriver () calls the device driver.

Prototype

void OS_MPU_CallDeviceDriver (0S_U32 Index, void* Param)
Parameter Description

Index Device driver function index

Param Device driver parameter

Table 18.19: OS_MPU_CallDeviceDriver() parameter list

Additional Information

Unprivileged tasks have no direct access to any peripherals. A device driver is instead
necessary. 0S_MPU_CallDeviceDriver () is used to let embOS call the device driver
which then runs in privileged state.

Optional parameter can be passed to the driver function.

Example

typedef struct BSP_LED_PARAM STRUCT {
BSP_LED_DRIVER_API Action;
0S_U32 Index;

} BSP_LED_PARAM;

static const OS_MPU_DEVICE_DRIVER_FUNC _DeviceDriverList[] =
{ BSP_LED_DeviceDriver,
NULL }; // Last item must be NULL

void BSP_LED_ DeviceDriver (void* Param) {
BSP_LED_PARAM* p;
p = (BSP_LED_PARAMY*)Param;
switch (p->Action) {
case BSP_LED_SET:
BSP_SetLED_SVC (p->Index) ;
break;
case BSP_LED_CLR:
BSP_ClrLED_SVC (p->Index) ;
break;
case BSP_LED_TOGGLE:
BSP_ToggleLED_SVC (p->Index) ;
break;
default:
break;
}
}

void BSP_ToggleLED(int Index) {
BSP_LED_PARAM p;
p.Action = BSP_LED_TOGGLE;
p.Index = Index;
OS_MPU_CallDeviceDriver (Ou, &p);
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



335

18.6.10 OS_MPU_GetThreadState()

Description
Returns the current privilege task state.

Prototype
OS_MPU_THREAD_STATE OS_MPU_GetThreadState (void)

Return value

The current privilege task state which can be 0s_MPU_THREAD_STATE_PRIVILEGED Or
OS_MPU_THREAD_STATE_UNPRIVILEGED.

Additional Information

A new created task has the task state 0S_MPU_THREAD_ STATE_PRIVILEGED.

It can be set to 0S_MPU_THREAD_ STATE_UNPRIVILEGED with the API function
OS_MPU_SwitchToUnprivState() . A task can never set itself back to the privileged
state 0S_MPU_THREAD_STATE_PRIVILEGED.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



336

CHAPTER 18 MPU - Memory protection

18.6.11 OS_MPU_ExtendTaskContext()

Description
Extends the task context for the MPU registers.

Prototype
void OS_MPU_ExtendTaskContext (void)

Additional Information

It is device dependent how many MPU regions are available. This function makes it
possible to use all MPU regions for every single task. Otherwise the tasks would have
to share the MPU regions. To do so the MPU register must be saved and restored with
every context switch.

This function allows the user to extend the task context for the MPU registers.
A major advanage is that the task extension is task-specific. This means that the
additional MPU register needs to be saved only by tasks that actually use these reg-
isters. The advantage is that the task switching time of other tasks is not affected.
The same is true for the required stack space: Additional stack space is required
only for the tasks which actually save the additional MPU registers.

The task context can be extended only once per task. The function must not be called
multiple times for one task.

0S_MPU_ExtendTaskContext () is not available in the XR libraries.
0S_SetDefaultContextExtension() can be used to automatically add MPU register
to the task context of every newly created task.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



337

Chapter 19
System tick

This chapter explains the concept of the system tick, generated by a hardware timer
and all options available for it.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



338 CHAPTER 19 System tick

19.1 Introduction

Typically a hardware timer generates periodic interrupts used as a time base for the
0S. The interrupt service routine then calls one of the tick handlers of the OS.
embOS offers tick handlers with different functionality as well as a way to call a hook
function from within the system tick handler.

Generating timer interrupts

The hardware timer is normally initialized in the os_1nitHw () function which is deliv-
ered with the BSP. The BSP also includes the interrupt handler which is called by the
hardware timer interrupt. This interrupt handler must call one of the embOS system
tick handler functions which are explained in this chapter.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



19.2 Tick handler

339

The interrupt service routine used as time base needs to call a tick handler. There are
different tick handlers available; one of these need to be called. The reason why
there are different tick handlers is simple: They differ in capabilities, code size and
execution speed. Most applications use the standard tick handler 0s_TICK_Handle(),
which increments the tick count by one each time it is called. This tick handler is
small and efficient, but it cannot handle situations where the interrupt rate differs-
from the tick rate. 0Ss_TICK_HandleEx () is capable of handling even fractional inter-
rupt rates, such as 1.6 interrupts per tick.

19.2.1 API functions

3 o= 3
Routine Description o B @3
5 = P o
OS_TICK_Handle () Standard embOS tick handler. X
OS_TICK_HandleEx () Extended embOS tick handler. X
OS_TICK_HandleNoHook () | embQOS tick handler without hook functionality. X
OS_TICK_Config() Configures the extended embOS tick handler. | X|X

Table 19.1: API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



340 CHAPTER 19 System tick

19.2.1.1 OS_TICK_Handle()
Description

The default embOS timer tick handler, called by the hardware timer interrupt handler.

Prototype
void OS_TICK_Handle ( void );

Additional Information

The embOS tick handler must not be called by the application, it must be called from
an interrupt handler.

OS_EnterInterrupt () Or OS_EnterNestableInterrupt () must be called before call-
ing the embOS tick handler

Example

/* Example of a timer interrupt handler */

/*~k*~k*~k*~k**********~k****************~k*~k*~k*~k***************************
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
OS_EnterNestableInterrupt () ;
OS_TICK_Handle() ;
0S_LeaveNestableInterrupt () ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



341

19.2.1.2 OS_TICK_HandleEXx()
Description

An alternate tick handler which may be used instead of the standard tick handler. It
can be used in situations where the basic timer interrupt interval (tick) is a multiple
of one ms and the time values used as parameter for delays still should use one ms
as the time base.

Prototype
void OS_TICK_ HandleEx ( void );

Additional Information

The embOS tick handler must not be called by the application, it must be called from
an interrupt handler. 0S_EnterInterrupt () Or OS_EnterNestableInterrupt () must
be called before calling the embQOS tick handler. Refer to OS_TICK_ Config() on
page 343 about how to configure 0S_TICK_HandleEx ().

Example

/* Example of a timer interrupt handler using 0S_HandleTickEx */

/***********~k*~k*~k************~k*~k*~k********~k***************************
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
OS_EnterNestableInterrupt () ;
OS_TICK_HandleEx() ;
0S_LeaveNestableInterrupt () ;
}

Assuming the hardware timer runs at a frequency of 500Hz, thus interrupting the
system every 2ms, the embOS tick handler configuration function 0S_TICK_Config()
should be called as demonstrated in the Example section of 0S_TICK_Config(). This
should be done during os_1InitHw (), before the embOS timer is started.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



342 CHAPTER 19 System tick

19.2.1.3 OS_TICK_HandleNoHook()
Description

Speed-optimized embOS timer tick handler without hook function which is typically
called by the hardware timer interrupt handler.

Prototype
void OS_TICK_HandleNoHook ( wvoid );

Additional Information

The embOS tick handler must not be called by the application, it is only called from
an interrupt handler.

OS_EnterInterrupt () Or OS_EnterNestableInterrupt () must be called before call-
ing the embOS tick handler

Example

/* Example of a timer interrupt handler */

/*‘k***‘k*‘k**********‘k***‘k*‘k**********‘k*~k*‘k*‘k********‘k***‘k*‘k**********‘k*
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
OS_EnterNestableInterrupt () ;
OS_TICK_HandleNoHook () ;
0S_LeaveNestableInterrupt () ;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



343

19.2.1.4 OS_TICK_Config()
Description

Configures the tick to interrupt ratio. The “normal” tick handler 0s_TICK_Handle()
assumes a 1:1 ratio, meaning one interrupt increments the tick count (0s_Time) by
one. For other ratios, 0S_TICK_HandleEx() needs to be used; the ratio is defined by
calling the 0S_TICK_Config().

Prototype

void OS_TICK_ Config ( unsigned FractPerInt, unsigned FractPerTick );
Parameter Description

FractPerInt Number of Fractions per interrupt

FractPerTick Number of Fractions per tick

Table 19.2: OS_TICK_Config() parameter list

Additional Information
FractPerInt/FractPerTick = Time between two tick interrupts / Time for one tick

Note that fractional values are supported, such as tick is 1 ms, where an interrupt is
generated every 1.6ms. This means that FractPerInt and FractPerTick are:

FractPerInt = 16;
FractPerTick = 10;
or

FractPerInt = 8;
FractPerTick = 5;

Examples

OS_TICK_Config
OS_TICK_Config

(2, 1 // 500 Hz interrupts (2 ms), 1 ms tick

(8, 5
OS_TICK_Config(l, 1

(1, 1

(1, 1

// Interrupts once per 1.6 ms, 1 ms tick

) ; // 10 kHz interrupts (0.1 ms), 1 ms tick
OS_TICK_Config ; // 10 kHz interrupts (0.1 ms), 0.1 ms tick
OS_TICK_Config 0); // 10 kHz interrupts (0.1 ms), 1 us tick

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



344 CHAPTER 19 System tick

19.3 Hooking into the system tick
There are various situations in which it can be desirable to call a function from the
tick handler. Some examples are:

e Watchdog update
e Periodic status check
e Periodic I/O update

The same functionality can be achieved with a high-priority task or a software timer
with one-tick period time.

Advantage of using a hook function

Using a hook function is much faster than performing a task switch or activating a
software timer because the hook function is directly called from the embOS timer
interrupt handler and does not cause a context switch.

19.3.1 API functions

3 o= 3

Routine Description o B3

5 |x 9 o
OS_TICK_AddHook () Adds a tick hook handler. X | X
0OS_TICK_RemoveHook () Removes a tick hook handler. X| X

Table 19.3: API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



345

19.3.1.1 OS_TICK_AddHook()

Description
Adds a tick hook handler.

Prototype
void OS_TICK_AddHook ( OS_TICK_HOOK * pHook,
OS_TICK_HOOK_ROUTINE * pfUser );
Parameter Description
pHook Pointer to a structure of 0S_TICK_HOOK.
pfUser Pointer to an 0S_TICK_HOOK_ROUTINE function.

Table 19.4: OS_TICK_AddHook() parameter list

Additional Information

The hook function is called directly from the interrupt handler.
The function therefore should execute as quickly as possible.
The function called by the tick hook must not re-enable interrupts.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



346 CHAPTER 19 System tick

19.3.1.2 OS_TICK_RemoveHook()

Description

Removes a tick hook handler.

Prototype

void OS_TICK_RemoveHook ( const OS_TICK_HOOK * pHook );
Parameter Description

pHook Pointer to a structure of 0S_TICK_HOOK.

Table 19.5: OS_TICK_RemoveHook() parameter list

Additional Information

The function may be called to dynamically remove a tick hook function installed by a
call to 0S_TICK_AddHook ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



347

19.4 Tickless support

The embOS tickless support stops the periodic system tick interrupt during idle peri-
ods. Idle periods are periods of time when there are no tasks and no software timer
ready for execution. Stopping the system tick allows the microcontroller to remain in
a deep power saving state until an interrupt occurs.

embOS tickless support comes with the three functions 0S_GetNumIdleTicks (),
0S_AdjustTime () and 0S_StartTicklessMode (). They can be used to add tickless
support to any embOS start project.

19.4.1 0OS_ldle()

In order to use the tickless support the 0s_1dle() function needs to be modified. The
default os_1Idle() function is just an endless loop which starts a low power mode:

void 0S_Idle(void) {
while (1) {
_EnterLowPowerMode () ;
}
}

The tickless 0s_1dle() function depends on the hardware:

void 0S_Idle(void) {
OS_TIME IdleTicks;
0S_DI();
IdleTicks = OS_GetNumIdleTicks();
if (IdleTicks > 1) {
if ((0S_U32)IdleTicks > TIMER1 MAX TICKS) {
IdleTicks = TIMER1_MAX_TICKS;
}
OS_StartTicklessMode (IdleTicks, &_EndTicklessMode) ;
_SetHWTimer (IdleTicks) ;
}
OS_EI();
while (1) {
_EnterLowPowerMode () ;
}
}

The following description explains the tickless 0s_1dle() function step by step:

void 0S_Idle(void) {
OS_TIME IdleTicks;
OS_DI():;

Interrupts are disabled to avoid a timer interrupt.

IdleTicks = OS_GetNumIdleTicks();
if (IdleTicks > 1) {

The o0s_1dle() function reads the idle ticks with 0S_GetNumIdleTicks (). The tick-
less mode is only used when there is more than one idle tick. If there are zero or one
idle ticks the scheduler is executed at the next system tick hence it makes no sense
to enter the tickless mode.

if ((0S_U32)IdleTicks > TIMER MAX TICKS) ({
IdleTicks = TIMER MAX TICKS;
}

If it is not possible due to hardware timer limitations to generate the timer interrupt
at the specified time the idle ticks can be reduced to any lower value. For example
0S_GetNumIdleTicks () returns 200 idle ticks but the hardware timer is limited to
100 ticks. The variable IdleTicks will be set to 100 ticks and the system will wake up
after 100 ticks. os_1dle() will be again executed and 0S_GetNumIdleTicks ()
returns the remaining 100 idle ticks. This means that the system wakes up two times
before the complete 200 idle ticks are expired.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



348

CHAPTER 19 System tick

if (IdleTicks > 1) {

OS_StartTicklessMode (IdleTicks, &_EndTicklessMode) ;
_SetHWTimer (IdleTicks) ;
}

0S_StartTicklessMode () sets the idle ticks and the callback function. The idle ticks
information is later used in the callback function. The callback function is described
below. _setHwTimer () is a hardware-dependent function that reprograms the hard-
ware timer to generate a system tick interrupt at the time defined by idle ticks.

OS_EI():;
while (1) {
_EnterLowPowerMode() ;
}
}

Interrupts are reenabled and the CPU continually enters low power mode.
_EnterLowPowerMode () is a hardware-dependent function that activates the low
power mode.

19.4.2 Callback Function

The callback function calculates how long the processor slept in low power mode and
corrects the system time accordingly.

static void _EndTicklessMode (void) {
0S_U32 NumTicks;

if (OS_Global.TicklessExpired) {
0S_AdjustTime (0OS_Global.TicklessFactor) ;
} else {
NumTicks = _GetLowPowerTicks () ;
0S_AdjustTime (NumTicks) ;

}
_SetHWTimer (OS_TIMER_RELOAD) ;

}

The following description explains the callback function step by step:

static void _EndTicklessMode (void) {
0S_U32 NumTicks;

if (0OS_Global.TicklessExpired) {
0S_AdjustTime (0OS_Global.TicklessFactor) ;

If the hardware timer expired and the system tick interrupt was executed the flag
0S_Global.TicklessExpired is set. This can be used to determine if the system
slept in low power mode for the entire idle time. If this flag is set we can use the
value in 0S_Global.TicklessFactor to adjust the system time.

} else {
NumTicks = _GetLowPowerTicks () ;
0S_AdjustTime (NumTicks) ;

}

_GetLowPowerTicks () is a hardware-dependent function which returns the expired
idle ticks if the low power mode was interrupted by any other interrupt than the sys-
tem tick. We use that value to adjust the system time.

_SetHWTimer (OS_TIMER_RELOAD) ;

_SetHWTimer () is a hardware-dependent function which reprograms the hardware
timer to its default value for one system tick.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



349

19.4.3 API functions

Routine Description

Retrieves the number of embOS timer ticks until the next
time-scheduled action will be started.

0S_GetNumIdleTicks ()

0S_AdjustTime () Adjusts the embOS internal time.
0S_StartTicklessMode () | Starts the tickless mode.
0S_StopTicklessMode () Stops the tickless mode.

Table 19.6: API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



350 CHAPTER 19 System tick

19.4.3.1 OS_GetNumldleTicks()
Description

Retrieves the number of embOS timer ticks until the next time-scheduled action will
be started.

Prototype

OS_TIME 0OS_GetNumIdleTicks (void)

Return value
The number of ticks until the next time-scheduled action.
Additional Information

The function may be useful when the embOS timer and CPU shall be halted by the
application and restarted after the idle time to save power.

This works when the application has its own time base and a special interrupt that
can wake up the CPU.

When the embOS timer is started again the internal time must be adjusted to guar-
antee time-scheduled actions to be executed. This can be done by a call of
0S_AdjustTime ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



351

19.4.3.2 OS_AdjustTime()
Description

This function adjusts the embOS internal time by adding a quantum to the internal
time variable.

Prototype
void OS_AdjustTicks (OS_TIME Time)

Parameter Description

The amount of time which should be added to the embOS internal
time variable.
Table 19.7: OS_AdjsutTime() parameter list

Time

Additional Information

The function may be useful when the embOS timer was halted by the application for
a certain known interval of time.

When the embOS timer is started again the internal time must be adjusted to guar-
antee time-scheduled actions to be executed.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



352 CHAPTER 19 System tick

19.4.3.3 OS_StartTicklessMode()

Description

This function may be used to start the tickless mode.

Prototype

volid OS_StartTicklessMode (OS_TIME Time, voidRoutine *Callback)
Parameter Description

Time Time in ticks which will be spent in low power mode.

Callback Callback function to stop the tickless mode.

Table 19.8: OS_StartTicklessMode() parameter list

Additional Information

This function starts the tickless mode. It must be called in OS_Idle() before the CPU
enters a low power mode.

The callback function must stop the tickless mode. It must calculate how many sys-
tem ticks are actually spent in lower power mode and adjust the system time by call-
ing OS_AdjustTime(). It also must reset the system tick timer to it's default tick
period.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



353

19.4.3.4 OS_StopTicklessMode()
Description
This function may be used to stop the tickless mode.

Prototype
void OS_StopTicklessMode (void)

Additional Information

This function stops the tickless mode. It calls the callback function registered when
tickless mode was enabled.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



354

CHAPTER 19 System tick

19.4.4 Frequently Asked Questions

: Where can I find more information about tickless support for a specific CPU?

Segger provides Application Notes for tickless support for different CPUs.

: Can I use embOS without tickless support?

Yes, you can use embOS without tickless support. There is no change required
in your project.

: What hardware-dependent functions must be implemented and where?

0OS_Idle() must be modified and the callback function must be implemented.
OS_Idle() is part of the RTOSInit.c file. We suggest to implement the callback
function in the same file.

: What triggers the callback function?
: The callback function is executed once from the scheduler when the tickless

operation ends and normal operation resumes.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



355

Chapter 20

Multi-core support

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



356 CHAPTER 20 Multi-core support

20.1 Introduction

embOS can be utilized on multi-core processors by running seperate embOS
instances on each individual core. For synchronization purposes and in order to
exchange data between the cores, embOS includes a comprehensive spinlock API
which can be used to control access to shared memory, peripherals, etc.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



357

20.2 Spinlocks

Spinlocks constitute a general purpose locking mechanism in which any process try-
ing to acquire the lock is caused to actively wait until the lock becomes available. To
do so, the process trying to acquire the lock remains active and repeatedly checks
the availability of the lock in a loop. Effectively, the process will “spin” until it
acquires the lock.

Once acquired by a process, spinlocks are usually held by that process until they are
explicitly released. If held by one process for longer durations, spinlocks may
severely impact the runtime behavior of other processes trying to acquire the same
spinlock. Therefore, spinlocks should be held by one process for short periods of time
only.

20.2.1 Usage of spinlocks with embOS

embOS spinlocks are intended for inter-core synchronization and communication.
They are not intendend for synchronization of individual tasks running on the same
core, on which semaphores, queues and mailboxes should be used instead.

However, multitasking still has to be taken into consideration when using embOS
spinlocks. Specifically, an embOS task holding a spinlock should not be preempted,
for this would prevent that task from releasing the spinlock as fast as possible, which
may in return impact the runtime behavior of other cores attempting to acquire the
spinlock. Declaration of critical regions therefore is explicitly recommended while
holding spinlocks.

embOS spinlocks are usually implemented using hardware instructions specific to one
architecture, but a portable software implementation is provided in addition. If
appropiate hardware instructions are unavailable for the specific architecture in use,
the software implementation is provided exclusively.

It is important to use matching implementations on each core of the multi-
core processor that shall access the same spinlock.

For example, a core supporting a hardware implementation may use that implemen-
tation to access a spinlock that is shared with another core that supports the same
hardware implementation. At the same time, that core may use the software imple-
mentation to access a different spinlock that is shared with a different core that does
not support the same hardware implementation. However, in case all three cores in
this example should share the same spinlock, each of them has to use the software
implementation.

To know the spinlock’s location in memory, each core’s application must declare the
appropiate OS_SPINLOCK variable (or OS_SPINLOCK_SW, respectively) at an identi-
cal memory address. Initialization of the spinlock, however, must be performed by
one core only.

Example of using spinlocks

Two cores of a multi-core processor shall access an hardware peripheral, e.g. a LC
display. To avoid situations in which both cores access the LCD simultaneously,
access must be restricted through usage of a spinlock: Every time the LCD is used by
one core, it must first claim the spinlock through the respective embOS API call.
After the LCD has been written to, the spinlock is released by another embOS API
call.

Data exchange between cores can be implemented analogously, e.g. through decla-
ration of a buffer in shared memory: Here, every time a core shall write data to the
buffer, it must acquire the spinlock first. After the data has been written to the buffer,
the spinlock is released. This ensures that neither core can interfere with the writing
of data by the other core.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



358 CHAPTER 20 Multi-core support

20.2.2 API functions

API routine Description

urew
jsel
dSlI
FETTINN

Creates a hardware-specific spinlock.

OS_SPINLOCK_Create () This function is unavailable for some archi- XX
tectures.
Acquires a hardware-specific spinlock. Busy

0S. SPINLOCK Lock () wa_ltlng un_tll t_he splnlc_)ck becomes avallab_le. x| x
This function is unavailable for some archi-
tectures.
Releases a hardware-specific spinlock.

OS_SPINLOCK_Unlock () This function is unavailable for some archi- XX
tectures.

OS_SPINLOCK_SW_Create() | Creates a software-implementation spinlock. | X| X
Acquires a software-implementation spinlock.
0S_SPINLOCK_SW_Lock () Busy waiting until the spinlock becomes X| X
available.
OS_SPINLOCK_SW_Unlock () | Releases a software-implementation spinlock.| X | X
Table 20.1: Spinlock API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



359

20.2.2.1 OS_SPINLOCK_Create()

Description
OS_SPINLOCK_Create () creates a hardware-specific spinlock.

This function is unavailable for architectures that do not support an appropiate
instruction set.

Prototype
void OS_SPINLOCK_Create (0S_SPINLOCK* pSpinlock) ;

Parameter Description

Pointer to a variable of type 0S_sSPINLOCK reserved for the manage-
ment of the spinlock. The variable must reside in shared memory.
Table 20.2: OS_SPINLOCK_Create() parameter list

pSpinlock

Additional Information

After creation, the spinlock is not locked.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



360 CHAPTER 20 Multi-core support

Example
e Core 0:

#include "RTOS.h"

static OS_STACKPTR int Stack[128]; /* Task stack */
static OS_TASK TCB; /* Task-control-block */
static OS_SPINLOCK MySpinlock @ ".shared_mem";

static void Task (void) {
while (1) {

OS_EnterRegion() ; // Inhibit preemptive task switches
0OS_SPINLOCK_Lock (&MySpinlock) ; // Acquire spinlock

//

// Perform critical operation

//

0OS_SPINLOCK_Unlock (&MySpinlock); // Release spinlock

0OS_LeaveRegion () ; // Re-allow preemptive task switches

}
}

/*********************************************************************
*

* main ()

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* Initialize 0OS */
OS_InitHW() ; /* Initialize Hardware for OS */
OS_SPINLOCK_Create (&MySpinlock); /* Initialize Spinlock */
/* You need to create at least one task before calling OS_Start() */
OS_CREATETASK (&TCB, "Task", Task, 100, Stack);
0S_Start () ; /* Start multitasking */
return 0;

}

e Core 1:

#include "RTOS.h"

static OS_STACKPTR int Stack[128]; /* Task stack */
static OS_TASK TCB; /* Task-control-block */
static OS_SPINLOCK MySpinlock @ ".shared_mem";

static void Task (void) {
while (1) {

OS_EnterRegion() ; // Inhibit preemptive task switches
0S_SPINLOCK_Lock (&MySpinlock) ; // Acquire spinlock

//

// Perform critical operation

//

OS_SPINLOCK_Unlock (&MySpinlock); // Release spinlock

0S_LeaveRegion () ; // Re-allow preemptive task switches

}
}

/*********************************************************************
*

* main ()

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0S_InitKern(); /* Initialize 0S8 */
OS_InitHW() ; /* Initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */
OS_CREATETASK (&TCB, "Task", Task, 100, Stack);
0S_Start () ; /* Start multitasking */
return 0;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



361

20.2.2.2 0S_SPINLOCK_Lock()

Description

OS_SPINLOCK_Lock () acquires a hardware-specific spinlock. If the spinlock is
unavailable, the calling task will not be blocked, but will actively wait until the spin-
lock becomes available.

This function is unavailable for architectures that do not support an appropiate
instruction set.

A task that has acquired a spinlock must not call os_SPINLOCK_Lock() for that
spinlock again. The spinlock must first be released by a call to
OS_SPINLOCK_Unlock().

Prototype

void OS_SPINLOCK_Lock (0OS_SPINLOCK* pSpinlock) ;

Parameter Description

Pointer to a variable of type 0S_sSPINLOCK reserved for the manage-
ment of the spinlock.
Table 20.3: OS_SPINLOCK_Lock() parameter list

pSpinlock

Additional information

The following diagram illustrates how 0S_SPINLOCK_Lock () works

OS_SPINLOCK_Lock()

Spinlock
available?

Mark spinlock in use

v

< return )

Example
See Example on page 360.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



362 CHAPTER 20 Multi-core support

20.2.2.3 0S_SPINLOCK_Unlock()

Description
OS_SPINLOCK_Unlock () releases a hardware-specific spinlock.

This function is unavailable for architectures that do not support an appropiate
instruction set.

Prototype
void OS_SPINLOCK_Unlock (0OS_SPINLOCK* pSpinlock) ;

Parameter Description

Pointer to a variable of type 0S_sSPINLOCK reserved for the manage-
ment of the spinlock.
Table 20.4: OS_SPINLOCK_Unlock() parameter list

pSpinlock

Example
See Example on page 360.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



20.2.2.4 OS_SPINLOCK_SW_Create()

Description

363

OS_SPINLOCK_SW_Create() creates a software-implementation spinlock.

Prototype

void OS_SPINLOCK_SW_Create (0OS_SPINLOCK_SW* pSpinlock) ;

Parameter Description
Pointer to a data structure of type 0S_SPINLOCK_sw reserved for the
pSpinlock management of the spinlock. The variable must reside in shared
memory.

Table 20.5: OS_SPINLOCK_SW_Create() parameter list

Additional Information

After creation, the spinlock is not locked.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



364 CHAPTER 20 Multi-core support

Example

e Core0:

#include "RTOS.h"

#define CORE_ID (Ou)

static OS_STACKPTR int Stack[128]; /* Task stack */
static OS_TASK TCB; /* Task-control-block */
static OS_SPINLOCK_SW MySpinlock @ ".shared_mem";

static void Task (void) {
while (1) {

OS_EnterRegion() ; // Inhibit preemptive task switches
0OS_SPINLOCK_SW_Lock (&MySpinlock, CORE_ID) ; // Acquire spinlock
//

// Perform critical operation

//

OS_SPINLOCK_SW_Unlock (&MySpinlock, CORE_ID); // Release spinlock
0OS_LeaveRegion () ; // Re-allow preemptive task switches

}
}

/**********************************************************************
*

* main ()

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0S_InitKern() ; /* Initialize OS */
OS_InitHW() ; /* Initialize Hardware for OS */
OS_SPINLOCK_SW_Create (&MySpinlock); /* Initialize Spinlock */
/* You need to create at least one task before calling OS_Start() */
OS_CREATETASK (&TCB, "Task", Task, 100, Stack);
0S_Start () ; /* Start multitasking */
return 0;

}

e Core 1:

#include "RTOS.h"

#define CORE_ID (1u)

static OS_STACKPTR int Stack[128]; /* Task stack */
static OS_TASK TCB; /* Task-control-block */
static OS_SPINLOCK_SW MySpinlock @ ".shared_mem";

static void Task(void) {
while (1) {

OS_EnterRegion() ; // Inhibit preemptive task switches
OS_SPINLOCK_SW_Lock (&MySpinlock, CORE_ID) ; // Acquire spinlock
//

// Perform critical operation

//

OS_SPINLOCK_SW_Unlock (&MySpinlock, CORE_ID); // Release spinlock
0S_LeaveRegion() ; // Re-allow preemptive task switches

}
}

/‘k‘k‘k‘k‘k‘k‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*******‘k‘k‘k‘k‘k*‘k**‘k**************‘k***********
*

* main ()

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
OS_InitKern() ; /* Initialize 0OS */
OS_InitHW() ; /* Initialize Hardware for OS */
/* You need to create at least one task before calling 0S_Start() */
OS_CREATETASK (&TCB, "Task", Task, 100, Stack);
0S_Start () ; /* Start multitasking */
return O;

}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



365

20.2.2.5 0S_SPINLOCK_SW_Lock()

Description

OS_SPINLOCK_SW_Lock () acquires a software-implementation spinlock. If the spin-
lock is unavailable, the calling task will not be blocked, but will actively wait until the
spinlock becomes available.

A task that has acquired a spinlock must not call os_SPINLOCK_SW Lock() for
that spinlock again. The spinlock must first be released by a call to
OS_SPINLOCK_SW_Unlock().

Prototype

void OS_SPINLOCK_SW_Lock (OS_SPINLOCK_SW* pSpinlock, OS_UINT Id);

Parameter Description

Pointer to a data structure of type 0S_SPINLOCK_sw reserved for the
management of the spinlock.

Unique identifier to specify the core accessing the spinlock. Valid
values are 0 <= 1d < OS_SPINLOCK_MAX_CORES. By default,

Id OS_SPINLOCK_MAX_CORES is defined to 4 and may be changed
when using source code. An embOS debug build calls OS_Error() in
case invalid values are used.

Table 20.6: OS_SPINLOCK_SW_Lock() parameter list

pSpinlock

Additional information

OS_SPINLOCK_SW_Lock() implements Lamport's bakery algorithm, published by
Leslie Lamport in "Communications of the Association for Computing Machinery”,
1974, Volume 17, Number 8. An excerpt is publicly available at
research.microsoft.com.

The following diagram illustrates how 0S_SPINLOCK_SW_Lock () works

OS_SPINLOCK_SW_Lock()

Spinlock
available?

Mark spinlock in use

v

< return >

Example
See Example on page 364.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG


http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

366

CHAPTER 20 Multi-core support

20.2.2.6 OS_SPINLOCK_SW_Unlock()

Description
OS_SPINLOCK_SW_Unlock () releases a software-implementation spinlock.

Prototype
void OS_SPINLOCK_SW_Unlock (OS_SPINLOCK_SW* pSpinlock, OS_UINT Id);

Parameter

Description

Id

pSpinlock

Pointer to a data structure of type 0S_SPINLOCK_sw reserved for the
management of the spinlock.

Unique identifier to specify the core accessing the spinlock. Valid
values are 0 <= 1d < OS_SPINLOCK_MAX_CORES. By default,
OS_SPINLOCK_MAX_CORES is defined to 4 and may be changed
when using source code. An embOS debug build calls OS_Error() in
case invalid values are used.

Table 20.7: OS_SPINLOCK_SW_Unlock() parameter list

Example
See Example on page 364.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



367

Chapter 21

Low power support

This chapter describes embQOS low power support.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



368 CHAPTER 21 Low power support

21.1 Introduction

The embOS low power support is used to determine if a peripheral’s clock or its
power supply can be switched off to save power. If a peripheral gets initialized the
call of 0S_POWER_UsageInc () increments a specific entry in the power management
counter to signal that it is in use. The power management counter is an array with
entries for each clock or power supply depending on the hardware. After a peripheral
is no longer in use 0S_POWER_UsageDec () is called to decrement this counter.

In 0s_1dle() a call of 0S_POWER_GetMask() generates a bit mask which describes
which clock or power supply is in use.

embOS low power support offers three functions: 0S_POWER_GetMask(),
OS_POWER_UsageInc () and OS_POWER_UsageDec (). These functions can be used to
add low power support to any embOS start project.

For additional power saving related routines refer to Tickless support on page 347.

21.2 API functions

Routine Description

0S. POWER_GetMask () Generate a bit mask to determine which peripheral is in

use.
OS_POWER_UsageInc () Increments power management counters.
0S_POWER_UsageDec () Decrements power management counters.

Table 21.1: API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



369

21.2.1 OS_POWER_GetMask()

Description
This function retrieves the power management counter.

Prototype
OS_UINT OS_POWER_GetMask (void)

Return value
A bit mask which describes whether a peripheral is in use or not.
Additional Information

This function generates a bit mask from the power management counter it retrieves.
The bit mask describes which peripheral is in use and which one can be turned off.
Switching off a peripheral can be done by writing this mask into the specific register.
Please refer to the Example on page 372 for additional information.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



370 CHAPTER 21 Low power support

21.2.2 OS_POWER_UsageDec()

Description
OS_POWER_UsageDec () decrements the power management counter.

Prototype
void OS_POWER_UsageDec (OS_UINT Index)
Parameter Description
Index A mask with bits set for counters which should be updated.

Table 21.2: OS_POWER_UsageDec() parameter list

Additional Information

When a peripheral is no longer in use this function is called to mark the peripheral as
unused and signal that it can be switched off.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



371

21.2.3 OS_POWER_Usagelnc()

Description

This function increments the power management counter.

Prototype
void OS_POWER_UsageInc (OS_UINT Index)
Parameter Description
Index A mask with bits set for counters which should be updated.

Table 21.3: OS_POWER_Usagelnc() parameter list

Additional Information
When a peripheral is in use this function is called to mark the peripheral as in use.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



372 CHAPTER 21 Low power support

21.2.4 Example

This is an example for the low power support usage, since it depends on the used
hardware it is fictional.

These are core specific defines for power handling. For this example A, B and C is
used for fictional peripherals.

#define OS_POWER_USE_A
#define OS_POWER_USE_B
#define OS_POWER_USE_C
#define OS_POWER_USE_ALL

1 << 0) // peripheral “A”
1 << 1) // peripheral “B”
1 << 2) // peripheral “C”
OS_POWER_USE_A | OS_POWER_USE_B | OS_POWER_USE_C)

In the following function the peripherals A and C have been initialized and getting
marked as used by the call of 0S_POWER_UsageInc (). By that call a specific entry in
the power management counter for the clock used by the peripheral gets incre-
mented.

void _InitAC(void) {

OS_POWER_UsageInc (0OS_POWER_USE_A); // Mark “A” as used
0S_POWER_UsageInc (OS_POWER_USE_C); // Mark “C” as used

}

After something has been done, C will not be used any longer and gets marked as not
used. This is done by the call of 0S_POWER_UsageDec () which decrements the entry
in the power management counter.

void _SomeThingIsDone (void) {

OS_POWER_UsageDec (OS_POWER_USE_C); // Mark “C” as unused

}

While in 0s_1dle() a call of 0S_POWER_GetMask () generates a bit mask from the
power management counter. Afterwards a control register is stored and all bits corre-
sponding to 0S_POWER_USE getting cleared. Next the previously stored bits are writ-
ten back into the control register with only those bits set for used peripherals.

void 0S_Idle(void) { // Idle loop: No task is ready to exec
OS_UINT PowerMask;
0S_Ul6 ClkControl;

0S_DI();

//

// Examine which peripherals may be switched off

//

PowerMask = OS_POWER_GetMask() ;

//

// Store the content of CTRLREG and clear all OS_POWER_USE related bits
//

ClkControl = CTRLREG & ~OS_POWER_USE_ALL;

//

// Set only bits for used peripherals and write them to the specific register
// In this case only “A” is marked as used, so “C” gets switched off
//
CTRLREG = ClkControl | PowerMask;
for (;;) {
_do_nothing() ;
}s

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



373

21.3 STOP / WAIT Mode

In case your controller supports some kind of power saving mode, it is possible to
use it also with emb0OS. To enter that mode, you usually have to implement some
special sequence in the function 0s_tdle(), which you can find in embOS module
RTOSInit.c.

For example with Cortex M CPUs per default, the wfi instruction is executed in
0S_1dle() to put the CPU into a low power mode:

void OS_Idle(void) { // Idle loop: No task is ready to execute
while (1) {
#if (DEBUG == 0) // Enter CPU halt mode when not in DEBUG
__asm(" wfi");
#endif
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



374 CHAPTER 21 Low power support

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



375

Chapter 22

Configuration of target system
(BSP)

This chapter explains the target system specific parts of embQOS, also called a BSP
(board support package).

If the software is up and running on your target system, there is no need to read this
chapter.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



376 CHAPTER 22 Configuration of target system (BSP)

22.1 Introduction

In general, you do not need to configure anything to get started with embOS. The
start project supplied will execute on your system. Small changes in the configura-
tion will be necessary at a later point for system frequency or for the UART used for
communication with the optional embOSView.

The file RTOSInit.c is provided in source code and can be modified to match your
target hardware needs. It is compiled and linked with your application program.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



377

22.2 Hardware-specific routines

Routine Description

urew
yselL
HSlI
FETTINE

Required for embOS

Initializes the hardware timer used for gener-
ating interrupts. embOS needs a timer inter-
rupt to determine when to activate tasks that
wait for the expiration of a delay, when to call
a software timer, and to keep the time variable
up-to-date.

The idle loop is always executed whenever no
0S_Idle() other task (and no interrupt service routine) is
ready for execution.

The embQOS timer interrupt handler. When
OS_ISR_Tick() using a different timer, always check the spec-
ified interrupt vector.

Converts cycles into ps (used with profiling
only).

Reads the timestamp in cycles. Cycle length
0S_GetTime_Cycles () depends on the system. This function is used
for system information sent to embOSView.
Optional for run-time embOSView

Initializes communication for embOSView
(used with embOSView only).

Rx Interrupt service handler for embOSView
(used with embOSView only).

Tx Interrupt service handler for embOSView
(used with embOSView only).

Send one byte via a UART (used with embOS-
0S_COM_Sendl () View only).

Do not call this function from your application.
Table 22.1: Hardware specific routines

2221 0OS_Idle()

The embOQOS function 0s_1Idle() is called when no task is ready for execution.

The function 0s_1Idle() is part of the target CPU specific RToSInit.c file delivered
with embOS.

Normally it is programmed as an endless loop without any functionality.

In most embOS ports, it activates a power saving sleep mode of the target CPU.

OS_InitHW()

0S_ConvertCycles2us ()

0OS_COM_Init ()

OS_ISR_rx()

OS_ISR_tx()

The embOS o0s_1dle() function is not a task, it has no task context and does not
have its own stack. Instead it runs on the system’s C stack, which is also used for the
kernel.

Exceptions and interrupts that occur during 0os_1dle () return into os_1dle() if they
didn’t trigger a task switch, and the code is continued where it was interrupted.

When a task switch occurs during the execution of 0s_1dle(), the 0s_Idle() func-
tion is interrupted and does not continue execution when it is activated again.

When o0s_1dle() is activated, it always starts from the beginning. Interrupted code
is not continued.

You might create your own idle task running as an endless loop with the lowest task
priority in the system.

When you don't call any blocking or suspending function in this idle task, you will
never enter 0s_Idle().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



378 CHAPTER 22 Configuration of target system (BSP)

You might alternatively use 0S_EnterRegion() and 0S_LeaveRegion () to avoid task
switches during the execution of any functionality in 0s_1dle().

Running in a critical region does not block interrupts, but disables task switches until
0S_LeaveRegion () is called.

Using a critical region during os_1dle () will affect task activation time, but will not
affect interrupt latency.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



379

22.3 Configuration defines

For most embedded systems, configuration is done by simply modifying the following
defines, located at the top of the rRTOSInit.c file:

Define Description
System frequency (in Hz).
OS_FSYS Example: 20000000 for 20MHz.
Selection of UART to be used with embOSView
OS_UART S o
(-1 will disable communication),
OS_BAUDRATE Selection of baudrate for communication with embOSView.

Table 22.2: Configuration defines overview

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 22 Configuration of target system (BSP)

22.4 How to change settings

The only file which you may need to change is RTOSInit.c. This file contains all
hardware-specific routines. The one exception is that some ports of embOS require
an additional interrupt vector table file (details can be found in the CPU & Compiler
Specifics manual of embOS documentation).

22.4.1 Setting the system frequency OS_FSYS

Relevant defines

OS_FSYS

Relevant routines

0S_ConvertCycles2us () (used with profiling only)

For most systems it should be sufficient to change the os_rsys define at the top of
RTOSInit.c. When using profiling, certain values may require a change in
0S_ConvertCycles2us (). The RTOSInit.c file contains more information about in
which cases this is necessary and what needs to be done.

22.4.2 Using a different timer to generate tick interrupts for
embOS

Relevant routines
OS_InitHW()

embOS usually generates one interrupt per ms, making the timer interrupt, or tick,
normally equal to 1 ms. This is done by a timer initialized in the routine
0S_InitHwW(). If you want to use a different timer for your application, you must
modify 0s_InitHwW () to initialize the appropriate timer. For details about initialization,
read the comments in RTOSInit.c.

22.4.3 Using a different UART or baudrate for embOSView

Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_Init ()
0OS_COM_Sendl ()
OS_TISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define os_UART. Refer to the con-
tents of the RTOSInit.c file for more information about which UARTS that are sup-
ported for your CPU.

22.4.4 Changing the tick frequency

Relevant defines
OS_FSYS

As noted above, embOS usually generates one interrupt per ms. 0s_rsys defines the
clock frequency of your system in Hz (times per second). The value of 0s_Fsys is
used for calculating the desired reload counter value for the system timer for 1000
interrupts/sec. The interrupt frequency is therefore normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable os_Time will no longer
be equivalent to multiples of 1 ms. However, if you use a multiple of 1 ms as tick

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



381

time, the basic time unit can be made 1 ms by using the function OS_TICK_Config().
The basic time unit does not need to be 1 ms; it might just as well be 100 ps or 10
ms or any other value. For most applications, 1 ms is an appropriate value.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



382 CHAPTER 22 Configuration of target system (BSP)

22.5 STOP/HALT/IDLE modes

Most CPUs support power-saving STOP, HALT, or IDLE modes. Using these types of
modes is one possible way to reduce power consumption during idle times. As long as
the timer interrupt wakes the system with every embQOS tick, or as long as other
interrupts will activate tasks, these modes may be used for reducing power consump-
tion.

If required, you may modify the 0s_1dle() routine, which is part of the hardware-
dependant module rRTOSInit.c, to switch the CPU to power-saving mode during idle
times. Refer to the CPU & Compiler Specifics manual of embOS documentation for
details about your processor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



383

Chapter 23
Profiling

This chapter explains the profiling functions that can be used by an application.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



384 CHAPTER 23 Profiling

23.1 API functions

3 -4

Routine Description ®n |23

5 = P o

OS_STAT_Sample () Starts a new task cpu load measurement. | X| X | X| X

OS_STAT_GetLoad () Returns the task-specific cpu load. XX | X]|X
05 AddLoadMeasurement () ﬁglciltsytotal CPU load measurement functi- x| x

0S_GetLoadMeasurement () Returns the total CPU load. X|X| XX

OS_STAT_Enable () Enables profiling X|X|X]|X

OS_STAT_Disable () Disables profiling X|X|X]|X

OS_STAT_GCetTaskExecTime () |Returns the total task execution time XX | X]|X

Table 23.1: Profiling API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



385

23.1.1 OS_STAT_Sample()

Description

0S_STAT_sSample () starts profiling and calculates the absolute task run time since
the last call to OS_STAT_Sample().

Prototype
void OS_STAT Sample ( void );

Additional Information

0S_STAT _Sample() starts the profiling for five seconds, the next call to
0S_STAT_Sample () must be within this five seconds. Please use the embOS function
OS_STAT_GetLoad() to get the task-specific cpu load in permille.

OS_STAT_Sample () cannot be used from multiple tasks simultaneously because it
uses a global variable.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



386 CHAPTER 23 Profiling

23.1.2 OS_STAT_GetLoad()

Description
OS_STAT_GetLoad () calculates the current tasks cpu load in permille.
Prototype
int OS_STAT GetLoad(OS_TASK * pTask);
Parameter Description
pTask Pointer to task control block

Table 23.2: OS_STAT_GetLoad() parameter list

Return value

OS_STAT_GetLoad () returns the current tasks cpu load in permille.
Additional Information

OS_STAT_GetLoad () requires that 0s_sSTAT_sample () is called periodically.

OS_STAT_GetLoad() cannot be used from multiple tasks simultaneously because it
uses a global variable.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



387

23.1.3 Sample application for OS_STAT_Sample() and
OS_STAT_GetLoad()

#include "RTOS.h"
#include "stdio.h"

OS_STACKPTR int StackHP[128], StackLP[128], StackMP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP, TCBMP; /* Task-control-blocks */

static void HPTask(void) {
int r;
while (1) {
OS_Delay (1000);
OS_STAT Sample() ;
r = OS_STAT_GetLoad (&TCBMP) ;
printf ("CPU Usage of MP Task: %d\n", r);
}
}

static void MPTask (void) {
while (1) {
}

}

static void LPTask(void) {
while (1) {
}

}

int main(void) {

O0S_IncDI(); /* Initially disable interrupts */
OS_InitKern() ; /* Initialize OS */
OS_InitHW() ; /* Initialize Hardware for OS */
/* You need to create at least one task before calling OS_Start() */

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBMP, "MP Task", MPTask, 50, StackMP) ;
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);

0S_Start () ; /* Start multitasking */
return 0;

Output:

499
501
500
500

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



388 CHAPTER 23 Profiling

23.1.4 OS_AddLoadMeasurement()

Description

0S_AddLoadMeasurement () may be used to start calculation of the total CPU load of
an application.

Prototype
void 0S_AddLoadMeasurement (int Period,
0S_U8 AutoAdjust,
int DefaultMaxValue) ;

Parameter Description
Period Period for measurement in embOS timer ticks
AutoAdjust When nonzero, the measurement is autoadjusted once initially.

May be used to set a default counter value when AutoAdjust is
not used. (See additional information)
Table 23.3: OS_STAT_GetLoad() parameter list

DefaultMaxValue

Additional Information

0S_AddLoadMeasurement () creates a task running at highest priority. The task sus-
pends itself periodically by calling 0S_bDelay(Period). When the task is resumed
after the delay, it calculates the CPU load by comparison of two counter values.

The CPU load is the percentage not spent in 0s_1dle().

For the calculation, it is required that os_1dle() is called.

0S_Idle () must increment a counter by calling 0S_INC_IDLE_CNT();

The maximum value of this counter is stored and is compared against the current
value of the counter, every time the measurement task is activated.

It is assumed that the maximum value of the counter represents a CPU load of zero,
all time spent in 0s_1dle().

When AutoAdjust is set, the task will initially suspend all other tasks for the Period-
time and than call os_bDelay(Period). This way, the entire period is spent in
0S_Idle() and the counter incremented in 0s_Idle() reaches its maximum value
initially.

If this behavior is not wanted, because it blocks all tasks for the Period-time once ini-
tially, the maximum value for the counter may be examined once and then be set by
the parameter DefaultMaxvalue with Autoadjust disabled.

The value for DefaultMaxValue can be examined once from one task before any
other tasks are created:

void MainTask (void) {
0S_I32 DefaultMax;
0S_Delay (100) ;
DefaultMax = 0S_IdleCnt; /* This value can be used as DefaultMaxValue. */
/* Now other tasks can be created and started. */

The calculation does not work when o0s_1dle() puts the CPU in Low-power (Stop)
mode.

0S_Idle() must have a form similar to:

void 0OS_Idle(void) { /* Idle loop: No task is ready to execute */
while (1) {
OS_INC_IDLE_CNT() ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



389

23.1.5 OS_GetLoadMeasurement()

Description
Retrieves the result of the CPU load measurement.

Prototype

int OS_GetLoadMeasurement (void)

Return value
Returns the total CPU load in percent.

Additional Information

0S_GetLoadMeasurement () delivers correct results when the CPU load measurement
was started by calling 0S_AddLoadMeasurement () with auot-adjustment before, and
0S_Idle () updates the measurement by calling 0S_INC_IDLE_CNT ().

The calculation does not work when 0s_1dle() puts the CPU in low-power (Stop)
mode.

0S_Idle() must have a form similar to:

void 0S_Idle(void) { /* Idle loop: No task is ready to execute */
while (1) {
OS_INC_IDLE_CNT() ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



390 CHAPTER 23 Profiling

23.1.6 OS CPU Load

Description

This global variable shows the total CPU load in percent. It may be useful to show the
variable in a debugger with live-watch capability during development.

Declaration
volatile OS_INT OS_CPU_Load;

Additional Information

This variable may not exist. It will not contain correct results unless the CPU load
measurement was started by a call of 0S_aAddLoadMeasurement ().

As an additional condition embOS must be running and o0s_1dle() must call
OS_INC_IDLE_CNT() to update the CPU load measurement.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



391

23.1.7 OS_STAT Enable()

Description
OS_STAT_Enable () may be used to start the profiling for an infinite time.
Prototype

void OS_STAT Enable(void) ;

Additional Information

The profiling is started and does not disable itself after 5 seconds. The function
OS_STAT_Disable() may be used to cancel profiling.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



392 CHAPTER 23 Profiling

23.1.8 OS_STAT_Disable()

Description
OS_STAT_Disable() may be used to cancel profiling.

Prototype
void OS_STAT_ Disable(void) ;

Additional Information

The function 0s_STAT_Enable () may be used to start the profiling.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



393

23.1.9 OS_STAT_GetTaskExecTime()

Description

Returns the total task execution time.

Prototype

0S_U32 OS_STAT_GetTaskExecTime (const OS_TASK *pTask) ;
Parameter Description

pTask Pointer to a task control block.

Return value
Returns the total task execution time.
Additional Information

This function only returns valid values when the profiling is enabled before with
OS_STAT_Enable (). If pTask is the NULL pointer, the function returns the total task
execution time of the currently running task. If pTask does not specify a valid task, a
debug build of embOS calls 0s_Error (). A release build of embOS cannot check the
validity of pTask and may therefore return invalid values if pTask does not specify a
valid task.

Example

0S_U32 ExecTime;
void MyTask (void) {
OS_STAT Enable();
while (1) {
ExecTime = OS_STAT GetTaskExecTime (NULL) ;
0S_Delay (100) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



394 CHAPTER 23 Profiling

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



395

Chapter 24

embOSView: Profiling and analyz-
ing

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



396

24.1 Overview
embOSView displays the state

CHAPTER 24 embOSView: Profiling and analyzing

of a running application using embOS. A serial

interface (UART) is normally used for communication with the target. But there are
also other communication channels like ethernet or memory read/write for Cortex-M

and RX CPUs or DCC for ARM7/9
and defines available for commu

or Cortex A CPUs. The hardware-dependent routines
nication with embOSView are located in RTOSInit.c.

This file must be configured properly. For details on how to configure this file, refer
the CPU & Compiler Specifics manual of the embOS documentation. The embOSView

utility is shipped as embOSview.
2000 / Vista and Windows 7/8/1

exe With embOS and runs under Windows 9x / NT /
0.

o emb0S Viewer ¥3.06

File “iew Options Trace MWindow 7

T ask list

Priol Id | Mame | Statuz | Datal Timeoutl Stackl EPULoadl Context... | Found... |
120 2982 MainTask Delay 0(E0544]  115/812E0:2102 324% 19378 0/2
119 29 TaskO(RR) Ready A0/51 2(30x23b2 3.73% 11969 0/2
119 2406 Taskl [RR) Ready 40/51 2(30x2502 37 11503 0/2
119 2430 TaskZ [RR) Ready A0/51 2(30x27h2 3327 12402 0/2

T System variables

Mame |

05_YERSION

CPU M1ECA4R
Libkdode NT
05_Time E0502
05_MumT azks 4
05_Statuz 0k,
05_pactiveT ask 29dc
05_pCurrentT ask 29dc
SysStack 75/ 2560303541
IntStack 1141280=0x3641
TraceBuffer RO0/500 [

% CPU load vs. time

o Trace

1 36756 29DC TaskO(RR)
2 36757 29DC TaskO(RR)
3 36757 23B2 MainT azk
4 36757 23B2 MainT azk
5 36757 23B2 MainT azk
[ 36757 29DC TaskO(RR)
7 36758 29DC TaskO(RR)
a 36758 2430 TaskZ [RR]

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760  29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated

158 36762 29DC Task0O [RR] Task activated LI
Bytes: 10497 / 23097 Packets: 785 /634 38400 baud on COM 1 i

Trace | Time I Taskld | TazkMame | APIM ame
1] 367BE 2406 Task1 [RA] Task deactivated

Task activated
Task deactivated
Task activated
05_Delay(3]
Task deactivated
Task activated
Task deactivated
Task activated

embOSView is a very helpful tool for analysis of the running target application.

The CPU load feature assumes that an embOS library with profiling feature is used,

"

e.g. “stack-check plus profiling”,

“debug plus profiling” or “debug including trace plus

profiling”.
Name Description
SP Stack-checking plus profiling
DP Debug plus profiling
DT Debug including trace plus profiling

Table 24.1: embOS libraries with support for profiling used for CPU load

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



24.2 Task list window

embOSView shows the state of every task created by the target application in the
Task list window. The information shown depends on the library used in your

397

application.
Iltem Description Builds

Prio Current priority of task. All

1d Task ID, which is the address of the task control All

block.

Name Name assigned during creation. All

Status | urrent state oftes (reacy, executing, delay,

Data Depends on status. All
Timeout Time of next activation. All

Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Run Count Number of activations since reset. SP, DP, DT
Time slice Round robin time slice All

Table 24.2: Task list window overview

The Task list window is helpful in analysis of stack usage and

running task.

UMO01001 User & Reference Guide for embOS

CPU load for every

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



398 CHAPTER 24 embOSView: Profiling and analyzing

24.3 System variables window

embOSView shows the state of major system variables in the System variables
window. The information shown also depends on the library used by your applica-

UMO01001 User & Reference Guide for embOS

tion:
Item Description Builds
OS_VERSION Current version of embOS. All
CPU Target CPU and compiler. All
LibMode Library mode used for target application. All
OS_Time Current system time in timer ticks. All
OS_NumTasks Current number of defined tasks. All
OS_Status Current error code (or O.K.). All

OS_pActiveTask

Active task that should be running.

SP, D, DP, DT

OS_pCurrentTask

Actual currently running task.

SP, D, DP, DT

Used size/max. size/location of system

SysStack stack. SP, DP, DT

IntStack Used size/max. size/location of interrupt SP, DP, DT
stack.

TraceBuffer Current count/maximum size and current All trace builds

state of trace buffer.

Table 24.3: System variables window overview

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



399

24.4 Sharing the SIO for terminal I/O

The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. Terminal input is often used
as keyboard input, where terminal output may be used for outputting debug mes-
sages. Input and output is done via the Terminal window, which can be shown by
selecting View/Terminal from the menu.

To ensure communication via the Terminal window in parallel with the viewer
functions, the application uses the function 0s_sendstring () for sending a string to
the Terminal window and the function 0s_setRxCallback() to hook a reception-
routine that receives one byte.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



400

24.5 API functions

CHAPTER 24 embOSView: Profiling and analyzing

urew
yselL
dSlI
FELINE

0S_SetRxCallback ()

Routine Description
0S._SendString () iir‘:’js a string over SIO to the Terminal win- x| x
Sets a callback hook to a routine for receiving x| x X

one character.

Table 24.4: Shared SIO API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



24.5.1 OS_SendString()

Description
Sends a string over SIO to the embOSView terminal window.

Prototype

void OS_SendString (const char* s);

401

Parameter

Description

S

Pointer to a zero-terminated string that should be sent to the

Terminal window.

Table 24.5: OS_SendString() parameter list

Additional Information
This function uses 0s_coM_Sendl () which is defined in RTOSInit.c.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



402 CHAPTER 24 embOSView: Profiling and analyzing

24.5.2 OS_SetRxCallback()

Description

Sets a callback hook to a routine for receiving one character.

Prototype

typedef void OS_RX_ CALLBACK (0S_U8 Data) ;
OS_RX_CALLBACK* 0OS_SetRxCallback (OS_RX_CALLBACK* cb);

Parameter Description

Pointer to the application routine that should be called when one
character is received over the serial interface.
Table 24.6: OS_SetRxCallback() parameter list

cb

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback function that
was hooked before the call.

Additional Information

The user function is called from embOS. The received character is passed as parame-
ter. See the example below.

Example

void GUI_X_OnRx(0S_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_TInit (void) {
0S_SetRxCallback (&GUI_X_ OnRx) ;
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



403

24.6 Enable communication to embOSView

The communication to embOSView can be enabled by the compile time switch
OS_VIEW_ENABLE which may be defined in the project settings or in the configura-
tion file OS_Config.h.

If OS_VIEW_ENABLE is defined unequal to 0, the communication is enabled. In the
RTOSInit files the OS_VIEW_ENABLE switch is set to 1 if not defined as project
option.

The OS_Config.h file sets the compile time switch OS_VIEW_ENABLE to 0 when
DEBUG is defined as 0.

Therefore, in the embOS start projects, the communication is enabled per default
when using the Debug configurations, and is disabled when using the Release config-
urations.

24.7 Select the communication channel in the start
project

When the communication to embOSView is enabled by setting the compile time
switch OS_VIEW_ENABLE, the communication can be handled via UART, the memory
based communication channel or DCC using J-Link.

24.7.1 Select a UART for communication

Set the compile time switch OS_VIEW_USE_UART unequal to 0 by project option/
compiler preprocessor or in RTOSInit.c to switch the communication from J-Link to
UART.

In the RTOSInit files delivered with embOS, this switch is set to 0 if not defined by
compiler preprocessor/project option.

OS_VIEW_ENABLE has to be set unequal to 0 to enable communication.

24.7.2 Select J-Link for communication

Per default, J-Link is selected as communication device in most embOS start
projects, if available. The compile time switch OS_VIEW_USE_UART is predefined to
0 in the CPU specific RTOSInit files, thus the J-Link communication is selected when
not overwritten by project / compiler preprocessor options.

OS_VIEW_ENABLE has to be set unequal to 0 to enable communication.

24.7.3 Select Ethernet for communication

Set the compile time switch OS_VIEW_ETHERNET unequal to O by project option/
compiler preprocessor or in RTOSInit.c to switch the communication to Ethernet. This
communication mode is only available when embOS/IP is included in the project.

24.8 Setup embOSView for communication

When the communication to embOSView is enabled in the target application, embOS-
View can be used to analyze the running application. The communication channel of
embOSView has to be setup according the communication channel which was
selected in the project.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



404

CHAPTER 24 embOSView: Profiling and analyzing

24.8.1 Select a UART for communication

Start embOSView and chose menu Setup:

1t embOSView V4.10a
File View Setup Trace Window 2

Prio | Id | Name | Status | Data | Timeout I Stack | CPULoad | Run cuuntl Time slice |

255  0x200074E0  MainTash B [Tl x) 0.00% 9286 072

150 (20007534 IP_Task - ; _ 011% 180268 072
Communication | General | Trace | CPU View |

Host intesface

Name [ Baudiale | 33400 |

Q5 _VERSION

CPU | ComPort ComM27 TI
LibMode

05_Time

05 MumTasks

05 _Status

05_pActveTask
05_pCurrentTask

SysStack 220 /1024
IntStack

TraceBuffer

o&]ma Apply

I

Ready Bytes: 20246 / 76970 Packets: 3011 /3010 (Mem) JTAG speed: 200 -

In the Communication TAB choose UART in the Type selection listbox.

In the Host interface box select the Baudrate for communication and the COM port of
the PC which should be connected to the target board.

The default baudrate of all projects is 38400 kBaud. The COM port list box lists all
COM ports of the PC which are currently available.

The serial communication via UART is available in the target application if the project
was compiled with the settings OS_VIEW_USE_UART unequal to 0 and
OS_VIEW_ENABLE set unequal to 0.

The serial communication will work when the target is running stand alone or during
a debug session, when the target is connected to the Debugger.

The serial connection can be used when the target board has a spare UART port and
the OS_UART functions are enabled and included in the application.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



405

24.8.2 Select J-Link for communication

embOS supports communication channel to embOSView which uses J-Link to commu-
nicate with the running application. embOSView version 3.82g or higher and a J-Link-
DLL is required to use a J-Link for communication.

To select this communication channel, start embOSView and open the Setup menu:

it embOSView V4.10a

File Yiew Setup Trace Window ?

Prio | Id | Name | Status | Data | Timeout I Stack | CPULoad | Run cuuntl Time slice |
255 (x200074E0 MainTask ERe (2=} 0.00% 9286 072
150 0x20007534 1P Taszk ] ) D11% 180268 0/2

Communication | General | Trace | CPU View |

ii15 Host inteiface Target nterface

Name | + Uss Deviced =] Speed  |200kHz -

0S_VERSION

CPU | " TCPAP 7.000.7:1902 % JTAG " SwD

LibMode

05 _Time Log File

05 NumTasks . .

05, Status I~ White J-Link lag-file [~ Exy wisting o file

05 _pActiveTask |

05_pCurrentTask

SysStack 220 71024 N

IntStack JTAG Chain

TraceBuffer Position 2 "'I IR Len 9

[ ok ]| cance Apnly
Ready Bytes: 20246 / 76970 Packets: 3011 /3010 (Mem) ITAG speed: 200 -

In the Communication TAB choose J-Link Cortex-M (memory access) ,J-Link RX
(memory access) or J-Link ARM7/9/11 (DCC) in the Type selection listbox.

In the Host interface box select the USB or TCP/IP channel which is used to commu-
nicate to your J-Link.

In the Target interface box select the communication speed of the target interface
and the physical target connection, which may be a JTAG, SWD or FINE connection.
In the Log File box choose whether a log file should be created and define its file
name and location in case it should.

The JTAG Chain box allows the selection of a specific device in a JTAG scan chain with
multiple devices. Currently, up to eight devices in the scan chain are supported. Two
values must be configured: the position of the target device in the scan chain and the
total number of bits in the instruction registers of the devices before the target
device (IR len). Target position is humbered in descending order, which means the
target that is closest to the J-Link’s TDI is in the highest position (max. 7), while the
target closest to the J-Link’s TDo is in the lowest position, which is always 0. Upon
selecting the position, the according IR len is determined automatically, which should
succeed for most target decives. IR len can also be written manually, which is man-
datory in case automatic detection was not successfull. For further information,
please refer to the J-Link / J-Trace User Guide (UM08001, Chapter 5.3 "JTAG inter-
face”).

Communication via J-Link is available in the target application if the project was
compiled with the settings OS_VIEW_USE_UART equal to 0 and OS_VIEW_ENABLE
set unequal to 0.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



406 CHAPTER 24 embOSView: Profiling and analyzing

24.8.3 Select Ethernet for communication

embOS supports communication channel to embOSView which uses Ethernet to com-
municate with the running application. embOS/IP is required to use Ethernet for

communication.
To select this communication channel, start embOSView and open the Setup menu:

1t embOSView V4.10a
File View Setup Trace Window 2

Prio | Id | Name | Status | Data | Timeout I Stack | CPULoad | Run cuu'ntI Time slice |

255 (x200074ED  MainTash BT (x| 000% 9286 072
150 0x20007534 IP_Task ] ) 011% 180268 072
Communication | General | Trace | CPU View |

Type |EHRTENNGG—————

Host intedface

MName | IP: Port |182.1EB.1.1.5E021

05_VERSION
CPU

LibMode
05_Time
05_NumTasks
Q5 _Status
05_pActveTask
05_pCurrentTask
SysStack 220 /1024
IntStack
TraceBuffer

UKICancd Apply

I

Ready Bytes: 29246 / 76970 Packets: 3011 / 3010 (Mem) JTAG speed: 200 -

In the Communication TAB choose Ethernet in the Type selection listbox.
In the Host interface box select the IP address of your target and the port number

50021.
The communication via Ethernet is available in the target application if the project
was compiled with the settings OS_VIEW_USE_ETHERNET unequal to 0 and

OS_VIEW_ENABLE set unequal to 0.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



407

24.8.4 Use J-Link for communication and debugging in parallel

J-Link can be used to communicate with embOSView during a running debug session
that uses the same J-Link as debug probe. To avoid problems, the target interface
settings for J-Link should be the same in the debugger settings and in the embOS-
View Target interface settings. To use embOSView during a debug session, proceed
as follows:

e Examine the target interface settings in the Debugger settings of the project.

e Before starting the debugger, start embOSView and set the same target interface
as found in the debugger settings, for example SWD.

e Close embOSView
Start the debugger
Restart embOSView

J-Link will now communicate with the debugger and embOSView will communicate
with embOS via J-Link as long as the application is running.

24.8.5 Restrictions for using J-Link with embOSView

The J-Link communication via Cortex M (memory access) with the current version of
embOSView can only be used when the Cortex M vector table of the target applica-
tion is located at address 0x00.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



408 CHAPTER 24 embOSView: Profiling and analyzing

24.9 Using the API trace

embOS versions 3.06 or higher contain a trace feature for API calls. This requires the
use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls
can be started and stopped from embOSView via the Trace menu, or from within the
application by using the functions 0S_TraceEnable() and 0S_TraceDisable (). Indi-
vidual filters may be defined to determine which API calls should be traced for differ-
ent tasks or from within interrupt or timer routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is peri-
odically read by embOSView. The result is shown in the Trace window:

Trace I Time I Taskld | T askMame | APIM ame ;I

1] 367BE 2406 Task1 [RA] Task deactivated iy
1 367BE 29DC Task0O [RR] Task activated

2 36757 29DC Task0O [RR] Task deactivated

3 367EY 29B2 MainT ask Task activated

4 3E757 2982 MainT azk 05_Delay(3)

5 367EY 29B2 MainT ask Task deactivated

E 36757 29DC Task0O [RR] Task activated

7 36758 29DC Task0O [RR] Task deactivated

8 367H8 2430 Task2 [RR] Task activated

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760  29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated -
1 I

Every entry in the Trace list is recorded with the actual system time. In case of calls
or events from tasks, the task ID (Taskld) and task name (TaskName) (limited to
15 characters) are also recorded. Parameters of API calls are recorded if possible,
and are shown as part of the APIName column. In the example above, this can be
seen with 0s_belay (3). Once the trace buffer is full, trace is automatically stopped.
The Trace list and buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set
up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As
the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that
occur outside a running task. These calls may come from the idle loop or during star-
tup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.
Options EHE

Eommunicationl General Trace |EIF'U Viewl Log I

— Filter

Task Mame [Filter 2 to 4]

—I MainTask [ Filter 4 Enable
7| " Filter 3 Enable
‘7| ™ Filter 2 Enable

‘ e

ISR or 5W/-Timer ¥ Filter 1 Enable

Any Task [+ Filter 0 Enable
IL 1l Task deactivated -
|11 T ask activated
0T ok
I 05 .
05_Delaylintil
05_SetPriority
05_WakeTask Select all |
05_CreateT ask
05_Teminate
05 WalE vent x| Desclctal

QK I Cancel | Apply |

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



409

To enable or disable a filter, simply check or uncheck the corresponding checkboxes
labeled Filter 4 Enable to Filter O Enable.

For any of these five filters, individual API functions can be enabled or disabled by
checking or unchecking the corresponding checkboxes in the list. To speed up the
process, there are two buttons available:

e Select all - enables trace of all API functions for the currently enabled (checked)
filters.

e Deselect all - disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name
can therefore be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of 0s_Delay () from the task called MainTask. After the set-
tings are saved (via the Apply or OK button), the new settings are sent to the target
application.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



410 CHAPTER 24 embOSView: Profiling and analyzing

24.10 Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOSView. By
default, trace is initially disabled in an application program. It may be helpful to con-
trol recording of trace events directly from the application, using the following func-
tions.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



24.11 API functions

411

Routine

Description

urew

0S_TraceEnable ()

Enables tracing of filtered API calls.

OS_TraceDisable ()

Disables tracing of API and user function
calls.

x

< || ASEL
x || HSI
< | |dowil

0S_TraceEnableAll ()

Sets up Filter 0 (any task), enables trac-
ing of all API calls and then enables the
trace function.

OS_TraceDisableAll ()

Sets up Filter 0 (any task), disables trac-
ing of all API calls and also disables
trace.

0S_TraceEnableId()

Sets the specified ID value in Filter 0
(any task), thus enabling trace of the
specified function, but does not start
trace.

OS_TraceDisableId()

Resets the specified ID value in Filter 0
(any task), thus disabling trace of the
specified function, but does not stop
trace.

OS_TraceEnableFilterId()

Sets the specified ID value in the speci-
fied trace filter, thus enabling trace of the
specified function, but does not start
trace.

OS_TraceDisableFilterId()

Resets the specified ID value in the spec-
ified trace filter, thus disabling trace of
the specified function, but does not stop
trace.

Table 24.7: Trace filter API functions

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



412 CHAPTER 24 embOSView: Profiling and analyzing

24.11.1 OS_TraceEnable()

Description
Enables tracing of filtered API calls.

Prototype

void OS_TraceEnable (void);

Additional Information

The trace filter conditions must be set up before calling this function. This functional-
ity is available in trace builds only. In non-trace builds, the API call is removed by the

preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



413

24.11.2 OS_TraceDisable()

Description
Disables tracing of API and user function calls.
Prototype

void OS_TraceDisable (void);

Additional Information

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



414 CHAPTER 24 embOSView: Profiling and analyzing

24.11.3 OS_TraceEnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype

void OS_TraceEnableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



415

24.11.4 OS_TraceDisableAll()

Description
Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype
void OS_TraceDisableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected, but tracing is

stopped.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



416 CHAPTER 24 embOSView: Profiling and analyzing

24.11.5 OS_TraceEnableld()

Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified
function, but does not start trace.

Prototype
void OS_TraceEnableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <=127
Values from 0 to 99 are reserved for embOS.

Table 24.8: OS_TraceEnablelId() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 1d value.
These values are defined as symbolic constants in RTOS.h.

This function may also enable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



417

24.11.6 OS_TraceDisableld()

Description

Clears the specified ID value in Filter 0 (any task), thus disabling trace of the speci-
fied function, but does not stop trace.

Prototype
void OS_TraceDisableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <= 127
Values from 0 to 99 are reserved for embOS.

Table 24.9: OS_TraceDisabledId() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct 1rd value.
These values are defined as symbolic constants in RT0OS.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



418 CHAPTER 24 embOSView: Profiling and analyzing

24.11.7 OS_TraceEnableFilterld()

Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId (0S_U8 FilterIndex,
0S_U8 Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0 <=1Id<=127

Values from 0 to 99 are reserved for embOS.

Table 24.10: OS_TraceEnabledFilterId() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 14 value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for enabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



419

24.11.8 OS_TraceDisableFilterld()

Description

Clears the specified ID value in the specified trace filter, thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId (0S_U8 FilterIndex,
0S_U8 1Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0 <=1d<=127

Values from 0 to 99 are reserved for embOS.

Table 24.11: OS_TraceDisableFilterId() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



420 CHAPTER 24 embOSView: Profiling and analyzing

24.12 Trace record functions

The following functions write data into the trace buffer. As long as only embOS API
calls should be recorded, these functions are used internally by the trace build librar-
ies. If, for some reason, you want to trace your own functions with your own param-
eters, you may call one of these routines.

All of these functions have the following points in common:

e To record data, trace must be enabled.

e An ID value in the range 100 to 127 must be used as the ID parameter. ID values
from 0 to 99 are internally reserved for embOS.

e The events specified as ID must be enabled in trace filters.

e Active system time and the current task are automatically recorded together with
the specified event.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



421

24.13 API functions

Routine Description

urew
yselL
HSlI
FETTINE

Writes an entry identified only by its ID into

OS_Tracevoid() the trace buffer. XX X)X
0S. Traceptr () Writes an e_ntry with ID and a pointer as x| %% x
parameter into the trace buffer.

Writes an entry with ID and an integer as
OS_TraceData () parameter into the trace buffer. XX X)X
0S. Tracebataptr () Writes an entry with ID, an integer, and a x| x| x| x

pointer as parameter into the trace buffer.

Writes an entry with ID, a 32 bit unsigned
0S_TraceU32Ptr () integer, and a pointer as parameter into the XX X|X
trace buffer.
Table 24.12: Trace record API functions

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



422 CHAPTER 24 embOSView: Profiling and analyzing

24.13.1 OS_TraceVoid()

Description
Writes an entry identified only by its ID into the trace buffer.

Prototype
volid OS_TraceVoid (0S_U8 Id4d);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d4 <=127
Values from 0 to 99 are reserved for embOS.

Table 24.13: OS_TraceVoid() parameter list

Additional Information

This functionality is available in trace builds only, and the API call is not removed by
the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



423

24.13.2 OS_TracePtr()

Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype
void OS_TracePtr (0S_US8 Id,
void* p);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1a <= 127
Values from 0 to 99 are reserved for embOS.
P Any void pointer that should be recorded as parameter.

Table 24.14: OS_TracePtr() parameter list

Additional Information

The pointer passed as parameter will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



424 CHAPTER 24 embOSView: Profiling and analyzing

24.13.3 OS_TraceData()

Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (0S_U8 Id,
int V) ;
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d<=127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.

Table 24.15: OS_TraceData() parameter list

Additional Information

The value passed as parameter will be displayed in the trace list window of
embOSView.This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



425

24.13.4 OS_TraceDataPtr()

Description

Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
void OS_TraceDataPtr (0S_U8 Id,
int v,
void* p);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=14 <= 127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Table 24.16: OS_TraceDataPtr() parameter list

Additional Information

The values passed as parameters will be displayed in the trace list window of embOS-
View. This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



426 CHAPTER 24 embOSView: Profiling and analyzing

24.13.5 OS_TraceU32Ptr()

Description

Writes an entry with ID, a 32 bit unsigned integer, and a pointer as parameter into
the trace buffer.

Prototype
void OS_TraceU32Ptr (0S_U8 1Id,
0S_U32 po0,
void* pl);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d4 <= 127
Values from 0 to 99 are reserved for embOS.
p0 Any unsigned 32 bit value that should be recorded as parameter.
pl Any void pointer that should be recorded as parameter.

Table 24.17: OS_TraceU32Ptr() parameter list

Additional Information

This function may be used for recording two pointers. The values passed as parame-
ters will be displayed in the trace list window of embOSView. This functionality is
available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



427

24.14 Application-controlled trace example

As described in the previous section, the user application can enable and set up the
trace conditions without a connection or command from embOSView. The trace
record functions can also be called from any user function to write data into the trace
buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be useful for tracing API and user functions
just after starting the application, when the communication to embOSView is not yet
available or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The
function 0S_TraceEnableID() sets trace filter 0 which affects calls from any  run-
ning task. Therefore, the first call to setstate() in the example would not be traced
because there is no task running at that moment. The additional filter setup routine
0S_TraceEnableFilterId() is called with filter 1, which results in tracing calls from
outside running tasks.

Example code

#include "RTOS.h"

#ifndef OS_TRACE_FROM_START
#define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;
/* Sample of application routine with trace */

void SetState(char* pState, char Value) {
#if OS_TRACE
OS_TraceDataPtr (APP_TRACE_ID_SETSTATE, Value, pState);
#endif
* pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
from start */
void main(void) {
0OS_InitKern () ;

OS_InitHW() ;

#if (OS_TRACE && OS_TRACE_FROM_START)
/* OS_TRACE is defined in trace builds of the library */
0OS_TraceDisableAll () ; /* Disable all API trace calls */
0S_TraceEnableId (APP_TRACE_ID_SETSTATE) ; /* User trace */
OS_TraceEnableFilterId (0, APP_TRACE_ID_SETSTATE); /* User trace */
0S_TraceEnable() ;

#endif

/* Application specific initialization */
SetState (&MainState, 1);
OS_CREATETASK (&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack) ;
OS_Start(); /* Start multitasking -> MainTask() */
}

By default, embOSView lists all user function traces in the trace list window as Rou-
tine, followed by the specified ID and two parameters as hexadecimal values. The
example above would result in the following:

Routinel00 (Oxabcd, 0x01)

where 0Oxabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr ().

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



428 CHAPTER 24 embOSView: Profiling and analyzing

24.15 User-defined functions

To use the built-in trace (available in trace builds of embOS) for application program
user functions, embOSView can be customized. This customization is done in the
setup file emb0S.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see
an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number,
the function name and the type of two optional parameters that can be traced. The
format is explained in the following sample emb0s. ini file:

Example code

File: embOS.ini

embOSView Setup file

directory as the executable itself.

Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message

#
#
#
#
# embOSView loads this file at startup. It must reside in the same
#
#
#
#
# if the contents of the file are invalid.

Every parameter must be placed after a colon.

#

# Define add. API functions.

# Syntax: API( <Index>, <Routinename> [parameters])

# Index: Integer, between 100 and 127

# Routinename: Identifier for the routine. Should be no more than 32 characters
# parameters: Optional paramters. A max. of 2 parameters can be specified.
# Valid parameters are:

# int

# ptr

#

#

API( 100, "RoutinelOO0")
API( 101, "RoutinelOl", int)
API( 102, "RoutinelO2", int, ptr)

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



429

Chapter 25

Performance and resource usage

This chapter covers the performance and resource usage of embOS. It explains how
to benchmark embQOS and contains information about the memory requirements in

typical systems which can be used to obtain sufficient estimates for most target sys-
tems.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



430 CHAPTER 25 Performance and resource usage

25.1 Introduction

High performance combined with low resource usage has always been a major design
consideration. embOS runs on 8/16/32 bit CPUs. Depending on which features are
being used, even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM
can be supported by embOS. The actual performance and resource usage depends on
many factors (CPU, compiler, memory model, optimization, configuration, etc.).

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



431

25.2 Memory requirements

The memory requirements of embOS (RAM and ROM) differs depending on the used
features of the library. The following table shows the memory requirements for the
different modules. These values are typical values for a 32 bit CPU and depend on
CPU, compiler, and library model used.

Module Memory type Memory requirements

embOS kernel ROM 1700 bytes

embOS kernel RAM 51 bytes

Mailbox RAM 24 bytes

Semaphore RAM 8 bytes

Resource semaphore RAM 16 bytes

Software timer RAM 20 bytes

Task event RAM 0 bytes

Table 25.1: embOS memory requirements

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



432 CHAPTER 25 Performance and resource usage

25.3 Performance

The following section shows how to benchmark embOS with the supplied example
programs.

25.4 Benchmarking

embOS is designed to perform fast context switches. This section describes two dif-
ferent methods to calculate the execution time of a context switch from a task with
lower priority to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method
uses the high-resolution measurement functions. Example programs for both meth-
ods are supplied in the \sample directory of your embOS shipment.

Segger uses these programs to benchmark embOS performance. You can use these
examples to evaluate the benchmark results. Note that the actual performance
depends on many factors (CPU, clock speed, toolchain, memory model, optimization,
configuration, etc.).

Please be aware that the number of cycles are not equal to the number of instruc-
tions. Many instructions on ARM need two or three cycles even at zero waitstates,
e.g. LDR needs 3 cycles.

The following table gives an overview about the variations of the context switch time
depending on the memory type and the CPU mode:

Target Memory Time / Cycles
ST STM32F4 @ 168Mhz Flash 1.6us / 284
Renesas RZ @ 400Mhz RAM 0.6us / 240

Table 25.2: embOS context switch times
All named example performance values in the following section are determined with
the following system configuration:

All sources are compiled with IAR Embedded Workbench version 6.40.5, XR library
and high optimization level. embOS version 4.14 has been used; values may differ
for different builds.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



433

25.4.1 Measurement with port pins and oscilloscope

The example file 0S_MeasureCST_Scope.c uses the BSP.c module to set and clear a
port pin. This allows measuring the context switch time with an oscilloscope.

The following source code is excerpt from 0S_MeasureCST_Scope.c:

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks

/~k********************************************************************

*

* HPTask
*/
static void HPTask(void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
BSP_CIlrLED(O) ; // Stop measurement
}
}

/*********‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**‘k*‘k*‘k*‘k*******‘k‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k****
*
* LPTask
*/
static void LPTask (void) {
while (1) {

0S_Delay (100) ; // Synchronize to tick to avoid jitter
//

// Display measurement overhead

//

BSP_SetLED(0) ;
BSP_CIlrLED(O) ;

//

// Perform measurement

//

BSP_SetLED(O0) ; // Start measurement

OS_Resume (&TCBHP) ; // Resume high priority task to force task switch
}
}

/*********‘k*‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k****

*

* main

*/

int main(void) {
0S_IncDI(); // Initially disable interrupts
O0S_InitKern() ; // Initialize OS
OS_InitHW() ; // Initialize Hardware for 0OS
BSP_Init(); // Initialize LED ports

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 99, StackLP);
0OS_Start () ; // Start multitasking
return O;

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



434 CHAPTER 25 Performance and resource usage

25.4.1.1 Oscilloscope analysis

The context switch time is the time between switching the LED on and off. If the LED
is switched on with an active high signal, the context switch time is the time between
the rising and the falling edge of the signal. If the LED is switched on with an active
low signal, the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead
of switching the LED on and off. The time of this overhead is also displayed on the
oscilloscope as a small peak right before the task switch time display and must be
subtracted from the displayed context switch time. The picture below shows a simpli-
fied oscilloscope signal with an active-low LED signal (low means LED is illuminated).
There are switching points to determine:

e A = LED is switched on for overhead measurement
e B = LED is switched off for overhead measurement
e C = LED is switched on right before context switch in low-prio task
e D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tpg.

The time needed for a complete context switch including the time needed to switch
the LED on and off in subroutines is marked as time tcp.

The context switching time tcg is calculated as follows:

tcs = tep - tas

Voltage [V]
A

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



435

25.4.1.2 Example measurements Renesas RZ, Thumb2 code in RAM

Task switching time has been measured with the parameters listed below:

embOS Version V4.14

Application program: 0S_MeasureCST_Scope.c
Hardware: Renesas RZ processor with 399MHz

Program is executing in RAM

Thumb2 mode is used

Compiler used: SEGGER Embedded Studio V2.10B (GCC)
CPU frequency (fcpy): 399.0MHz

CPU clock cycle (tcycle): teyele = 1/ fepy = 1 / 399.0MHz = 2.506ns

Measuring tpg and tcp

248V
KEYSIGHT

tag is measured as 480ns.
The number of cycles calcu-
lates as follows:

Cyclesag = tap / teycle
=480ns / 2.506ns

= 191.54 Cycles

=> 192 Cycles

Utility heny
0 File Explorer Options Service (uic on Annotation

~-

DS0-K 20144, MY54480515: WMon Now 23 17:08:08 2015

990.0% a00.02/ Stop 2.44Y
KEYSIGHT

tcp is measured as 1200.0ns.

The number of cycles calcu-
lates as follows:

Cyclescp = tep / teycle

= 1200.0ns / 2.506ns

= 478.85 Cycles

=> 479 Cycles

Utility Menu
1o File Explorer Options Service Quick Action Annotation
~p- ~p- ~- ~- ~-

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tcs = tep - tag = 479 ycles - 192 Cycles = 287 Cycles
=> 287 Cycles (0.72us @399 MHz).

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



436 CHAPTER 25 Performance and resource usage

25.4.1.3 Measurement with high-resolution timer

The context switch time may be measured with the high-resolution timer. Refer to
section High-resolution measurement on page 301 for detailed information about the
embOS high-resolution measurement.

The example OS_MeasureCST_HRTimer_embOSView.c uses a high resolution timer to
measure the context switch time from a low priority task to a high priority task and
displays the results on embOSView.

#include "RTOS.h"
#include "stdio.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static 0S_U32 Time; // Timer values

/**‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k*****************‘k*‘k*‘k*‘k****
*

* HPTask
*/
static void HPTask (void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
0S_Timing_End (&_Time) ; // Stop measurement
}
}

/*************k*k******************k*k************k*k***********************
*

* LPTask
*/
static void LPTask (void) ({
char acBuffer[100]; // Output buffer
0S_U32 MeasureOverhead; // Time for Measure Overhead
0S_U32 v;
//

// Measure Overhead for time measurement so we can take

// this into account by subtracting it

//

0S_Timing_ Start (&MeasureOverhead) ;

0S_Timing_End (&MeasureOverhead) ;

//

// Perform measurements in endless loop

//

while (1) {
0S_Delay(100) ; // Sync. to tick to avoid jitter
OS_Timing_Start (& _Time) ; // Start measurement
0S_Resume (&TCBHP) ; // Resume high priority task to force task switch
v = 0S_Timing_GetCycles (&_Time) ;
v -= 0S_Timing GetCycles (&MeasureOverhead) ;
v 0S_ConvertCycles2us (1000 * v); // Convert cycles to nano-seconds
sprintf (acBuffer, "Context switch time: %$1u.%$.31u usec\r",

v / 1000uL, v % 1000uL) ;

0S_SendString (acBuffer) ;

}

}

The example program calculates and subtracts the measurement overhead. The
results will be transmitted to embOSView, so the example runs on every target that
supports UART communication to embOSView.

The example program 0S_MeasureCST_HRTimer_Printf.c is identical to the example
program 0S_MeasureCST_HRTimer_embOSView.c but displays the results with the
printf () function for those debuggers which support terminal output emulation.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



437

Chapter 26
Debugging

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



438

CHAPTER 26 Debugging

26.1 Runtime errors

Some error conditions can be detected during runtime. These are:

Usage of uninitialized data structures

Invalid pointers

Unused resource that has not been used by this task before
0S_LeaveRegion () called more often than 0S_EnterRegion()
Stack overflow (this feature is not available for some processors)

Which runtime errors that can be detected depend on how much checking is per-
formed. Unfortunately, additional checking costs memory and performance (it is not
that significant, but there is a difference). If embOS detects a runtime error, it calls
the following routine:

void OS_Error (int ErrCode) ;

This routine is shipped as source code as part of the module 0s_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops forever as
follows:

Example
/*
Run time error reaction
*/
void OS_Error (int ErrCode) {
OS_EnterRegion () ; /* Avoid further task switches */
0S_DICnt =0; /* Allow interrupts so we can communicate */
OS_EI();

0OS_Status = ErrCode;
while (0S_Status);
}

If you are using embOSView, you can see the value and meaning of 0s_status in the
system variable window.

When using an emulator, you should set a breakpoint at the beginning of this routine
or simply stop the program after a failure. The error code is passed to the function as
a parameter.

You can modify the routine to accommodate your own hardware; this could mean
that your target hardware sets an error-indicating LED or shows a small message on
the display.

Note: When modifying the OS_Error() routine, the first statement needs
to be the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the 0s_Error () routine, you will see that it is more complicated than
necessary. The actual error code is assigned to the global variable 0s_status. The
program then waits for this variable to be reset. Simply reset this variable to 0 using
your in circuit-emulator, and you can easily step back to the program sequence caus-
ing the problem. Most of the time, looking at this part of the program will make the
problem clear.

26.1.1 OS_DEBUG_LEVEL

The preprocessor symbol OS_DEBUG_LEVEL defines the embOS debug level. The
default value is 1. With higher debug levels more debug code is included.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



26.2 List of error codes

439

Value Define Explanation
Index value out of bounds during

100 OS_ERR_ISR_INDEX interrupt controller initialization or
interrupt installation.

101 0S_ERR TSR _VECTOR pefault interrupt har_ld_le_r <_:a||ed, but
interrupt vector not initialized.

102 OS_ERR_ISR_PRIO Wrong interrupt priority

103 0S_ERR_WRONG_STACK Wrong stack used before main()

104 0S_ERR TSR NO_HANDLER No_ ir_lterrupt handler was defined for
this interrupt
OS_TLS_Init() called multiple times

105 OS_ERR_TLS_INIT for one task. (Port specific error
message)

The maximum buffer size of 64KB for

106 0S ERR MB BUFFER SIZE one mailbox buffer is gxc_ee_d by_caII

- == - of OS_CreateMB(). This limit exists
on 8 and 16bit CPUs only.

116 0S_ERR EXTEND. CONTEXT OS_I_ExtendTaskContext called multi-
ple times from one task
An illegal time slice value of zero was
used when calling 0S_CreateTask(),
0S_CreateTaskEx () Or
0S_SetTimeSlice().

117 OS_ERR_TIMESLICE Since version 3.86f of embOS, a time
slice of zero is legal (as described in
chapter 4). The error is not gener-
ated when a task is created with a
time slice value of zero.
0OS_ChangeTask called without

118 OS_ERR_INTERNAL RegionCnt set (or other internal
error)

119 OS_ERR_IDLE_RETURNS Idle loop should not return

120 OS_ERR_STACK Stack overflow or invalid stack.

121 OS_ERR_CSEMA_OVERFLOW Counting semaphore overflow.
Counter overflows when calling

122 OS_ERR_POWER_OVER 0S_POWER_UsageInc()

Counter underflows when calling

123 OS_ERR_POWER_UNDER 0S_POWER_UsageDec()

Index to high, exceeds

124 OS_ERR_POWER_INDEX (OS_POWER_NUM_COUNTERS - 1)

125 OS_ERR_SYS_STACK System stack overflow

126 OS_ERR_INT_STACK Interrupt stack overflow

128 0S_ERR_INV TASK Task control bI_ock invalid, not initial-
ized or overwritten.

Timer control block invalid, not ini-

129 OS_ERR_INV_TIMER - -
tialized or overwritten.

130 0S. ERR_INV.MATLBOX IV_Iai_Ibox control bI_ock invalid, not ini-
tialized or overwritten.

Control block for counting sema-

132 OS_ERR_INV_CSEMA phore invalid, not initialized or over-
written.

Table 26.1: Error code list

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



440 CHAPTER 26 Debugging
Value Define Explanation
Control block for resource sema-
133 OS_ERR_INV_RSEMA phore invalid, not initialized or over-
written.
One of the following 1-byte mailbox
functions has been used on a multi-
byte mailbox:
135 OS_ERR_MAILBOX_NOT1 0S_PutMaill ()
O0S_PutMailCondl ()
0S_GetMaill ()
0S_GetMailCondl () .
136 0S. ERR_MAILBOX_DELETE os_De_leteM1_3_() was called on a mail-
box with waiting tasks.
0S_DeleteCSema () was called on a
137 OS_ERR_CSEMA_DELETE counting semaphore with waiting
tasks.
0S_DeleteRSema () was called on a
138 OS_ERR_RSEMA_DELETE resource semaphore which is claimed
by a task.
The mailbox is not in the list of mail-
140 0S.ERR_MAILBOX_NOT IN.LIST boxes as expected. I_’ossible reasons
may be that one mailbox data struc-
ture was overwritten.
The OS internal task list is
142 OS_ERR_TASKLIST CORRUPT
destroyed.
143 OS_ERR_QUEUE_INUSE Queue in use
144 0OS_ERR_QUEUE_NOT_INUSE Queue not in use
145 OS_ERR_QUEUE_INVALID Queue invalid
A queue was deleted by a call of
146 OS_ERR_QUEUE_DELETE 0S_Q_Delete () while tasks are wait-
ing at the queue.
147 OS_ERR_MB_INUSE Mailbox in use
148 OS_ERR_MB_NOT_INUSE Mailbox not in use
150 0S_ERR_UNUSE_BEFORE USE 0S_Unuse () has been called before
0S_Use().
151 0OS_ERR_LEAVEREGION_BEFORE_ENTERR| OS_LeaveRegion () has been called
EGION before 0S_EnterRegion () .
152 OS_ERR_LEAVEINT Error in 0S_LeaveInterrupt ().
The interrupt disable counter
(os_bpiIcnt) is out of range (0-15).
The counter is affected by the follow-
153 OS_ERR_DICNT ing API calls:
OS_TIncDI()
OS_DecRI()
OS_EnterInterrupt ()
0S_LeavelInterrupt ()
0S_Delay () Or 0S_DelayUntil ()
154 OS_ERR_INTERRUPT_ DISABLED called from inside a critical region
with interrupts disabled.
OS_ERR_TASK_ENDS_WITHOUT TERMINA| Task routine returns without
155 -
TE 0S_TerminateTask()
0S_Unuse () has been called from a
156 OS_ERR_RESOURCE_OWNER task which does not own the
resource.
157 OS_ERR_REGIONCNT The Region counter overflows (>255)
Table 26.1: Error code list (Continued)

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



441

Value Define

Explanation

160 OS_ERR_ILLEGAL_IN ISR

Illegal function call in an interrupt
service routine: A routine that must
not be called from within an ISR has
been called from within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in an interrupt
service routine: A routine that must
not be called from within a software
timer has been called from within a
timer.

162 0OS_ERR_ILLEGAL_OUT_ ISR

embOS timer tick handler or UART
handler for embOSView was called
without a call of
OS_EnterInterrupt().

163 OS_ERR_NOT_IN_ ISR

OS_EnterInterrupt() has been called,
but CPU is not in ISR state

164 OS_ERR_IN_ISR

OS_EnterInterrupt() has not been
called, but CPU is in ISR stat

165 OS_ERR_INIT_NOT CALLED

OS_InitKern() was not called

166 OS_ERR_CPU_STATE_ISR_ILLEGAL

OS-function called from ISR with
high priority

167 OS_ERR_CPU_STATE_ILLEGAL

CPU runs in illegal mode

168 0OS_ERR_CPU_STATE_UNKNOWN

CPU runs in unknown mode or mode
could not be read

170 OS_ERR_2USE_TASK

Task control block has been initial-
ized by calling a create function
twice.

171 OS_ERR_2USE_TIMER

Timer control block has been initial-
ized by calling a create function
twice.

172 OS_ERR_2USE_MAILBOX

Mailbox control block has been ini-
tialized by calling a create function
twice.

174 OS_ERR_2USE_CSEMA

Counting semaphore has been initial-
ized by calling a create function
twice.

175 OS_ERR_2USE_RSEMA

Resource semaphore has been ini-
tialized by calling a create function
twice.

176 0S_ERR_2USE_MEMF

Fixed size memory pool has been ini-
tialized by calling a create function
twice.

180 OS_ERR_NESTED_RX_INT

0S_Rx interrupt handler for embQOS-
View is nested. Disable nestable
interrupts.

185 0S_ERR_SPINLOCK_INV_CORE

Invalid core ID specified for access-
ing a 0OS_SPINLOCK_SW struct.

190 0S_ERR_MEMF_INV

Fixed size memory block control
structure not created before use.

191 OS_ERR_MEMF_INV_PTR

Pointer to memory block does not
belong to memory pool on Release

192 OS_ERR_MEMF_PTR_FREE

Pointer to memory block is already
free when calling
OS_MEMF_Release (). Possibly, same
pointer was released twice.

Table 26.1: Error code list (Continued)

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



442 CHAPTER 26 Debugging
Value Define Explanation
OS_MEMF_Release () was called for a
193 0S ERR MEMF RELEASE memory pool, that had_no memory
- - block allocated (all available blocks
were already free before).
OS_MEMF_Create () was called with a
194 05 ERR POOLADDR memory pool base addrt_ass which is
not located at a word aligned base
address
OS_MEMF_Create () was called with a
195 OS_ERR_BLOCKSIZE data block size which is not a multi-
ple of processors word size.
Nested call of 0s_Suspend ()
200 OS_ERR_SUSPEND_TOO_OFTEN exceeded 0S_MAX_SUSPEND_CNT
201 OS_ERR_RESUME_BEFORE_SUSPEND 0S_Resume () called on a task that
was not suspended.
0S_CreateTask () was called with a
task priority which is already
assigned to another task. This error
202 OS_ERR_TASK_PRIORITY can g(])nly occur when embOS was
compiled without round robin sup-
port.
The value 0 was used as task prior-
203 OS_ERR_TASK_PRIORITY_INVALID ity.
210 An OS_EVENT object was used before
OS_ERR_EVENT_INVALID .
it was created.
An OS_EVENT object was created
twice.
211 OS_ERR_2USE_EVENTOBJ This error should not be reported.
Contact Segger support.
An OS_EVENT object was deleted with
212 OS_ERR_EVENT_DELETE waiting tasks
223 OS_ERR_TICKHOOK_INVALID Invalid tick hook.
224 OS_ERR_TICKHOOK_FUNC_INVALID Invalid tick hook function
225 0S ERR NOT IN REGION A function was caIIec_I _without_ declar-
— T ing the necessary critical region.
230 OS_ERR_NON_ALIGNED_INVALIDATE ﬁgghaelilgnnveaclildatlon needs to be cache
Callback function for timer counter
235 OS_ERR_NON_TIMERCYCLES_FUNC value has not been set.
Required by OS_GetTime_us().
Callback function for timer interrupt
236 OS_ERR_NON_TIMERINTPENDING_FUNC |pending flag has not been set.
Required by OS_GetTime_us().
240 OS_ERR_MPU_NOT_PRESENT MPU unit not present in the device
241 OS_ERR_MPU_INVALID_REGION Invalid MPU region index number
242 OS_ERR_MPU_INVALID_SIZE Invalid MPU region size
243 OS_ERR_MPU_INVALID_PERMISSION Invalid MPU region permission
244 OS_ERR_MPU_INVALID_ALIGNMENT Invalid MPU region alignment
245 0S_ERR_MPU_INVALID. OBJECT OS object is_ dir_ectly accessible from
the task which is not allowed
254 OS_ERR_TRIAL_LIMIT Trial time limit reached

Table 26.1: Error code list (Continued)

The latest version of the defined error table is part of the comment just before the
0s_Error () function declaration in the source file 0S_Error.c.

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG




443

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



444 CHAPTER 26 Debugging

26.3 Application defined error codes

The embOS error codes begin at 100. The range 1 - 99 can be used for application
defined error codes. With it you can call os_Error () with your own defined error
code from your application.

Example

#define OS_ERR_APPL 0x02

void UserAppFunc (void) {
int r;
r = DoSomething ()
if (r == 0) {
OS_Error (OS_ERR_APPL)
}
}

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



445

Chapter 27

System variables

The system variables are described here for a deeper understanding of how the OS
works and to make debugging easier.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



446 CHAPTER 27 System variables

27.1 Introduction

Note: Do not change the value of system variables.

These variables are accessible and are not declared constant, but they should only be
altered by functions of embOS. However, some of these variables can be very useful,
especially the time variables.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



447

27.2 Time variables
27.2.1 OS Global

OS_Global is a structure which includes embOS internal variables. The following vari-
ables OS_Global.Time and OS_Global.TimeDex are part of OS_Global. Any other part
of OS_Global is not explained here as they are not required to use embOS.

27.2.2 0OS_Global.Time

Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Additional Information

The time variable has a resolution of one time unit, which is normally 1/1000 sec
(1 ms) and is normally the time between two successive calls to the embOS timer
interrupt handler. Instead of accessing this variable directly, use 0sS_GetTime () or
0S_GetTime32 () as explained in the Chapter Time measurement on page 295.

27.2.3 OS_Global.TimeDex

For internal use only. Contains the time at which the next task switch or timer activa-
tion is due. If ((int) (0S_Global.Time - 0S_Global.TimeDex)) >= 0, the task list
and timer list will be checked for a task or timer to activate. After activation,
0S_Global.TimeDex will be assigned the time stamp of the next task or timer to be
activated.

Note that the value of 0s_Global.TimeDex may be invalid during task execution. It
contains correct values during execution of 0s_1dle() and when used internally in
the embOS scheduler. The value of 0S_Global.TimeDex should not be used by the
application.

If you need any information about the next time-scheduled action from embOS, the
function 0s_GetNumIdleTicks () can be used to get the number of ticks spent idle.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



448 CHAPTER 27 System variables

27.3 OS internal variables and data-structures

embOS internal variables are not explained here as they are not required to use
embOS. Your application should not rely on any of the internal variables, as only the
documented API functions are guaranteed to remain unchanged in future versions of
embOsS.

Important

Do not alter any system variables.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



449

27.4 OS information routines
API functions

Routine Description 3 § = g

5Sx2 e

0S_GetCPU () Returns the CPU name. X | X|X| X
0S_GetLibMode () Returns the library mode name. X | X|X|X
0S_GetModel () Returns the memory model name. X| X|X| X
0S_GetLibName () Returns the complete library name. X| X[ X|X
0S_GetVersion|() Returns the OS version. X| X|X| X

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



450 CHAPTER 27 System variables

27.4.1 OS_GetCPU()

Description

Returns a pointer to the CPU name string.

Prototype
const char* 0S_GetCPU(void) ;

Return value
A pointer to the CPU name string.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



451

27.4.2 OS_GetLibMode()

Description

Returns a pointer to the embOS library mode name string.

Prototype

const char* 0OS_GetLibMode (void) ;

Return value

A pointer to the embOS library mode name string including the trial prefix in case of
an embOQOS trial library, e.g. “"DP”, “R” or “(Trial)SP".

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



452 CHAPTER 27 System variables

27.4.3 0OS_GetModel()

Description

Returns a pointer to the memory model name string.

Prototype

const char* 0S_GetModel (void) ;

Return value

A pointer to the embOS memory model string, e.g. “v7vL".

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



453

27.4.4 OS_GetLibName()

Description

Returns a pointer to the complete embOS library name string including trial prefix,
memory model and library mode.

Prototype

const char* 0OS_GetLibName (void) ;

Return value

A pointer to the complete embQOS library name including the trial prefix, memory
model and library mode, e.g. (Trial)v7vLDP.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



454 CHAPTER 27 System variables

27.4.5 0OS_GetVersion()

Description

Returns the embOS version number.
Prototype

OSUINT OS_GetVersion (void) ;
Return value

Returns the embOS version number, e.g. "41203"” for embOS version 4.12c.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



455

Chapter 28

Supported development tools

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



456 CHAPTER 28 Supported development tools

28.1 Overview

embOS has been developed with and for a specific C compiler version for the selected
target processor. Check the file RELEASE.HTML for details. It works with the specified
C compiler only, because other compilers may use different calling conventions
(incompatible object file formats) and therefore might be incompatible. However, if
you prefer to use a different C compiler, contact us and we will do our best to satisfy
your needs in the shortest possible time.

Reentrance

All routines that can be used from different tasks at the same time must be fully
reentrant. A routine is in use from the moment it is called until it returns or the task
that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for
some reason you need to have non-reentrant routines in your program that can be
used from more than one task, it is recommended to use a resource semaphore to
avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the com-
piler may have options that force it to generate non-reentrant code. It is recom-
mended not to use these options, although it is possible to do so in certain
circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are
fully reentrant. Everything else needs to be thought about carefully.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



457

Chapter 29

Source code of kernel and library

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



458 CHAPTER 29 Source code of kernel and library

29.1 Introduction

embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are
not explained in detail. The object version offers the full functionality of embOS
including all supported memory models of the compiler, the debug libraries as
described and the source code for idle task and hardware initialization. However, the
object version does not allow source-level debugging of the library routines and the
kernel.

The full source version gives you complete flexibility: embOS can be recompiled for
different data sizes; different compile options give you full control of the generated
code, making it possible to optimize the system for versatility or minimum memory
requirements. You can debug the entire system and even modify it for new memory
models or other CPUs.

The source code distribution of embOS contains the following additional files:

e The cpu folder contains all CPU and compiler-specific source code and header
files used for building the embOS libraries. It also contains the sample start
project, workspace, and source files for the embOS demo project delivered in the
Start folder. Generally, you should not modify any of the files in the cpu folder.

e The Genossrc folder contains all embOS sources and a batch file used for compil-
ing all of them in batch mode as described in the following section.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



459

29.2 Building embOS libraries

The embOS libraries can only be built if you have purchased a source code version of
embOS.

In the root path of embOS, you will find a DOS batch file PrREP.BAT, which needs to
be modified to match the installation directory of your C compiler. Once this is done,
you can call the batch file Mm.BAT to build all embOS libraries for your CPU.

Note: Rebuilding the embOS libraries using the M.bat file will delete and
rebuild the entire Start folder. If you made any modifications or built own
projects in the Start folder, make a copy of your start folder before rebuild-
ing embOS.

The build process should run without any error or warning message. If the build
process reports any problem, check the following:

e Are you using the same compiler version as mentioned in the file RELEASE . HTML?

e Can you compile a simple test file after running PREP.BAT and does it really use
the compiler version you have specified?

e Is there anything mentioned about possible compiler warnings in the
RELEASE.HTML?

If you still have a problem, let us know.

The whole build process is controlled with a small humber of batch files which are
located in the root directory of your source code distribution:

e Prep.bat: Sets up the environment for the compiler, assembler, and linker.
Ensure that this file sets the path and additional include directories which are
needed for your compiler. This batch file is the only one which might require
modifications to build the embQOS libraries. This file is called from M.bat during
the build process of all libraries.

e Clean.bat: Deletes the entire output of the embOS library build process. It is
called during the build process, before new libraries are generated. It deletes the
start folder. Therefore, be careful not to call this batch file accidentally. This file
is called initially by M.bat during the build process of all libraries.

e cc.bat: This batch file calls the compiler and is used for compiling one embQOS
source file without debug information output. Most compiler options are defined
in this file and generally should not be modified. For your purposes, you might
activate debug output and may also modify the optimization level. All modifica-
tions should be done with care. This file is called from the embOS internal batch
file cc_os.bat and cannot be called directly.

e ccd.bat: This batch file calls the compiler and is used for compiling 0s_Global.c
which contains all global variables. All compiler settings are identical to those
used in cc.bat, except debug output is activated to enable debugging of global
variables when using embOQOS libraries. This file is called from the embQOS internal
batch file cc_os.bat and cannot be called directly.

e asm.bat: This batch file calls the assembler and is used for assembling the
assembly part of embOS which contains the task switch functionality. This file is
called from the embOS internal batch file cc_os.bat and cannot be called
directly.

e MakeH.bat: Builds the embOS header file RTOS.h which is composed from the
CPU/compiler-specific part os_chip.h and the generic part 0OS_RAW.h. RTOS.h is
output in the subfolder start\Inc.

e Ml.bat: This batch file is called from M.bat and is used for building one specific
embOS library, it cannot be called directly.

e M.bat: This batch file must be called to generate all embOS libraries. It initially
calls clean.bat and therefore deletes the entire start folder. The generated
libraries are then placed in a new start folder, which contains start projects,
libraries, header, and sample start programs.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



460 CHAPTER 29 Source code of kernel and library

29.3 Major compile time switches

Many features of embOS may be modified using compile-time switches. With each
embOS distribution, these switches are preconfigured to appropiate values for each
embOS library mode. In case a configuration set is desired that was not covered by
the shipped embOS libraries, the compile-time switches may be modified accordingly
to create customized configurations on your own authority. According modifications
must be done to 0s_RAwW.h and, subsequently, the embOS sources must be recom-
piled and RTOS.h rebuilt to account for the modified switches. Alternatively, compile-
time switches may also be passed as parameters during build. In case of doubt,
please contact the embOS support for assistance.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



461

29.4 Source code project

All embOS start projects use the embOS libraries instead of the embOS source code.
Even the embOS source shipment does not include a project which uses embOS
sources.

It can be useful to have the embOS sources instead of the embOS library in a project,
e.g. for easier debugging. To do so you just have to exclude or delete the embQOS
library from your project and add the embQOS sources as described below.

The embOS sources consists of the files in the folder GenOSSrc, CPU and CPU\OSSrc-
CPU. These files can be found in the embOS source shipment.

Folder Description
Gen0OSSrc embOS generic sources
CPU RTOS assembler file
CPU\OSScrCPU CPU and compiler-specific files

Please add all C and assembler files from these folders to your project and add
include paths to these folders to your project settings. For some embOS ports it
might be necessary to add additional defines to your preprocessor settings. If neces-
sary you will find more information about it in the CPU and compiler-specific embOS
manual.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



462 CHAPTER 29 Source code of kernel and library

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



463

Chapter 30
embOS shipment

This chapter describes the different embOS shipment variants.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



464

CHAPTER 30

30.1 General information

embOS shipment

embOS is shipped as a zip file in three different versions: Object code, source code

and trial version.

Version
Object code

Description

Source code

embOS libraries

Trial

embOS libraries + embOS source code

embOS trial libraries

UMO01001 User & Reference Guide for embOS

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



465

30.1.1 Object code shipment

. Start o | Start
| BoardSupport B embOSView.exe
/Inc |&| Release_embO5S.html
+ Lib |&| Release_embO5_Generic.html
I UMD10:0c_embO5_CPU_Compiler.pdf
Il UMD1001_embOS_Generic.pdf
Directory File Description
embOS BSP files and start
Start\BoardSupport projects in manufacturer
specific subfolders
RTOS.h
Start\Inc BSP.h Include files for embOS
0OS_Config.h
Start\Lib embOS libraries
embOSView.exe PC utility for runtime analysis
Release_embOS.html embOS release history
ii;iase_embOS_Generlc. embOS generic release history
UM010xx_embOS_CPU_Comp |[embOS CPU and compiler-specific
iler.pdf manual
UM01001_embOS_Generic. .
pdf embOS generic manual

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



466 CHAPTER 30 embOS shipment

30.1.2 Source code shipment

The source code shipment is the same as the object code shipment plus the embOS
sources and batch files to rebuild the embOS libraries.

4 ceu CPU
. 055rcCPU ' Gen0SS
, GenDS5rc
| Start -
1 d
, Gen(O55rc
E embO5View.exe
4 || Start

€| Release_embQ5.html
, BoardSupport )
! |&| Release_embO5_Generic.html
. InC m

e :g UM 0ko_embOS_CPU_Compiler.pdf
‘& UMO1001_embO5_Generic.pdf
ASM.bat

ASM_CPU.bat

CC.bat

CC_CPU.bat

CCD.bat

Clean.bat

M.bat

M1.bat

MAKEH.bat

Prep.bat

m
)

1

Directory File Description

OSCHIP.h, OS_Priv.h, . L .
CPU —FEV CPU and compiler-specific files
RTOS.asm

Additional CPU and compiler-
specific source files

embOS BSP files and start
Start\BoardSupport projects in manufacturer
specific subfolders

CPU\OSSrcCPU

RTOS.h

Start\Inc BSP.h Include files for embOS
0S_Config.h

Start\Lib embOS libraries
embOSView. exe PC utility for runtime analysis
Release_embOS.html embOS release history

Release_embOS_Generic. . .
- - embOS generic release history

html
UM010xx_embOS_CPU_Comp |embOS CPU and compiler-specific
iler.pdf manual
UM01001_embOS_Generic.
embOS generic manual
pdf
N Batch files to rebuild the embOS
.bat

libraries

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



467

30.1.3 Trial shipment

The trial shipment is exactly the same as the object code shipment. The only differ-
ence is a 12 hour embOS trial limitation when creating more than three tasks.

, Start
. Start
| BoardSupport e
Mt embOSView.exe
) Inc )
| License.tet
¢ Lib
— ReadMe.tst
€| Release_embOS.html
|| Release_embO5_Generic.html
& UMO1001_embOS_Generic.pdf
% UMO01014_embOS_CortexM_IAR.pdf
& UMO01025_emb0S_IAR_Plugin.pdf
Directory File Description
embOS BSP files and start
Start\BoardSupport projects in manufacturer
specific subfolders
RTOS.h
Start\Inc BSP.h Include files for embOS
0OS_Config.h
Start\Lib embOS libraries
embOSView. exe PC utility for runtime analysis
License. txt License information

General trial version

ReadMe. txt .
information

Release_embOS.html embOS release history

Release_embOS_Generic. . .
- - embOS generic release history

html

UM010xx_embOS_CPU_Comp |[embOS CPU and compiler-specific
iler.pdf manual

UM01001_embOS_Generic. .

pdf embOS generic manual

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



468 CHAPTER 30 embOS shipment

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



469

Chapter 31
Update

This chapter describes how to update an existing project with a newer embOS ver-
sion.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



470 CHAPTER 31 Update

31.1 Introduction

embOS ports are availabe for different CPUs and compiler. Each embOS port has an
own version number.

SEGGER updates embOS ports to a newer software version for different reasons. This
is done to fix problems or to include the newest embOS features.

Customers which have a valid support and update agreement will be automatically
informed about a new version by email. The email includes a download link to the lat-
est version. The version information and complete release history is available for
each embOS port at segger.com. The latest embOS port version is available as a trial
version at segger.com.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



471

31.2 How to update an existing project

If an existing project should be updated to a newer embOS version just files have to
be replaced.

Please don’t use embOS files from different embOS versions in your project!

You should have received the embOS update as a zip file. Unzip this file to the loca-
tion of your choice and replace all embOS files in your project with the newer files
from the embOS update shipment. We recommend to don’t modify the embOS files.
If you need to modify an embOS file you will have to merge this file with the newer
version of the file. Otherwise your modifications will be lost.

In general the following files have to be updated:

File Location Description
embOS libraries Start\Lib embOS object code libraries
RTOS.h Start\Inc embOS header file
OS_Config.h Start\Inc embOS config header file
BSP.h Start\Inc Board support header file
RTOSInit.c Start\BoardSupport\...\Setup Hardware related routines
OS_Error.c Start\BoardSupport\...\Setup embOS error routine
Additional files Start\BoardSupport\...\Setup CPU and compiler-specific files

31.2.1 My project does not work anymore. What did | do
wrong?

The most common mistake is that only the embOS library was updated but not the
RTOS.h. Please ensure that the embOS library and the RTOS.h belongs the the same
embOS port version. Please also ensure that you also updated other embOS files like

OS_Error.c and RTOSInit.c. If you are still having problems don’t hesitate to contact
SEGGER.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



472 CHAPTER 31 Update

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



473

Chapter 32
Support

This chapter should help if any problem occurs. This could be a problem with the tool
chain, with the hardware or the use of the embOS functions and it describes how to
contact the embOS support.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



474 CHAPTER 32 Support

32.1 Contacting support

If you are a registered embOS user and you need to contact the embOS support
please send the following information via email to support_embos@segger.com:

Which embOS do you use? (CPU, compiler).

The embOQOS version.

Your embOS registration number.

If you are unsure about the above information you can also use the name of the
embOS zip file (which contains the above information).

A detailed description of the problem.

Optionally a project with which we can reproduce the problem.

Please also take a few moments to help us to improve our service by providing a
short feedback when your support case has been solved.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



475

Chapter 33
FAQ (frequently asked questions)

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



476 CHAPTER 33 FAQ (frequently asked questions)

Q: Can I implement different priority scheduling algorithms?

A:  Yes, the system is fully dynamic, which means that task priorities can be changed
while the system is running (using 0S_sSetPriority()). This feature can be used
for changing priorities in a way so that basically every desired algorithm can be
implemented. One way would be to have a task control task with a priority higher
than that of all other tasks that dynamically changes priorities. Normally, the
priority-controlled round-robin algorithm is perfect for real-time applications.

Q: Can I use a different interrupt source for embQS?

A: Yes, any periodic signal can be used, that is any internal timer, but it could also be
an external signal.

Q: What interrupt priorities can I use for the interrupts my program uses?

A: Any.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



477

Chapter 34

Glossary

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



478

UMO01001 User & Reference Guide for embOS

Cooperative multi-
tasking

Counting sema-
phore

CPU

Critical region

Event

Interrupt Handler

ISR

Mailbox

Message

Multitasking

NMI
Preemptive multi-

tasking

Process

Processor

CHAPTER 34 Glossary

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be sig-
naled more than once.

Central Processing Unit. The “brain” of a microcontroller; the
part of a processor that carries out instructions.

A section of code which must be executed without interrup-
tion.

A message sent to a single, specified task that something has
occurred. The task then becomes ready.

Interrupt Service Routine. The routine is called by the proces-
sor when an interrupt is acknowledged. ISRs must preserve
the entire context of a task (all registers).

Interrupt Service Routine. The routine is called by the proces-
sor when an interrupt is acknowledged. ISRs must preserve
the entire context of a task (all registers).

A data buffer managed by an RTOS, used for sending mes-
sages to a task or interrupt handler.

An item of data (sent to a mailbox, queue, or other container
for data).

The execution of multiple software routines independently of
one another. The OS divides the processor's time so that the
different routines (tasks) appear to be happening simulta-
neously.

Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer interrupt.

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the inter-
rupted task is returned to.

Processes are tasks with their own memory layout. Two pro-
cesses cannot normally access the same memory locations.
Different processes typically have different access rights and
(in case of MMUs) different translation tables.

Short for microprocessor. The CPU core of a controller

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



Priority

Priority inversion

Queue

Ready

Resource

Resource sema-
phore

RTOS

Running task

Scheduler

Semaphore

Software timer

Stack

Superloop

Task

Thread

UMO01001 User & Reference Guide for embOS

479

The relative importance of one task to another. Every task in
an RTOS has a priority.

A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. A task with medium priority in the ready
state may run, instead of the high priority task. embOS avoids
this situation by priority inheritance.

Like a mailbox, but used for sending larger messages, or mes-
sages of individual size, to a task or an interrupt handler.

Any task that is in “ready state” will be activated when no
other task with higher priority is in “ready state”.

Anything in the computer system with limited availability (for
example memory, timers, computation time). Essentially, any-
thing used by a task.

A type of semaphore used for managing resources by ensuring
that only one task has access to a resource at a time.

Real-time Operating System.

Only one task can execute at any given time. The task that is
currently executing is called the running task.

The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

A data structure used for synchronizing tasks.

A data structure which calls a user-specified routine after a
specified delay.

An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Threads are tasks which share the same memory layout. Two
threads can access the same memory locations. If virtual
memory is used, the same virtual to physical translation and
access rights are used

(c.f. Thread, Process)

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



480 CHAPTER 34 Glossary

Tick The OS timer interrupt. Usually equals 1 ms.

Time slice The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



481

IndeXx

B
Baudrate for embOSView ..............ovtes 380
C
CstartuUp oo s 41
Compiler i 456
Configuration defines .........ccevvviennnnn. 379
Configuration, of embOS ....... 337, 375-383
Counting Semaphores ..........ccvvvvinennnn. 133
Critical regions .........coceivinnnne. 34, 289-293
D
Debug build, of embOS ........cccceiiiiiinnil. 42
Debugging .....cccoviiiiiiiii 437-443
€rror COdes ....cvvvviriiiiiiiiiiniinenns 439, 444
runtime errors  ...oocvviii i 438
Development tools ......cccvvviiiiiiiiennne, 455
E
embOS
building libraries of .........cciviiiinnnl. 459
different builds of ......cccoviiiiiiiiinns 42
features of ..ooiiiiii 25
embOS features .......ccoeviiiiiiiiiiiiiiiia 25
embOS profiling .....cocoviiiiii 42
embOSView ....covviviiiiiiiiiieanen 395-428
APL trace ..vvvvvviiiiiiiiiiiiiiiiii s 408
OVEIVIEW it eiiee e ieesnneernneeraneanns 396
SIO 399
system variables window .................. 398
task list window ......ccocviiiiiiiiiiinenns 397
trace filter setup functions ................ 410
trace record functions ..............oeeel 420
Error codes ...ovivvviiiiiiiiiiiiiniaees 439, 444
Events oo 37, 193-220
I
Internal data-structures ................eeeee. 448
Interrupt control macros ..................... 275
Interrupt level ... 29
Interrupt service routines .............. 29, 259

UMO01001 User & Reference Guide for embOS

Interrupts ....cooviiiiiiii 259-288
enabling/disabling ...l 272
interrupt handler ...........oooii, 266

ISR 259

L

Libraries, building ..........coooiiiiiiiintns 459

M

MailboXes ....ccovvvviiiiiiiiiiienns 37, 147-169
basics ..o 149
single-byte ... 151

Measurement ......cccoiiiiiiiiiii 297
high-resolution ...........cooiiiiiine, 301
low-resolution .......cccoviiiiiiiiiiiiinenen 297

Memory management
fixed block size .....ccovviiiiiiiiiiii, 227
heap memory .........oovviviiiiinnnn. 221, 355

Memory pools ....cciceviiiiiiiiii 227-241

Multitasking systems ........ccciiiiiiiinnnn. 31
cooperative multitasking .................... 33
preemptives multitasking ................... 32

N

Nesting interrupts ......ccooviiiiiiiiiinniinnns 276

Non-maskable interrupts ............. 280, 288

o

0OS_AddLoadMeasurement() ................ 388

0OS_AddOnTerminateHook() .........ccco...e. 54

OS_AdJustTime() .vvevvirviiriiiieiiennnenes 351

OS_BAUDRATE .. eeeens 379

OS_CallISR() +iviiiiiiiiiiiicii e 268

OS_CallNestableISR() ....ovvvvvvviiiininnnnn. 269

OS_ClearEvents() ...ccvvvvviviieviieiinninens. 202

OS_ClearMB() .ivviiiiiiiiiiiiiiii i 167

OS_COM_INIt() weverrrerrinineiiennnernennnenes 377

OS_COM_Sendl() .ivvevvevrirrnenrnernnnnnennss 377

OS_ConvertCycles2us() .....ccovvevievnnnnnn. 377

OS_CPU_Load ..iviviiiiiiiiiiieiiiiineeenninnens 390

OS_CREATECSEMA() +ivviiiiiiiiiieiinenen 136

OS_CreateCSema() ..covvvieviiiiiiiiniiinninns 137

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



482

OS_CREATEMB() .cevviiiiiiiiiiiiiiiineinnns 153
OS_CREATERSEMA() .vivvviiiiiiiiiiineinenns 123
OS_CREATETASK() tiiiiiiiiiiiiiiiiiiiinnnens 55
OS_CreateTask() .coovvviiiiiiiiiiiiiiieaan, 57
OS_CREATETASK_EX() wivivriieiienniininnnnens 59
OS_CreateTaskEX() ..ccvvvviiiiiiiiiiiiiiinnnnns 61
OS_CREATETIMER() vvvviiiiiiiiiiiiiiinenens 94
OS_CreateTimer() .cioovvivviviiieiiiineiinannn, 95
OS_CREATETIMER_EX() .ievvvviiiniininnnn. 106
OS_CreateTimerExX() ..coovvvvviiiiiiinnninnnn. 107
0OS_CSemaRequest() ..ccvvvvvviiviineinnnnn. 142
OS_DeCRI() tiveiiriiiiiiiii i eians 273
OS_Delay() .oovviiiiiiiiiiiiic i 62
OS_DelayUntil() ..covvviiiiiiiiiiiiieneeens 63
OS_Delayus() .covvviiiiiiiiiiiiiiiieiiie i 64
OS_DeleteCSema() ..ocovvvvviviiiiiiennnnnn. 145
OS_DeleteMB() vvvvvviiiiiiiiiiiiiiiiinaen, 169
OS_DeleteTimer() ..ocovvviiiiiiiiiiiiiininnns 101
OS_DeleteTimerEx() ...ooevvevviiiiiiinninnnns 113
OS_DI() tervrrireiieiiiiniieiinenneeieenneannans 274
OS_EI() tiieiieiiiiiiiii i nea e 274
OS_EnterInterrupt() ....cocovviiviiniinnnn. 270
OS_EnterNestableInterrupt() .............. 277
OS_EnterRegion() ...ccovvvviiviiiiiiiiininnnns 292
OS_EVENT_Create() .c.ooovvvvviviiiinninnnns 206
OS_EVENT_CreateEX() ..evvvvvrvviviinninnnns 207
OS_EVENT_Delete() .covvvvviiiiiiiniinnnenn. 215
OS_EVENT_Get() ovvvviiiiiiiiiiiiiiiinnnenn, 214
OS_EVENT_GetResetMode() ............... 217
OS_EVENT_Pulse() .icovviviiiiiiiiiiiiiinnnnns 213
OS_EVENT_Reset() ..covvviiiiiiiiiiiiiiinenns 212

OS_EVENT_RESET_MODE_AUTO .. 207, 216
OS_EVENT_RESET_MODE_MANUAL 207, 216
OS_EVENT_RESET_MODE_SEMIAUTO . 207,

216
OS_EVENT_Set() .coovviiiiiiiiiiiiiiieinns 211
OS_EVENT_SetResetMode() ........cevuenns 216
OS_EVENT_Wait() .ivoviiiiiiiiiiineinns 208
OS_EVENT_WaitTimed() ...oovvvvvvievninnnns 209
0OS_ExtendTaskContext() .......covevennns 65, 68
OS_free() vovvvieiiiiiiiiiiiiiineienen 223, 358
OS_FSYS i 379
OS_GetCSemaValue() .....ccovvvvieviniinnnns 143
0OS_GetEventsOccurred() ....oovvvvvinvinnnns 201
OS_GetIntStackBase() ....cevvvvvvviniinnnn. 255
0OS_GetIntStackSize() ..covvvvvviviieninnnn. 256
0OS_GetIntStackSpace() ..coovvvvvvininnnnen. 257
0OS_GetIntStackUsed() ....covvvvvvvniinnnnn. 258
OS_GetLoadMeasurement() ................ 389
0OS_GetMail() +ivvvviiiiiii i 158
0S_GetMaill() .oovviriiiiiiiiii s 158
0S_GetMailCond() ..ovvvvviiiiiiiiiiiiiiiaaens 159
0S_GetMailCond1() ..coovvviviiiiiiieninnens 159
0OS_GetMailTimed() ...covvvvvviiiiiiiiinnens 160
OS_GetMessageCnt() ...covvvvvriviiiinninnnns 168
0OS_GetNumIdleTicks() ..vvvvvvrvvieiinnrnnnns 350
OS_GetpCurrentTimer() ...cccevvivvievinenns 105
OS_GetpCurrentTimerEx() ....ccovvvvvnnnn. 117
OS_GetPriority() .oovvvviviiiiiiiiiiiiiiinnaens 69
0OS_GetResourceOwner() ...cccoevvinevinnen. 130
OS_GetSemaValue() .....ccvovviiiiiiiiinnnns 129
OS_GetStackBase() ..o.vvvvvvvvreiiniineinnnns 247
OS_GetStackSize() ..oovvvvviiiiiiiiineinenns 248
OS_GetStackSpace() .coovvvvvviiiiiiiiiinnnn. 249
0OS_GetStackUsed() ...covvvvvvviiiviinennnnen. 250
0OS_GetSysStackBase() ...ccovvvvvviniinnnnn. 251
OS_GetSysStackSize() ....covvvvviiiiiiinnnns 252

UMO01001 User & Reference Guide for embOS

Index

OS_GetSysStackSpace() ..ccvvvvvieiiiirnnnns 253
0OS_GetSysStackUsed() ...covvivvinvineinnnns 254
OS_GetTaskID() +ivvvvierieriieiineriernnennennens 71
0OS_GetTaskName() ..ooovviiiiiiiiiiiiiiieeians 72
OS_GetTime() .vvvvvviiiiieiiri e 299
OS_GetTime_Cycles() ..covveviviiiiiiiinnnnns 377
OS_GetTime32() .ovvvvvriiiiiieieieaeeen, 300
0OS_GetTimerPeriod() ..covvvvvvviieiinnnnnnns 102
0OS_GetTimerPeriodEX() ..covvvvvvvineiinnnn. 114
OS_GetTimerStatus() ..oovvvvviiiiiiieinnnnn. 104
OS_GetTimerStatusEX() ..oevvvvvvvinviinnnns 116
OS_GetTimerValue() ....coovoviiiiiiiiinnnnns 103
OS_GetTimerValueEX() ....ccvvvvviiiiiinnnnns 115
0OS_GetTimeSliceRem() ..ccovvvvvvviieiinnnnens 73
OS_Global.Time . 447
OS_Global.TimeDeX .......ivvvvviiiiiiinennnn. 447
OS_Idle() tvvvviriiriiiiiiiniininnenens 377, 382
OS_INCDI() tivrviiiiiiiiiii i i neeeas 273
OS_InInterrupt() ..covvviiiiiiiiiiiiiiiiennnns 279
OS_INItHW() crviiriiiiiii i nneas 377
OS_INTERRUPT_MaskGlobal() ............. 281
OS_INTERRUPT_PreserveAndMaskGlobal() .
284
OS_INTERRUPT_PreserveGlobal() ........ 283
OS_INTERRUPT_RestoreGlobal() .......... 285
OS_INTERRUPT_UnmaskGlobal() ......... 282
OS_ISR_IX() tevverrnreriemnnerinennernnnnnernnnns 377
OS_ISR_EX() tevverrnrrrnrrnnerininnernnnnnernnnns 377
OS_ISRUNNING() wivviiriiiiiiieiiniierieiieenens 74
OS_ISTask() .ooviieiiiiiiiiiiiiiii e 75
OS_Leavelnterrupt() ....covvvirviiiiiiinnnnns 271
OS_LeaveNestableInterrupt() .............. 278
OS_LeaveRegion() ....coevvviviiiiiiiinninnnnns 293
OS_malloc() .ivvvviiiiiiiiiiii 223, 358
OS_MEMF_AIOC() vvviriiriiiiiiiiiiiieianns 232
OS_MEMF_AllocTimed() ...covviviieiinernnnns 233
OS_MEMF_Create() ..covvvviieiiiiiiiiniinnnnns 230
OS_MEMF_Delete() ..oovvvviiiiiiiiiiininnenns 231
OS_MEMF_FreeBIlock() ...icovvvviievinnrnnnns 236
OS_MEMF_GetBlockSize() ....covvvvnvrnnnns 238
OS_MEMF_GetMaxUsed() ....ccovvvvvennnen. 240
OS_MEMF_GetNumBIlocks() ........ccevuenns 237
OS_MEMF_GetNumFreeBlocks() ........... 239
OS_MEMF_ISINPOOI() .iivvvirvieiiniinennnnns 241
OS_MEMF_Release() ...ccvvvvviiiiiiineninnnns 235
OS_MEMF_Request() ..coovvivviiiiininninnnnns 234
OS_ON_TERMINATE_FUNC ......oovvivvennns 54
OS_PeekMail() .ivvvvvviiiiiiiiiiieieieeen, 163
OS_POWER_GetMask() ..cveevviiiieinennnnn. 369
OS_POWER_UsageDec() ..covvvvvverinnrnnnns 370
OS_POWER_UsagelInc() ..ocovvrvvvevnnennnnns 371
OS_PutMail() .vvvvvriiiiiiii e e 154
OS_PutMaill() .ivvvveiiiiiiiiiiii e, 154
OS_PutMailCond() .vvevvvrviiiiiiiiiiiieienns 155
OS_PutMailCond1() .icovvvviiiiiiiiiiiiiinnenns 155
OS_PutMailFront() ...covvivviiiiiiiiieiens 156
OS_PutMailFrontl() ...cooevvviiiiiiiieinnns 156
OS_PutMailFrontCond() .....cccovvvnvvnnnen. 157
OS_PutMailFrontCond1() ....ccovvvvivvinnnns 157
OS_Q_Clear() iveveereerreiriieiieriennanennenns 186
OS_Q_Create() ..ivvvvirririiiiiiiiiiiiieinnenns 175
OS_Q_Delete() .vvvvrviiiiiiiiiiiinenens 188
0S_Q_GetMessageCnt() ..ccvvvvvivvinvrnnnns 187
OS_Q_GetPtr() .ovvvvviriienineiinnnnnnns 182, 190
OS_Q_GetPtrCond() .vvvvvvvvrriereenninnnnnnn. 183
OS_Q_GetPtrTimed() ...vovvvvveieenninnnnnnn. 184
OS_Q_ISINUSE() +ivvrririiniiiiiiiiiieiinennanns 189

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



OS_Q_Purge() .vvevviiiiiiiiiiiiiii e 185
OS_Q_Put() .evvvvrviiiiiiiinnnnn, 176, 179, 391
0S_Q_PutBlockedEX .....ccvvvvviiiiiiiinnnnnn. 180
OS_Q PULEX() +iivriiiiiiiiiiici i 179
OS_Q_PutTimed() ..covvvvivviiiiiiiiieinnennens 178
OS_Q_PutTimedEX() .ccovvvvvvviiiiiiinnennens 181
OS_realloc() .vovvvvviiiiiiiiiiiiieeans 223, 358
OS_Request() .vivivvrriiriiiiiiiiiienneeaens 128
OS_Restorel() .iivieviiiviiiiiiiiiiiieieee e 274
OS_ReSUME() +iviiriiiiiii i i i eaeas 76
0OS_ResumeAllSuspendedTasks() ........... 77
OS_RetriggerTimer() .....ccvveviieiieninennnnn. 98
OS_RetriggerTimerEX() ...icovvvvvievnnnnnens 110
0S_SendString() +vvvvvvviiiiiiiiiia 401
0S_SetCSemaValue() ...coovvviiiiviiiennnn. 144
0OS_SetlnitialSuspendCnt() ......ccccevvnnenn. 78
OS_SetPriority() covvvvvviiiiiiiiiiieea 80
OS_SetRxCallback() ...covvvvveiiiiiiinninnens 402
OS_SetTaskName() ...covvvvviiiiiniiiiinnnnenns. 81
OS_SetTimerPeriod() ...oovvvvvivviniiiennnns 100
0OS_SetTimerPeriodEX() ...ccovvvvvviinennnen. 112
OS_SetTimeSlice() ..ooivviiiiiiiiiiiiiiiiinanns 82
0S_SignalCSema() .ccvvvvvvviiviiieiiiennnnn, 138
OS_SignalCSemaMax() .....covvvvvneinnnnnnns 139
OS_SignalEvent() .....covveviiiiiiiiiiiininnens 200
OS_Start() .ovvvviiriiiiiii e 83
OS_StartTimer() coovvviiiiiiiiiiiiiii e 96
OS_StartTimerEX() .vvvvvviviiviniieinnnnnens 108
OS_STAT_GetLoad() .covvvvvirviriiieinnennens 386
OS_STAT_Sample() .oovoviiiiiiiiiiiiininens 385
OS_StopTimer() .ovvovvviiiiiiiiiianenenns 97
OS_StopTimerEX() .oovvvvviiviiiiiiniinennnns 109
0S_Suspend() .iivieiiiiiiiii 84
0OS_SuspendAllTasks() .ocovvvieiiiiiiiiiiinnnn. 85
OS_TASK_EVENT .t 194
OS_TerminateTask() ...c.voovvviiiiiieiininnennn. 87
OS_TICK_AddHOOK() .cevvvviiiiiiiiiiinenens 345
OS_TICK_Config() .eevevviiviiniiieiininnennnns 343
OS_TICK_Handle() ..ivvvvivviriiiiieinnennens 340
OS_TICK_HandleEX() .vvvrvvirvrreriennnennens 341
OS_TICK_HandleNoHook() ......ccccevunnee. 342
OS_TICK_RemoveHoOoK() ....ccccvvvvivennnn. 346
OS_Timing_End() .ccovvvviiiiiiiiiiiienens 304
OS_Timing_GetCycles() ...iovvvvviieiininnens 306
OS_Timing_Getus() ...ivovvviiviiiiiiieninnn. 305
OS_Timing_Start() ...ccooevviiiiiiiiennne, 303
OS_TraceData() ..covvvvvviiiiiiiiiiiiiiiananen 424
OS_TraceDataPtr() ....ccooovviiiiiiiiiiennnnn. 425
OS_TraceDisable() ....ccovvviiiiiiiiiinennnns 413
OS_TraceDisableAll() .....ccvvevviiiiiiinennnn. 415
OS_TraceDisableFilterId() ........ccovvvunen. 419
OS_TraceDisableId() .....ccvevvviiviinnnnn. 417
OS_TraceEnable() ....covvvviiiiiiiiiiiiennnnn, 412
OS_TraceEnableAll() ....cocvvvviiiiiiiinnnnnn. 414
OS_TraceEnableFilterId() .......cocevvvvnnens 418
OS_TraceEnableld() .....coovvvvviviinvinennnns 416
OS_TracePtr() .ivvvviriiriiiiiiiiiiiieenneenens 423
OS_TraceU32Ptr() ..ccvvvvviiieiiiiieinnennens 426
OS_TraceVoid() .ovvvivviiiiiiiiiiiiiinennann, 422
OS_UART it e aaaenneas 379
OS_UNUSE() wivviiiiiiiiiiiiiiiieniiieasaeeaens 127
OS_USE() wivriiriiiiiii s ennennens 124
OS_UseTimed() .covvivvirrieriiniineiennnnnnens 126
0OS_WaitCSema() ...oovvvviviiiiiiiiiiiennan, 140
0S_WaitCSemaTimed() ........cevvvinennnen. 141
OS_WaitEvent() ..cooovvvriiniiiiiiiiieiinennens 196
OS_WaitEventTimed() ....cccovvivvieiinennnns 198

UMO01001 User & Reference Guide for embOS

Index 483

OS_WaitMail() coevviiiiiiiiciie 161
OS_WaitMailTimed() ...covvvvvivviiiiieiinenne, 162
0OS_WaitSingleEvent() ....ccccoevviiiiiinnnnns 197
0OS_WaitSingleEventTimed() .........c.o...s 199
OS_WakeTask() .covvvviiviiiiiiiiii i, 88
P
Preemptive multitasking ..........cc.ovvnnnen 32
Priority oo 34
Priority inheritance ..........cccooviiiiininnnnnn. 35
priority iNVErsion .......cccoivvviiiienniiinnennns 35
Profiling ..ovveiiiiii 42
Q
QUEUES .iivviiiiiiiiiiee e 37,171-189
R
Reentrance .......coovviiiiiiiiiiii e 456
Release build, of embOS .........ccvvvvvvvnns 42
Resource semaphores ........c.ccovvvieennnen. 119
Round-robin ...cccoviiiiiiii i i 34
RTOSInit.c configuration ..................... 376
RUNtiMeE €rrors ...cccvvviiviiiii i iiiiiiineenes 438
S
Scheduler ..o 34
SemMAaphOres ....ccvvviiiiiiiii e 37
Counting ..ocviiiiiiii 133-145
Resource ....ocvvvvvviiiiiiiieineens 119-131
Software timer .......coeeviiiiiiienens 91-105
Software timer API functions ................ 93
Stack .o 38, 243-258
Stack pointer ... 38
Stacks
SWItChing ...oviiiiii 39
SUPEFIOOP ceiiiii i 29
Switching stacks ... 39
Syntax, conventions used ..............e.uee. 11
System variables .............ooiieinnnn 445-448
T
Task communication .........ccvvvvieviiinnnnns 37
Task control block ........covviiviiiinnnnnn. 38, 48
TaskS tovviiiiiii 28, 46-47
communication ... 37
global variables ..., 37
multitasking systems ........ccooiinen, 31
periodic polling .....ccoviiiiiiiiiii 37
single-task systems ........ccoeiiiiiiiienn 29
status v 40
8] 01=] o (o] o R PP 29
SWItChing .ovie i 38
TCB ittt e 38
Time measurement ..........coovvvennns 295-309
Time variables ... 447
U
U1 P 396
UART, for embOS ......coviiiiiiiiiienens 380
\"/
Vector table file ..oooviiiii 380

© 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



484 Index

UMO01001 User & Reference Guide for embOS © 1995 - 2016 SEGGER Microcontroller GmbH & Co. KG



	About this document
	Table of Contents
	Introduction to embOS
	1.1 What is embOS
	1.2 Features

	Basic concepts
	2.1 Tasks
	2.1.1 Threads
	2.1.2 Processes

	2.2 Single-task systems (superloop)
	2.2.1 Advantages & disadvantages
	2.2.2 Using embOS in super-loop applications
	2.2.3 Migrating from superloop to multi-tasking

	2.3 Multitasking systems
	2.3.1 Task switches
	2.3.2 Cooperative task switch
	2.3.3 Preemptive task switch
	2.3.4 Preemptive multitasking
	2.3.5 Cooperative multitasking

	2.4 Scheduling
	2.4.1 Round-robin scheduling algorithm
	2.4.2 Priority-controlled scheduling algorithm
	2.4.3 Priority inversion / priority inheritance

	2.5 Communication between tasks
	2.5.1 Periodic polling
	2.5.2 Event-driven communication mechanisms
	2.5.3 Mailboxes and queues
	2.5.4 Semaphores
	2.5.5 Events

	2.6 How task switching works
	2.6.1 Switching stacks

	2.7 Change of task status
	2.8 How the OS gains control
	2.9 Different builds of embOS
	2.9.1 Profiling
	2.9.2 List of libraries
	2.9.3 embOS functions context


	Working with embOS
	3.1 General advice
	3.1.1 Timers or task


	Tasks
	4.1 Introduction
	4.1.1 Example of a task routine as an endless loop
	4.1.2 Example of a task routine that terminates itself

	4.2 Cooperative vs. preemptive task switches
	4.2.1 Disabling preemptive task switches for tasks of equal priority
	4.2.2 Completely disabling preemptions for a task

	4.3 Extending the task context
	4.3.1 Passing one parameter to a task during task creation
	4.3.2 Extending the task context individually at runtime
	4.3.3 Extending the task context by using own task structures

	4.4 API functions
	4.4.1 OS_AddOnTerminateHook()
	4.4.2 OS_CREATETASK()
	4.4.3 OS_CreateTask()
	4.4.4 OS_CREATETASK_EX()
	4.4.5 OS_CreateTaskEx()
	4.4.6 OS_Delay()
	4.4.7 OS_DelayUntil()
	4.4.8 OS_Delayus()
	4.4.9 OS_ExtendTaskContext()
	4.4.10 OS_AddExtendTaskContext()
	4.4.11 OS_GetPriority()
	4.4.12 OS_GetSuspendCnt()
	4.4.13 OS_GetTaskID()
	4.4.14 OS_GetTaskName()
	4.4.15 OS_GetTimeSliceRem()
	4.4.16 OS_IsRunning()
	4.4.17 OS_IsTask()
	4.4.18 OS_Resume()
	4.4.19 OS_ResumeAllSuspendedTasks()
	4.4.20 OS_SetDefaultTaskContextExtension()
	4.4.21 OS_SetInitialSuspendCnt()
	4.4.22 OS_SetPriority()
	4.4.23 OS_SetTaskName()
	4.4.24 OS_SetTimeSlice()
	4.4.25 OS_Start()
	4.4.26 OS_Suspend()
	4.4.27 OS_SuspendAllTasks()
	4.4.28 OS_TaskIndex2Ptr()
	4.4.29 OS_TerminateTask()
	4.4.30 OS_WakeTask()
	4.4.31 OS_Yield()


	Software timers
	5.1 Introduction
	5.2 API functions
	5.2.1 OS_CREATETIMER()
	5.2.2 OS_CreateTimer()
	5.2.3 OS_StartTimer()
	5.2.4 OS_StopTimer()
	5.2.5 OS_RetriggerTimer()
	5.2.6 OS_TriggerTimer()
	5.2.7 OS_SetTimerPeriod()
	5.2.8 OS_DeleteTimer()
	5.2.9 OS_GetTimerPeriod()
	5.2.10 OS_GetTimerValue()
	5.2.11 OS_GetTimerStatus()
	5.2.12 OS_GetpCurrentTimer()
	5.2.13 OS_CREATETIMER_EX()
	5.2.14 OS_CreateTimerEx()
	5.2.15 OS_StartTimerEx()
	5.2.16 OS_StopTimerEx()
	5.2.17 OS_RetriggerTimerEx()
	5.2.18 OS_TriggerTimerEx()
	5.2.19 OS_SetTimerPeriodEx()
	5.2.20 OS_DeleteTimerEx()
	5.2.21 OS_GetTimerPeriodEx()
	5.2.22 OS_GetTimerValueEx()
	5.2.23 OS_GetTimerStatusEx()
	5.2.24 OS_GetpCurrentTimerEx()


	Resource semaphores
	6.1 Introduction
	6.2 API functions
	6.2.1 OS_CreateRSema
	6.2.2 OS_Use()
	6.2.3 OS_UseTimed()
	6.2.4 OS_Unuse()
	6.2.5 OS_Request()
	6.2.6 OS_GetSemaValue()
	6.2.7 OS_GetResourceOwner()
	6.2.8 OS_DeleteRSema()


	Counting Semaphores
	7.1 Introduction
	7.2 API functions
	7.2.1 OS_CREATECSEMA()
	7.2.2 OS_CreateCSema()
	7.2.3 OS_SignalCSema()
	7.2.4 OS_SignalCSemaMax()
	7.2.5 OS_WaitCSema()
	7.2.6 OS_WaitCSemaTimed()
	7.2.7 OS_CSemaRequest()
	7.2.8 OS_GetCSemaValue()
	7.2.9 OS_SetCSemaValue()
	7.2.10 OS_DeleteCSema()


	Mailboxes
	8.1 Introduction
	8.2 Basics
	8.3 Typical applications
	8.3.1 A keyboard buffer
	8.3.2 A buffer for serial I/O
	8.3.3 A buffer for commands sent to a task

	8.4 Single-byte mailbox functions
	8.5 API functions
	8.5.1 OS_CreateMB()
	8.5.2 OS_PutMail() / OS_PutMail1()
	8.5.3 OS_PutMailCond() / OS_PutMailCond1()
	8.5.4 OS_PutMailFront() / OS_PutMailFront1()
	8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
	8.5.6 OS_GetMail() / OS_GetMail1()
	8.5.7 OS_GetMailCond() / OS_GetMailCond1()
	8.5.8 OS_GetMailTimed()
	8.5.9 OS_WaitMail()
	8.5.10 OS_WaitMailTimed()
	8.5.11 OS_PeekMail()
	8.5.12 OS_Mail_GetPtr()
	8.5.13 OS_Mail_GetPtrCond()
	8.5.14 OS_Mail_Purge()
	8.5.15 OS_ClearMB()
	8.5.16 OS_GetMessageCnt()
	8.5.17 OS_DeleteMB()


	Queues
	9.1 Introduction
	9.2 Basics
	9.3 API functions
	9.3.1 OS_Q_Create()
	9.3.2 OS_Q_Put()
	9.3.3 OS_Q_PutBlocked()
	9.3.4 OS_Q_PutTimed()
	9.3.5 OS_Q_PutEx()
	9.3.6 OS_Q_PutBlockedEx()
	9.3.7 OS_Q_PutTimedEx()
	9.3.8 OS_Q_GetPtr()
	9.3.9 OS_Q_GetPtrCond()
	9.3.10 OS_Q_GetPtrTimed()
	9.3.11 OS_Q_Purge()
	9.3.12 OS_Q_Clear()
	9.3.13 OS_Q_GetMessageCnt()
	9.3.14 OS_Q_Delete()
	9.3.15 OS_Q_IsInUse()
	9.3.16 OS_Q_GetMessageSize()
	9.3.17 OS_Q_PeekPtr()


	Task events
	10.1 Introduction
	10.2 API functions
	10.2.1 OS_WaitEvent()
	10.2.2 OS_WaitSingleEvent()
	10.2.3 OS_WaitEventTimed()
	10.2.4 OS_WaitSingleEventTimed()
	10.2.5 OS_SignalEvent()
	10.2.6 OS_GetEventsOccurred()
	10.2.7 OS_ClearEvents()


	Event objects
	11.1 Introduction
	11.2 API functions
	11.2.1 OS_EVENT_Create()
	11.2.2 OS_EVENT_CreateEx()
	11.2.3 OS_EVENT_Wait()
	11.2.4 OS_EVENT_WaitTimed()
	11.2.5 OS_EVENT_Set()
	11.2.6 OS_EVENT_Reset()
	11.2.7 OS_EVENT_Pulse()
	11.2.8 OS_EVENT_Get()
	11.2.9 OS_EVENT_Delete()
	11.2.10 OS_EVENT_SetResetMode()
	11.2.11 OS_EVENT_GetResetMode()

	11.3 Examples of using event objects
	11.3.1 Activate a task from interrupt by an event object
	11.3.2 Activating multiple tasks using a single event object


	Heap type memory management
	12.1 Introduction
	12.2 API functions
	12.2.1 OS_malloc()
	12.2.2 OS_free()
	12.2.3 OS_realloc()


	Fixed block size memory pools
	13.1 Introduction
	13.2 API functions
	13.2.1 OS_MEMF_Create()
	13.2.2 OS_MEMF_Delete()
	13.2.3 OS_MEMF_Alloc()
	13.2.4 OS_MEMF_AllocTimed()
	13.2.5 OS_MEMF_Request()
	13.2.6 OS_MEMF_Release()
	13.2.7 OS_MEMF_FreeBlock()
	13.2.8 OS_MEMF_GetNumBlocks()
	13.2.9 OS_MEMF_GetBlockSize()
	13.2.10 OS_MEMF_GetNumFreeBlocks()
	13.2.11 OS_MEMF_GetMaxUsed()
	13.2.12 OS_MEMF_IsInPool()


	Stacks
	14.1 Introduction
	14.1.1 System stack
	14.1.2 Task stack
	14.1.3 Interrupt stack
	14.1.4 Stack size calculation
	14.1.5 Stack-check

	14.2 API functions
	14.2.1 OS_GetStackBase()
	14.2.2 OS_GetStackSize()
	14.2.3 OS_GetStackSpace()
	14.2.4 OS_GetStackUsed()
	14.2.5 OS_GetSysStackBase()
	14.2.6 OS_GetSysStackSize()
	14.2.7 OS_GetSysStackSpace()
	14.2.8 OS_GetSysStackUsed()
	14.2.9 OS_GetIntStackBase()
	14.2.10 OS_GetIntStackSize()
	14.2.11 OS_GetIntStackSpace()
	14.2.12 OS_GetIntStackUsed()


	Interrupts
	15.1 What are interrupts?
	15.2 Interrupt latency
	15.2.1 Causes of interrupt latencies
	15.2.2 Additional causes for interrupt latencies
	15.2.3 How to detect the cause for high interrupt latency

	15.3 Zero interrupt latency
	15.4 High / low priority interrupts
	15.4.1 Using OS functions from high priority interrupts

	15.5 Rules for interrupt handlers
	15.5.1 General rules
	15.5.2 Additional rules for preemptive multitasking

	15.6 API functions
	15.6.1 OS_CallISR()
	15.6.2 OS_CallNestableISR()
	15.6.3 OS_EnterInterrupt()
	15.6.4 OS_LeaveInterrupt()

	15.7 Enabling / disabling interrupts from C
	15.7.1 OS_IncDI() / OS_DecRI()
	15.7.2 OS_DI() / OS_EI() / OS_RestoreI()

	15.8 Definitions of interrupt control macros (in RTOS.h)
	15.9 Nesting interrupt routines
	15.9.1 OS_EnterNestableInterrupt()
	15.9.2 OS_LeaveNestableInterrupt()
	15.9.3 OS_InInterrupt()

	15.10 Global interrupt enable / disable
	15.10.1 OS_INTERRUPT_MaskGlobal()
	15.10.2 OS_INTERRUPT_UnmaskGlobal()
	15.10.3 OS_INTERRUPT_PreserveGlobal()
	15.10.4 OS_INTERRUPT_PreserveAndMaskGlobal()
	15.10.5 OS_INTERRUPT_RestoreGlobal()
	15.10.6 OS_INT_PRIO_PRESERVE()
	15.10.7 OS_INT_PRIO_RESTORE()

	15.11 Non-maskable interrupts (NMIs)

	Critical Regions
	16.1 Introduction
	16.2 API functions
	16.2.1 OS_EnterRegion()
	16.2.2 OS_LeaveRegion()


	Time measurement
	17.1 Introduction
	17.2 Low-resolution measurement
	17.2.1 API functions

	17.3 High-resolution measurement
	17.3.1 API functions

	17.4 Example
	17.5 Microsecond precise system time
	17.5.1 API functions
	17.5.2 OS_GetTime_us()
	17.5.3 OS_GetTime_us64()
	17.5.4 OS_Config_SysTimer()


	MPU - Memory protection
	18.1 Introduction
	18.1.1 Privilege states
	18.1.2 Code organization

	18.2 Memory Access permissions
	18.2.1 Default memory access permissions
	18.2.2 Interrupts
	18.2.3 Access to additional memory regions
	18.2.4 Access to OS objects

	18.3 ROM placement of embOS
	18.4 Allowed embOS API in unprivileged tasks
	18.5 Device driver
	18.5.1 Concept

	18.6 API functions
	18.6.1 OS_MPU_Enable()
	18.6.2 OS_MPU_EnableEx()
	18.6.3 OS_MPU_ConfigMem()
	18.6.4 OS_MPU_SetAllowedObjects()
	18.6.5 OS_MPU_AddRegion()
	18.6.6 OS_MPU_SetErrorCallback()
	18.6.7 OS_MPU_SwitchToUnprivState()
	18.6.8 OS_MPU_SetDeviceDriverList()
	18.6.9 OS_MPU_CallDeviceDriver()
	18.6.10 OS_MPU_GetThreadState()
	18.6.11 OS_MPU_ExtendTaskContext()


	System tick
	19.1 Introduction
	19.2 Tick handler
	19.2.1 API functions

	19.3 Hooking into the system tick
	19.3.1 API functions

	19.4 Tickless support
	19.4.1 OS_Idle()
	19.4.2 Callback Function
	19.4.3 API functions
	19.4.4 Frequently Asked Questions


	Multi-core support
	20.1 Introduction
	20.2 Spinlocks
	20.2.1 Usage of spinlocks with embOS
	20.2.2 API functions


	Low power support
	21.1 Introduction
	21.2 API functions
	21.2.1 OS_POWER_GetMask()
	21.2.2 OS_POWER_UsageDec()
	21.2.3 OS_POWER_UsageInc()
	21.2.4 Example

	21.3 STOP / WAIT Mode

	Configuration of target system (BSP)
	22.1 Introduction
	22.2 Hardware-specific routines
	22.2.1 OS_Idle()

	22.3 Configuration defines
	22.4 How to change settings
	22.4.1 Setting the system frequency OS_FSYS
	22.4.2 Using a different timer to generate tick interrupts for embOS
	22.4.3 Using a different UART or baudrate for embOSView
	22.4.4 Changing the tick frequency

	22.5 STOP / HALT / IDLE modes

	Profiling
	23.1 API functions
	23.1.1 OS_STAT_Sample()
	23.1.2 OS_STAT_GetLoad()
	23.1.3 Sample application for OS_STAT_Sample() and OS_STAT_GetLoad()
	23.1.4 OS_AddLoadMeasurement()
	23.1.5 OS_GetLoadMeasurement()
	23.1.6 OS_CPU_Load
	23.1.7 OS_STAT_Enable()
	23.1.8 OS_STAT_Disable()
	23.1.9 OS_STAT_GetTaskExecTime()


	embOSView: Profiling and analyzing
	24.1 Overview
	24.2 Task list window
	24.3 System variables window
	24.4 Sharing the SIO for terminal I/O
	24.5 API functions
	24.5.1 OS_SendString()
	24.5.2 OS_SetRxCallback()

	24.6 Enable communication to embOSView
	24.7 Select the communication channel in the start project
	24.7.1 Select a UART for communication
	24.7.2 Select J-Link for communication
	24.7.3 Select Ethernet for communication

	24.8 Setup embOSView for communication
	24.8.1 Select a UART for communication
	24.8.2 Select J-Link for communication
	24.8.3 Select Ethernet for communication
	24.8.4 Use J-Link for communication and debugging in parallel
	24.8.5 Restrictions for using J-Link with embOSView

	24.9 Using the API trace
	24.10 Trace filter setup functions
	24.11 API functions
	24.11.1 OS_TraceEnable()
	24.11.2 OS_TraceDisable()
	24.11.3 OS_TraceEnableAll()
	24.11.4 OS_TraceDisableAll()
	24.11.5 OS_TraceEnableId()
	24.11.6 OS_TraceDisableId()
	24.11.7 OS_TraceEnableFilterId()
	24.11.8 OS_TraceDisableFilterId()

	24.12 Trace record functions
	24.13 API functions
	24.13.1 OS_TraceVoid()
	24.13.2 OS_TracePtr()
	24.13.3 OS_TraceData()
	24.13.4 OS_TraceDataPtr()
	24.13.5 OS_TraceU32Ptr()

	24.14 Application-controlled trace example
	24.15 User-defined functions

	Performance and resource usage
	25.1 Introduction
	25.2 Memory requirements
	25.3 Performance
	25.4 Benchmarking
	25.4.1 Measurement with port pins and oscilloscope


	Debugging
	26.1 Runtime errors
	26.1.1 OS_DEBUG_LEVEL

	26.2 List of error codes
	26.3 Application defined error codes

	System variables
	27.1 Introduction
	27.2 Time variables
	27.2.1 OS_Global
	27.2.2 OS_Global.Time
	27.2.3 OS_Global.TimeDex

	27.3 OS internal variables and data-structures
	27.4 OS information routines
	27.4.1 OS_GetCPU()
	27.4.2 OS_GetLibMode()
	27.4.3 OS_GetModel()
	27.4.4 OS_GetLibName()
	27.4.5 OS_GetVersion()


	Supported development tools
	28.1 Overview

	Source code of kernel and library
	29.1 Introduction
	29.2 Building embOS libraries
	29.3 Major compile time switches
	29.4 Source code project

	embOS shipment
	30.1 General information
	30.1.1 Object code shipment
	30.1.2 Source code shipment
	30.1.3 Trial shipment


	Update
	31.1 Introduction
	31.2 How to update an existing project
	31.2.1 My project does not work anymore. What did I do wrong?


	Support
	32.1 Contacting support

	FAQ (frequently asked questions)
	Glossary
	Index
	B
	C
	D
	E
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V


