embOS

Real Time Operating System
Software Version 3.30
CPU independent

User’s & reference manual
Document revision 5
/ SEGGER

A product of SEGGER Microcontroller Systeme GmbH

2/169 User's & reference manual for embOS real time OS

Disclaimer

The information in this document is subject to change without notice. While the
information herein is assumed to be accurate, SEGGER MICROCONTROLLER
SYSTEME GmbH (the manufacturer) assumes no responsibility for any errors
or omissions.

The author makes and you receive no warranties or conditions, express, im-
plied, statutory or in any communications with you. The manufacturer specifi-
cally disclaims any implied warranty of merchantability or fitness for a particular
purpose.

Copyright notice

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the manufac-
turer. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license. If
you have received this product as a trial version for evaluation, you are entitled
to evaluate it, but you may under no circumstances use it in a product. If you
want to do so, you must obtain a fully licensed version from the manufacturer.

© 1996 - 2005 Segger Microcontroller Systeme GmbH

Trademarks

Names mentioned in this manual may be trademarks of their respective com-
panies. Brand and product names are trademarks or registered trademarks of
their respective holders.

Registration

Please register the software via email. This way we can make sure you will re-
ceive updates or notifications of updates as soon as they become available. For
registration please provide the following information:

Company name and address

Your name

Your job title

Your email address and telephone number
Name and version of the product

Please send this information to: register@segger.com.

Contact address

SEGGER Microcontroller Systeme GmbH
Heinrich-Hertz-Strasse 5

D-40721 Hilden

Germany

Tel.: +49-2103-2878-0

Fax: +49-2103-2878-28

Email : support@segger.com

Internet: http://www.segger.com/

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 3/169

Software and manual versions

This manual describes the software version 3.26. If any error occurs, please in-
form us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact
us.

Print date: 22.05.2006

Software Manual | Date By | Explanation

3.30 5 060519 | AW | Chapter 4.8: OS_Suspend() modified. Passing a NULL pointr is allowed since
version 3.30b of embOS.
Chapter 16.1.1: Data type of variable OS_Time corrected

3.28 4 051109 | AW | Chapter 7: OS_SignalCSemaMax() function added.
Chapter14: Explanation of interrupt latencies and high / low priorities added

3.28 3 050926 | AW | Chapter 6: OS_DeleteRSema() function added.
3.28 2 050707 | AW | Chapter 4: OS_GetSuspendCnt() function added.
3.28 1 050425 | AW | Version number changed to 3.28 to fit current embOS version.

Chapter 18.1.2; Type of return value of OS_GetTime32() corrected.

3.26 050209 | AW | Chapter 4: OS_Terminate() modified due to new features of version 3.26.
Chapter 24: Source code version: additional compile time switches and build
process of libraries explained more in detail.

3.24 041115 | AW | Chapter 6: Some prototype declarations showed type OS_SEMA instead of
OS_RSEMA. Corrected.
3.22 1 040816 | AW | Chapter 8: New Mailbox functions added

OS_PutMailFront()
OS_PutMailFront1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()

3.20 5 040621 | RS | Software timers: Maximum timeout values and OS_TIMER_MAX_TIME de-
AW | scribed.

Chapter 14: Description of rules for interrupt handlers revised.
OS_LeaveNestablelnterruptNoSwitch() added which was not described before.

3.20 4 040329 | AW | OS_CreateCSema() prototype declaration corrected. Return type is void.
0S_Q_GetMessageCnt() prototype declaration corrected.
0OS_Q_Clear() function description added.

OS_MEMF _FreeBlock() prototype declaration corrected.

3.20 3 040204 | AW | OS_CREATEMB() Range for parameter MaxnofMsg corrected. Upper limit is
65535, but was declared 65536 in previous manuals.

3.20 2 031128 | AW | Code samples modified: Task stacks defined as array of int, because most
CPUs require alignment of stack on integer aligned addresses.

3.20 1 031016 | AW | Chapter 4: Type of task priority parameter corrected to unsigned char.

Chapter 4: OS_DelayUntil(): Sample program modified.

Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resume() added.

Chapter 5: OS_GetTimerValue(): Range of return value corrected.

Chapter 6: Sample program for usage of resource semaphores modified.
Chapter 6: OS_GetResourceOwner(): Type of return value corrected.
Chapter 8: OS_CREATEMB(): Types and valid range of parameter corrected.
Chapter 8: OS_WaitMail() added

Chapter 10: OS_WaitEventTimed(): Range of timeout value specified.

3.12 1 021015 | AW | Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

3.10 3 020926 | KG | Index and glossary revised.

020924 | KG | Section 16.3 (Example) added to Chapter 16 (Time-related routines).
020910 | KG | Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multitasking, nested
interrupts, low-res and hi-res measurement.

Section 1.3 (Typographic conventions) changed to table.

Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains control).

Chapter 4 (Configuration for your target system) moved to after Chapter 15
(System variables).

Chapter 16 (Time-related routines) added.

© 1996-2006 Segger Microcontroller Systeme GmbH

4/169 User's & reference manual for embOS real time OS

Contents
Do = 1 o 1= PP 2
COPYIIGNT NOTICE ... 2
LI =0 [T 0 =T 6T PSP UUPPPPTPPRTPIN 2
REGISIIAtION ...ttt e et e e et neee e e e 2
CONTACE AAAIESS ...t 2
Software and ManUal VEISIONS e e e e e e e e 3
L0} 01 (T o1 £ 4
1. ADOUL thiS AOCUMENT e e e e e eeennnnes 8
1.1 ASSUMPLIONS ..ottt e e et e e e e et e e e e e e e e e eaaaeeeeees 8
1.2. How to use thismanual ... 8
1.3. Typographic conventions fOr Syntaxcccooeeeviiiiiiiiii e 8
2. INtroduction t0 @MIDOSe s 9
2. 1. What iS @MIDOST? ..ottt te st atsstssssessesnnnsnnnnnnnes 9
A o == (1] (= SRR 9
T = 2=] (o ofo] g Tod=T o) £ TSRS 11
B g O 1= 1 €T 11
3.2. Single-task system (SUPEOOP).......oiiiiiiiiiiiiicce e 11
3.3. MUltItasking SYSIEMIS.......uuuuiiiiiiiiiiiiiiii e 12
K I S 1] =T 11] 1] o [PPSR 13
3.5. Communication between taskscooiiiiiiiiiiiii e 15
3.6. HOW task-SWitChing WOIKSoiiiiiiiiiece e 16
3.7. SWItCHING SACKSuuiiiiiiiiiiiiiiiiiiiii s 17
3.8. Change of task status..........cooviiiiiiii e 18
3.9. How the OS gains CONTIOluuuiiiiiiiiiiiiiiiiiiii i 19
3.10. Different builds of @mbOS..................ouumiiiiiiiii s 20
4. TaSK MOULINES. ...ttt e e e e e e e e ettt e e e e e e eaeeeesnnnneeeeeeeeeennnnnes 22
4.1. OS_CREATETASK(): Create atask........cccoeeeeieiiiiiiiiiiiie e 23
4.2. OS_CreateTask(): Create @ task ... 25
4.3. OS_Delay(): Suspend for fixed timeueiiiiieiiiic e 27
4.4. OS_DelayUntil(): Suspend Untiluuuuemmmmmmii 28
4.5. OS_SetPriority(): Change priority of a task..........ccovvviieiiiiiii . 29
4.6. OS_GetPriority(): Retrieve priority of @ task..............cooiiiiiis 30
4.7. OS_SetTimeSlice(): Change timeslice of atask.........ccccoooevviiiiiiiiiiiiiiie. 31
4.8. OS_Suspend(): Suspend @ taskoooeuiiuiiiiii i 32
4.9. OS_Resume(): Restarts a suspended taskceeeeiiiiiiiiiiciii e 33
4.10. OS_GetSuspendCnt(): Retrieve suspension count of a task.............cccccceeee.. 34
4.11. OS_Terminate(): Terminate @ taskccccoovieiiiiiiiiiiii e 35
4.12. OS_WakeTask(): Resume a time suspended task.................eeveeeieieiiiinnnnnnnnnns 36
4.13. OS_IsTask(): Check whether ataskisvalid............c..coooiiiiiiiiiiiii, 37
4.14. OS_GetTaskID(): Retrieve ID of current taskcccccooiiiiiiiiiiiiiis 38
4.15. OS_GetpCurrentTask(): Retrieve TCB of currenttaskcccooeeevvvviinnnnnnnn. 39
5. SOWAIE HIMEIS ... e et e e e e e e e e e eeaa e e e e e e eeeneees 40
5.1. OS_CREATETIMER(): Create a software timerccooevviriiiiiiiiiieieee 41
5.2. OS_CreateTimer(): Create a software timer..............cccooiiiiiiiiiiiiie 42
5.3. OS_StartTimer(): Start a timer..........oooemiiii e 43
5.4. OS_StopTimer(): Stop @ timercoooiiiieii e 44
5.5. OS_RetriggerTimer(): Restart a timer............ccooorimmiiiii e, 45
5.6. OS_SetTimerPeriod(): Set restart valueouuiiiiiiiiiiiiiiiiiis 46
5.7. OS_DeleteTimer(): Delete a timeruoieiiiiiiiiiccee e 47
5.8. OS_GetTimerPeriod(): Retrieve restart value...................uuuiiiiiiiiiiiiiiiiiiies 48
5.9. OS_GetTimerValue(): Retrieve remaining timecccoooeiiiiiiiiiiiiiii e, 49
5.10. OS_GetTimerStatus(): Retrieve timer status ... 50
5.11. OS_GetpCurrentTimer(): Retrieve current timer..............cccovvviiiiiiee e 51

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 5/169

6. RESOUICe SEMAPNOIESuiiiii e e e e e e e e e e e e e eeannnnes 52
6.1. OS_CREATERSEMA(): Create resource semaphoreccccccceeeeeeeeeeeeinnnnnnnn. 55
6.2. OS_USE(): USE @ FESOUICE......cceeieieeeeeeeeeeee e 56
6.3. OS_Unuse(): RElease @ rESOUICE.........cciieieiiiieeiice e 58
6.4. OS_Request(): Request @ reSOUICE.........ccceeeiiiieiiiiiee e 59
6.5. OS_GetSemaValue(): Retrieve usage counter valueccccccceeeeeeeeeeeeeinnnnnn. 60
6.6. OS_GetResourceOwner(): Retrieve blocking task.............ccccco, 61
6.7. OS_DeleteRSema(): Delete a resource semaphore............cccevvvcieeeeeeeeieiinnnnnnn. 62
7. Counting SEeMAPNOIES. 63
7.1. OS_CREATECSEMA(): Create counting semaphore...........ccccccceeeeeiieveveiinnnnnnn. 64
7.2. OS_CreateCSema(): Create counting semaphoreuuuveeeeeiiniiiiinnnnnnnnns 65
7.3. OS_SignalCSema(): Increment counterooovviiiiiiiiiiiiiiicce e 66
7.4. OS_SignalCSemaMax(): Increment counter upto a maximum value................. 67
7.5. OS_WaitCSema(): Decrement COUNLErcccoeeiiiiiiiiiiiii e 68
7.6. OS_WaitCSemaTimed(): Decrement counter with timeoutcc....... 69
7.7. OS_GetCSemaValue(): Retrieve counter value...............coooovvviiiiiieeieeeeeeen, 70
7.8. OS_DeleteCSema(): Delete a counting semaphorecoooiiiiniiiiiieiinnnnnnn. 71
8. MAIIDOXES ...ttt e e e e aeaaaee 72
8.1. WY MaIIDOXEST ... 72
B2, BaASICS ..ttt et e e e 72
LSRG T Y/ o Toz= | IF=T o] o L oz=1 1o o 1S 73
8.4. OS_CREATEMB(): Create @ MailbOXcccceeviiiiiiiiiiiii e 74
8.5. Single-byte MailboX FUNCHIONSuuii e 75
8.6. OS_PutMail() / OS_PutMail1(): Store a message.........ccceevveeriveiiiiieeeeeeeeiiinnn 76
8.7. OS_PutMailCond() / OS_PutMailCond1(): Store a message if possible............ 77
8.8. OS_PutMailFront() / OS_PutMailFront1(): Store a message in front into a
=1 oo) PP 78
8.9. OS_PutMailFrontCond() / OS_PutMailFrontCond1(): Store a message in front
iNto @ MailbOX if POSSIDIE.......coeieie e e 79
8.10. OS_GetMail() / OS_GetMail1(): Retrieve a messageeeeeveeeeveeeeiinnnnnnn. 80
8.11. OS_GetMailCond() / OS_GetMailCond1(): Retrieve a message if possible 81
8.12. OS_GetMailTimed(): Retrieve a message within a given time......................... 82
8.13. OS_WaitMail(): Wait until a mail is available ... 83
8.14. OS_ClearMB(): Empty @ mailbOX........oouvuuiiiiiiiiiicee e 84
8.15. OS_GetMessageCnt(): Get number of messages in mailboX............ccccceeeee. 85
8.16. OS_DeleteMB(): Delete a MailboX.........ccoeeeiiiiiiiiiiiiiiiee e 86
9. QUEBUES ... e e e e e e e e e e e e e e e e aaaaaa s 87
0.1, WY QUEBUEBS? ...ttt e e e e e e ettt eeeennnnanas 87
S = 7= 1= [P 87
9.3. OS_Q_Create(): Create @ MeSSage QUEUEeuuuerrrrreremmmmmnnnnnnnnnnnnnnnnnnnnnnnns 88
9.4. OS_Q_Put(): StOre MESSAJEeuvvveiiiirriiiiiiiiiiiiiiiiiiiiii e 89
9.5. OS_Q_GetPtr(): Retrieve MeSSagecccoiiiiiii e 90
9.6. OS_Q_GetPtrCond(): Retrieve message if possible...........ccoooviiiiiiiiiiieiiiinnnn. 91
9.7. OS_Q_Purge(): Delete one message in QUEUEeueeeuveveiieieieeniiiiinniiiiiinnnnns 92
9.8. OS_Q_Clear(): Delete all messages in QUEUEccceeeeriieeiiiiiiiieee e 93
9.9. OS_Q_GetMessageCnt(): Get number of messages in queue............ccc..uuueeee. 94
TR =T o | (U 95
10.1. OS_WaitEvent(): Wait for event, then clear all events................ccoovvvieeene. 96
10.2. OS_WaitSingleEvent(): Wait for event, then clear masked events only 97
10.3. OS_WaitEventTimed():Wait for event with timeoutccceii 98
10.4. OS_WaitSingleEventTimed(): Wait for event, then clear masked events, with
L0 L= 0 U | PP SPRPPPPPPPIN 99
10.5. OS_SignalEvent(): Signal a task that an event has occured 100
10.6. OS_GetEventsOccured(): Get a listof eventsccoooviiiiiiiiiii. 102
10.7. OS_ClearEvents(): Clear list of events ... 103
11. Heap type memory managementooi i et 104

© 1996-2006 Segger Microcontroller Systeme GmbH

6/169 User's & reference manual for embOS real time OS

I T e = =T = o o PSR 104
12. Fixed block Siz€ MemOry POOISoovuuuiiiiie e e e et e e e e e eeennans 105
(P IR L o B = =T = o PR 105
12.2. OS_MEMF_Create(): Create a fixed size memory pool...........ccceeeeeevveevnnnnnnn. 105
12.3. OS_MEMF_Delete(): Delete a fixed size memory poolcccoeeeviiiieeneeenn. 106
12.4. OS_MEMF_Alloc(): Retrieve one block from memory poolccccoun. 107
12.5. OS_MEMF_AllocTimed(): Retrieve block with timeout..............cccoooiiiieinnn. 107
12.6. OS_MEMF_Request(): Retrieve memory block if available........................... 108
12.7. OS_MEMF_Release(): Free a memory block in poolcccccoeiiiiiiiiiinnnnnn. 108
12.8. OS_MEMF_FreeBlock(): Free a memory blocK............ccoooviiiiiiiiiiiiiiiei. 109
12.9. OS_MEMF_GetNumBIlocks(): Returns number of blocks in pool 109
12.10. OS_MEMF_GetBlockSize(): Returns size of one memory block................. 110

12.11. OS_MEMF_GetNumFreeBlocks(): Returns number of free blocks in pool.. 110
12.12. OS_MEMF_GetMaxUsed(): Returns max. number of used blocks in pool.. 110

12.13. OS_MEMF_IsInPool(): Check if block belongs to pool............ccccoeeiiieenennn. 111
13, S ACKS s 112
13,1, SYSEM STACK ... 113
13,2, TASK StACK. ..o 113
13.3. INtErrUPE StACK ... e e 113
13.4. OS_GetStaCKkSPaCE() ..evvvrrrrnieeieeeeieeiee et e e e e e 114
3 0 =T 4 B o) € EEPRPUPR 115
141, INterrUPt IatENCY ... e 115
14.2. Zero iNterrupt [atENCY ... 116
14.3. High / low priority iINterruptsoooommiiiii e 116
14.4. Rules for interrupt handlers ... 118
14.5. Calling embOS routines from within an ISR...............iii . 119
14.6. Enabling / disabling interrupts from "C" ... 121
14.7. Definitions of interrupt control macros (in RTOS.h)coooviiiiiiiiiii, 122
14.8. Nesting interrupt rOULINES ... 123
14.9. Non-maskable interrupts (NMIS)ouuoiiiiiieiee e 126
15. Critical regioNScooiiiii 127
15.1. OS_EnterRegion(): Enter critical region..............ceeiiiiiiiiiiiicie e, 128
15.2. OS_LeaveRegion(): Leave critical regionccccooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 129
16. SYSIEM VAriAbIESo aaaaa 130
16.1. TIME Variables........ccoo oo 130
16.2. OS internal variables and data-structures..............cccccooiiiiiiiiiiiiiiiiie e, 130
17. Configuration for your target system (RTOSINIT.C)oooviiiiiiiiiiiieeeee 131
17.1. Hardware-specifiC FOULINEScooviiiiiiiiiicc e 131
17.2. Configuration defiNES...... ... 131
17.3. How to change Settingsooiiiiiiiiie e 132
A O S T O N] 133
18. Time-related routineSooooiiii i 134
18.1. Low-resolution measurementooouuiiiiii i 134
18.2. High-resolution measurement...............ooiiiiiieiiiiicceee e 136
18.3. EXAMPIE ... 139
19. STOP / HALT /IDLE MOAEScooeiieeeeeee e 141
20. embOSView: profiling and @analyZing..........cccoo 142
P20t B @ Y= T SRR 142
20.2. TasK liSt WINAOW..........oiiiieieeee e e e e e e e eeeeees 143
20.3. System variables WINAOW..............oiiiiiiiiiiiiiie e eeaeeeees 143
20.4. Sharing the SIO for terminal [/Oouuiiiiiiiiii 143
20.5. USING the APLIracCe.......ccoeeeeeeece et e e e eeaaees 145
20.6. Trace filter setup fUNCLIONS.........ooii i 147
20.7. Trace record fUNCHONScoiiiiiiiiiiiiiiiiiiiie ettt eeeeeeeeeeeennnes 150
20.8. Application-controlled trace exampleoooooriiiiiiiii e 153
20.9. User-defined fUNCHIONS.........coiiiiiiiiiiiiiiiiiiieeeeeee e 154

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 7/169

21.DebUggINgcooiiiiiie 155
21.1. RUN HIME EITOIS ...t e e e e e e e e e e 155
21.2. List Of €IrOr COAES ... 156

22. Supported development tOOIS.cooovviiiiii e 158

23, LIMIAIONS ... 159

24. Source code of kernel and library...........ooooveeeieiiiie e 160
24 1. Building @embOS liDrariesc..uueeiiiiiiiiiiieeee e 160
24.2. Major compile time SWItChesSuuiiiiiiiiic e 161

25. AdditioNal MOAUIES ..o e e e e e e e e e e eeeannes 163
25.1. Keyboard manager: KEYMAN.C ... 163
25.2. Additional libraries and modules.............ccoooo i 164

26. FAQ (frequently asked QUESTIONS).......ccoiiiiiiiiiiiieeeeeeeeeeeeee e 165

GlOSSANY .., 166

T L PP 168

© 1996-2006 Segger Microcontroller Systeme GmbH

8/169 User's & reference manual for embOS real time OS

1. About this document

This guide describes the functionality and user APl of embOS Real Time Op-
erating System.

1.1. Assumptions

This document assumes that you already have a solid knowledge of the follow-
ing:

e The software tools used to build your application (assembler, linker, "C"
compiler)

e The “C” programming language

e The target processor

e DOS command line

If you feel that your knowledge of “C” is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, also covers
the ANSI “C” standard.

1.2. How to use this manual

This manual explains all the functions and macros that embOS offers. How-
ever, it does cover the entire subject of real time programming. It assumes you
have a working knowledge of the “C” language. Knowledge of assembly pro-
gramming is not required.

The intention of this manual is to give you a CPU- and compiler-independent in-
troduction to embOS and to be a reference for all embOS API functions.

For a quick and easy startup with embOS, please refer to Chapter 2 in the
CPU & Compiler Specifics manual of embOS documentation, which includes a
step-by-step introduction to using embOS.

1.3. Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Text that you enter at the command-prompt or that appears on

K
eyword the display (i.e. system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.
Emphasis Very important sections.
Term Important terms.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 9/169

2. Introduction to embOS

2.1. What is embOS?

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real time applications for a
variety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum mem-
ory consumption in both RAM and ROM, as well as high speed and versatility.

2.2. Features

Throughout the development process of embOS, the limited resources of mi-
crocontrollers have always been kept in mind. The internal structure of the real
time operating system (RTOS) has been optimized in a variety of applications
with different customers, over a period of more than 5 years, to fit the needs of
the industry. Fully source-compatible RTOS are available for a variety of micro-
controllers, making it well worth the time and effort to learn how to structure real
time programs with real time-operating systems.

embOS is highly modular. This means that only those functions that are
needed are linked, keeping the ROM size very small. The minimum memory
consumption is little more than 1 kb of ROM and about 30 bytes of RAM (plus
memory for stacks). A couple of files are supplied in source code form to make
sure that you do not lose any flexibility by using embOS and that you can cus-
tomize the system to fully fit your needs.

The tasks that are created by the programmer can easily and safely communi-
cate with each other using a complete palette of communication mechanisms
such as semaphores, mailboxes and events.

© 1996-2006 Segger Microcontroller Systeme GmbH

10/169

User's & reference manual for embOS real time OS

Some features of embOS include:

Preemptive scheduling:

Guarantees that of all tasks in READY state the one with the highest
priority executes, except for situations where priority inversion applies.
Round-robin scheduling for tasks with identical priorities.

Preemptions can be disabled for entire tasks or for sections of a pro-
gram.

Up to 255 priorities:

Every task can have an individual priority = the response of tasks can
be precisely defined according to the requirements of the application.
Unlimited number of tasks

(limited only by the amount of available memory).

Unlimited number of semaphores

(limited only by the amount of available memory).

2 types of semaphores: resource and counting.

Unlimited number of mailboxes

(limited only by the amount of available memory).

Size and number of messages can be freely defined when initializing
mailboxes.

Unlimited number of software timers

(limited only by the amount of available memory).

8-bit events for every task.

Time resolution can be freely selected (default is 1ms).

Easily accessible time variable.

Power management:

Unused calculation time can automatically be spent in halt mode =
power-consumption is minimized.

Full interrupt support:

Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.

Interrupts can wake up or suspend tasks and directly communicate with
tasks using all available communication instances (mailboxes, sema-
phores, events).

Very short interrupt disable-time = short interrupt latency time.

Nested interrupts are permitted.

embOS has its own interrupt stack (usage optional).

Frame application for an easy start.

Debug version performs run time checks, simplifying development.
Profiling and stack check may be implemented by choosing specified
libraries.

Monitoring during run time via UART available (embOSView).

Very fast, efficient yet small code.

Minimum RAM usage.

Core written in assembly language.

Interfaces "C" and/or assembly.

Initialization of microcontroller hardware as sources.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 11/169

3. Basic concepts

3.1. Tasks

In this context, a task is a program running on the CPU core of a microcontrol-
ler. Without a multitasking kernel (an RTOS), only one task can be executed by
the CPU at a time. This is called a single-task system. A real time operating
system allows the execution of multiple tasks on a single CPU. All tasks exe-
cute as if they completely "owned" the entire CPU. The tasks are scheduled,
meaning that the RTOS can activate and deactivate every task.

3.2. Single-task system (superloop)

A superloop application is basically a program that runs in an endless loop, call-
ing OS functions to execute the appropriate operations (task level). No real time
kernel is used, so interrupt service routines (ISRs) must be used for real time
parts of the software or critical operations (interrupt level). This type of system
is typically used in small, uncomplex systems or if real time behavior is not criti-
cal.

Task level Interrupt level

Superloop

Time

ISR (nested)

Of course, there are fewer preemption and synchronization problems with a su-
perloop application. Also, since no real time kernel is used, only one stack ex-
ists in ROM, meaning that ROM size is smaller and less RAM is used up for
stacks. However, superloops can become difficult to maintain if the program
becomes too large. Since one software component cannot be interrupted by
another component (only by ISRs), the reaction time of one component de-
pends on the execution time of all other components in the system. Real time
behavior is therefore poor.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

3.3. Multitasking systems

There are different scheduling systems in which the calculation power of the
CPU can be distributed among tasks.

3.3.1. Cooperative multitasking

Cooperative multitasking expects cooperation of all tasks. Tasks can only be
suspended if they call a function of the operating system. If they do not, the
system "hangs", which means that other tasks have no chance of being exe-
cuted by the CPU while the first task is being carried out. This is illustrated in
the diagram below. Even if an ISR makes a higher priority task ready to run, the
interrupted task will be returned to and finished before the task switch is made.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state

Interrupted task

Time is completed

High priority task

Higher priority task
Is executed

3.3.2. Preemptive multitasking

Real time systems like embOS operate with preemptive multitasking only. A
real time operating system needs a regular timer-interrupt in order to be able to
interrupt tasks at defined times and to perform task-switches if necessary. The
highest-priority task in the READY state is therefore always executed, whether
it is an interrupted task or not. If an ISR makes a higher priority task ready, a
task switch will occur and the task will be executed before the interrupted task
is returned to.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 13/169

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state;
Time task switch occurs

High priority task

Higher priority task
Is executed

Interrupted task
is completed

3.4. Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between
tasks that are ready to be executed (in the READY state) and the other tasks
that are suspended for a reason (delay, waiting for mailbox, waiting for sema-
phore, waiting for event, etc.). The scheduler selects one of the tasks in the
READY state and activates it (executes the program of this task). The task
which is currently executing is referred to as the active task. The main differ-
ence between schedulers is in how they distribute the computation time be-
tween the tasks in READY state.

3.4.1. Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deac-
tivating the active task, activates the next task that is in the READY state.
Round-robin can be used with either preemptive or cooperative multitasking. It
works well if you do not need to guarantee response time, if the response time
is not an issue of importance, or if all tasks have the same priority. Round-robin
scheduling can be illustrated as follows:

All tasks are on the same level; the possession of the CPU changes periodically
after a predefined execution time. This time is called timeslice, and may be de-
fined individually for every task.

© 1996-2006 Segger Microcontroller Systeme GmbH

14/169 User's & reference manual for embOS real time OS

3.4.2. Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For
example, in an application that controls a motor, a keyboard and a display, the
motor usually requires faster reaction time than the keyboard and display.
While the display is being updated, the motor needs to be controlled. This
makes preemptive multitasking a must. Round-robin might work, but since it
cannot guarantee a specific reaction time, an improved algorithm should be
used.

In priority-controlled scheduling, every task is assigned a priority. The order of
execution depends on this priority. The rule is very simple:

The scheduler activates the task that has the highest priority of all tasks
in the READY state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known
as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin be-
tween tasks of identical priority. One hint at this point: round-robin scheduling is
a nice feature because you do not have to think about whether one task is more
important than another. Tasks with identical priority cannot block each other for
longer than their timeslices. But round-robin scheduling also costs time if two or
more tasks of identical priority are ready and no task of higher priority is ready,
because it will constantly switch between the identical-priority tasks. It is more
efficient to assign a different priority to each task, which will avoid unnecessary
task switches.

3.4.3. Priority inversion

The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in the READY
state.

But what happens if the highest-priority task is blocked because it is waiting for
a resource owned by a lower-priority task? According to the above rule, it would
wait until the low-priority-task becomes active again and releases the resource.

The other rule is: No rule without exception.

In order to avoid this kind of situation, the low-priority task that is blocking the
highest-priority task gets assigned the highest priority until it releases the re-
source, unblocking the task which originally had highest priority. This is known
as priority inversion.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 15/169

3.5. Communication between tasks

In a multitasking (multithreaded) program, multiple tasks work completely sepa-
rately. But since they all work in the same application, it will sometimes be
necessary for them to communicate information to one another.

3.5.1. Global variables

The easiest way to do this is by using global variables. In certain situations, it
can make sense for tasks to communicate via global variables, but most of the
time this method has various disadvantages.

For example, if you want synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation
time and power, and the reaction time depends on how often you poll.

3.5.2. Communication mechanisms
When multiple tasks work with one another, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and
events.

Mailboxes and queues

A mailbox is basically a data buffer managed by the RTOS and is used to send
a message to a task. It works without conflicts even if multiple tasks and inter-
rupts try to access it simultaneously. embOS also automatically activates any
task that is waiting for a message in a mailbox the moment it receives new data
and, if necessary, automatically switches to this task.

A queue works in a similar manner, but is used to send one or more messages
to a task. Queues can handle larger messages than mailboxes, and those
messages can be different sizes.

For more information, see Chapter 8: “Mailboxes” and Chapter 9: “Queues”.

Semaphores

Two types of semaphores are used to synchronize tasks and to manage re-
sources. The most common are resource semaphores, although counting
semaphores are also used. For details and samples, please refer to Chapter 6:
“‘Resource Semaphores” and Chapter 7: “Counting Semaphores”. Samples can
also be found on our website at www.segger.com.

Events

A task can wait for a particular event without using any calculation time. The
idea is as simple as it is convincing; there is no sense in polling if we can simply
activate a task the moment the event that it is waiting for occurs. This saves a
great deal of calculation power and ensures that the task can respond to the
event without delay. Typical applications for events are those where a task
waits for data, a pressed key, a received command or character, or the pulse of
an external real time clock.

For further details, refer to the Chapter 10: “Events”.

© 1996-2006 Segger Microcontroller Systeme GmbH

16/169 User's & reference manual for embOS real time OS

3.6. How task-switching works

A real time multitasking system lets multiple tasks run like multiple single-task
programs, quasi-simultaneously, on a single CPU. A task consists of three parts
in the multitasking world:

e The program code, which usually resides in ROM (though it does not
have to!)

e A stack, residing in a RAM area that can be accessed by the stack
pointer

e A task control block, residing in RAM

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary
storage of intermediate calculation results and register values. Each task can
have a different stack size. More information can be found in Chapter 11:
“Stacks”.

The task control block (TCB) is a data structure assigned to a task when it is
created. It contains status information of the task, including the stack pointer,
task priority, current task status (ready, waiting, reason for suspension, etc.)
and other management data. This information allows an interrupted task to con-
tinue execution exactly where it left off. TCBs are only accessed by the RTOS.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 17/169

3.7. Switching stacks

The following diagram demonstrates the process of switching from one stack to
another.

The scheduler deactivates the task to be suspended (Task 0) by saving the
processor registers on its stack. It then activates the higher-priority task (Task
n) by loading the stack pointer (SP) and the processor registers from the values
stored on Task n’s stack.

Task O Task n
Task Control Stack Task Control Stack
block block
variables variables
temp. storage temp. storage
ret. addresses ret. addresses
CPU CPU
registers registers
SP > SP >
Free Stack Free Stack
area area

© 1996-2006 Segger Microcontroller Systeme GmbH

18/169 User's & reference manual for embOS real time OS

3.8. Change of task status

A task may be in one of several states at any given time. When a task is cre-
ated, it is automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY
task with higher priority. Only one task may be active at a time. If the task is de-
activated or a task with higher priority becomes READY, the active task is sim-
ply placed back into the READY state.

The active task may be delayed for or until a specified time; in this case it is put
into the DELAY state (TS_DELAY) and the next highest priority task in the
READY state is activated.

The active task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state
and the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not
been created yet or it has been terminated.

The following illustration shows all possible task states and transitions between
them.

Not existing

CREATETASK() Terminate()

TS_READY Active

Task
1 1 1 Delay()

Wait for Event, mailbox TS DELAY
or semaphore

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 19/169

3.9. How the OS gains control

When the CPU is reset, the special-function registers are set to their respective
values. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU).
This start address is usually in a startup module shipped with the “C” compiler,
and is sometimes part of the standard library.

The startup code does the following:

e Loads the stack pointers(s), with the default values, which is for most
CPUs the end of the defined stack segment(s)

¢ |Initialize all data segments to their respective values

e Callsthe main () routine

In a single-task-program, the main () routine is part of the user program which
takes control immediately after the “C” startup. Normally, embOS works with
the standard “C” startup module without any modification. If there are any
changes required, they are documented in the startup file which is shipped with
embOS.

main () is still part of your application program. Basically, main () creates one
or more tasks and then starts multitasking by calling 0S_Start (). From then
on, the scheduler controls which task is executed.

main () will not be interrupted by any of the created tasks, because those tasks
are executed only after the call to 0S_Start (). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control struc-
tures such as mailboxes and semaphores. A good practice is to write software
in the form of modules which are (up to a point) reusable. These modules usu-
ally have an initialization routine, which creates the required task(s) and/or con-
trol structures. A typical main () looks similar to the following example:

/***
*

* main

*

LR R R R R R RS R R E R EREEERERES

*/

void main(void)
0S_InitKern() ; /* initialize 0OS (should be first !) */
OS_InitHW() ; /* initialize Hardware for OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create
the tasks they need ... (Order of creation may be important) */
MODULE1l Init () ;
MODULE2 Init
MODULE3 Init
MODULE4 Init
MODULE5 Init
0S_Start () ; /* Start multitasking */

0 ;
0 ;
0 ;
0 ;

With the call to 0S_Start (), the scheduler starts the highest-priority task that
has been created in main ().

Please note that OS_Start () is called only once during the startup process
and does not return.

© 1996-2006 Segger Microcontroller Systeme GmbH

20/169

User's & reference manual for embOS real time OS

The flowchart below illustrates the starting procedure:

Reset of
CPU

Load SP
A
Init
memory
Init
, Hardware
main() Create Tasks,
Semaphor

embOS
Scheduler

3.10. Different builds of embOS

embOS comes in different builds, or versions of the libraries. The reason for
different builds is that requirements vary during development. While developing
software, the performance (and resource usage) is not as important as in the fi-
nal version which usually goes as release version into the product. But during
development, even small programming errors should be caught by use of as-
sertions. These assertions are compiled into the debug version of the embOS
libraries and make the code a bit bigger (about 50%) and also slightly slower
than the release or stack check version used for the final product.

This concept gives you the best of both worlds: a compact and very efficient
build for your final product (release or stack check versions of the libraries), and
a safer (though bigger and slower) version for development which will catch
most of the common application programming errors. Of course, you may also
use the release version of embOS during development, but it will not catch
these errors.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

21/169

3.10.1. Profiling

embOS supports profiling in profiling builds. Profiling makes precise informa-
tion available about the execution time of individual tasks. You may always use
the profiling libraries, but they induce certain overhead such as bigger task con-
trol blocks, additional ROM (app. 200 bytes) and additional run time overhead.
This overhead is usually acceptable, but for best performance you may want to
use non-profiling builds of embOS if you do not use this feature.

3.10.2. List of libraries

In your application program, you need to let the compiler know which build of
embOS you are using. This is done by defining a single identifier prior to in-

cluding RTOS . h.

Build Define Explanation
R: Release OS LIBMODE R |Smallest, fastest build
S: Stack check OS LIBMODE_S |[Same as release, plus stack
checking
SP: Stack check plus|OS LIBMODE_ SP|Same as stack check, plus profil-
Profiling ing
D: Debug OS LIBMODE D |Maximum run time checking
DP: Debug plus pro-|OS_LIBMODE_DP|Maximum run time checking, plus
filing profiling
DT: Debug including|OS_LIBMODE_DT|Maximum run time checking, plus
trace, profiling tracing API calls and profiling

© 1996-2006 Segger Microcontroller Systeme GmbH

22/169 User's & reference manual for embOS real time OS

4. Task routines

A task that should run under embOS needs a task control block (TCB), a stack
and a normal routine, written in “C”. The following rules apply to task routines:

The task routine cannot take parameters.

The task routine must never be called directly from your application.

The task routine must not return.

The task routine should be implemented as an endless loop, or it must
terminate itself (see examples below).

e The task routine needs to be started from the scheduler, after the task is
created and OS_Start () is called.

Example of task routine as an endless loop

/* Example of a task routine as endless loop */
void Taskl (void)
while (1) {
DoSomething () /* Do something */
0S_Delay (1) ; /* Give other tasks a chance */

}
}

Example of task routine that terminates itself

/* Example of a task routine that terminates */
void Task2 (void)
char DoSomeMore;

do {
DoSomeMore = DoSomethingElse() /* Do something */
0S_Delay (1) ; /* Give other tasks a chance */
} while (DoSomeMore) ;
OS_Terminate (0) ; /* Terminate yourself */

}

There are different ways to create a task; embOS offers a simple macro that
makes it easy to do so and is fully sufficient in most cases. However, if you are
dynamically creating and deleting tasks, a routine is available allowing "fine-
tuning" of all parameters. For most applications, at least initially, using the
macro as in the sample start project works fine.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 23/169

4.1. OS_CREATETASK(): Create a task

Description

Creates a task.

Prototype
void OS_CREATETASK (0OS_TASK* pTask,
char* pName,
void* pRoutine,
unsigned char Priority,
void* pStack) ;
Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.
Pointer to the name of the task. Can be NULL (or 0) if not
pName used.
pRoutine Pointer to a routine that should run as task
Priority of the task. Must be within the following range:
Priority O< Priority <=255
Higher values indicate higher priorities.
Pointer to an area of memory in RAM that will serve as stack
pStack area for the task. The size of this block of memory deter-
mines the size of the stack area.

Return value

Void.

Add. information
OS_CREATETASK () is a macro calling an OS library function. It creates a task
and makes it ready for execution by putting it in the READY state. The newly
created task will be activated by the scheduler as soon as there is no other task
with higher priority in the READY state. If there is another task with the same
priority, the new task will be placed right before it.
This macro is normally used to create a task instead of the function call
OS_CreateTask (), because it has fewer parameters and is therefore easier
to use.
OS_CREATETASK can be called at any time, either from main () during initiali-
zation or from any other task. The recommended strategy is to create all tasks
during initialization in main () in order to keep the structure of your tasks easy
to understand.
The absolute value of Priority is of no importance, only the value in com-
parison to the priorities of other tasks.
OS_CREATETASK () determines the size of the stack automatically using
sizeof. This is possible only if the memory area has been defined at compile
time.

Important

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs cannot use the entire memory area as stack.
Most CPUs require alignment of stack in multiples of bytes. This is auto-
matically done, when task stack is defined as array of int.

© 1996-2006 Segger Microcontroller Systeme GmbH

24/169 User's & reference manual for embOS real time OS

Example
OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask (void) {
while (1) {
Delay (100);
}

}

void InitTask(void) {
OS_CREATETASK (&UserTCB, "UserTask", UserTask, 100, UserStack); /* Create
Task0 */

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 25/169

4.2. OS_CreateTask(): Create a task

Description
Creates a task.

Prototype
void OS CreateTask (OS_TASK* pTask,
char* pName,
unsigned char Priority,
voidRoutine* pRoutine,
void* pStack,
unsigned StackSize,
unsigned TimeSlice) ;
Parameter Meaning
Ptask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.
D Pointer to the name of the task. Can be NULL (or 0) if not
neme used.
Priority of the task. Must be within the following range:
Priority 1 <=Priority <=255
Higher values indicate higher priorities.
pRoutine Pointer to a routine that should run as task
Pointer to an area of memory in RAM that will serve as stack
pStack area for the task. The size of this block of memory deter-
mines the size of the stack area.
StackSize Size of the stack
Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority.
TimeS1lice denotes the time in ticks that the task will run
TimeSlice until it suspends; thus enabling another task with the same
priority.
This parameter has no effect on some ports of embOS for
efficiency reasons.

Return value
Void.

Add. information

This function works the same way as 0S_CREATETASK (), except that all pa-
rameters of the task can be specified.

The task can be dynamically created because the stack size is not calculated
automatically as it is with the macro.

Important

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs cannot use the entire memory area as stack.
Most CPUs require alignment of stack in multiples of bytes. This is auto-
matically done, when task stack is defined as array of int.

© 1996-2006 Segger Microcontroller Systeme GmbH

26/169 User's & reference manual for embOS real time OS
Example
/*
* demo-program to illustrate the use of OS CreateTask
*/

OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain, TaskClock;

void Clock (void)
while (1) {
/* code to update the clock */
1

}

void Main(void) {
while (1) f{
/* your code */

}

void InitTask(void) {
0S CreateTask (&TaskMain, NULL, 50, Main, StackMain, sizeof (StackMain), 2);
0S_CreateTask (&TaskClock, NULL, 100, Clock,StackClock,sizeof (StackClock),2);

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 27/169

4.3. OS_Delay(): Suspend for fixed time

Description
Suspends the calling task for a specified period of time.

Prototype
void OS Delay (int ms) ;
Parameter Meaning
Time interval to delay. Must be within the following range:
ms 0 <ms < 2"-1 = Ox7FFF = 32767 for 8/16-bit CPUs
0 < ms < 2°'-1 = OX7FFFFFFF for 32-bit CPUs

Return value
Void.

Add. information

The calling task will be put into the TS _DELAY state for the period of time
specified.

The task will stay in the delayed state until the time specified has expired.

ms specifies the precise interval during which the task has to be suspended
given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range:

ms - 1 <= delay <= ms

depending on when the interrupt for the scheduler will occur.

After the expiration of a delay, the task is made ready again and activated ac-
cording to the rules of the scheduler.

A delay can be ended prematurely by another task or by an interrupt handler
calling OS_WakeTask ().

Example

void Hello() {
printf ("Hello") ;
printf ("The next line will be executed in 5 seconds");
0S_Delay (5000) ;
printf ("Delay is over");

© 1996-2006 Segger Microcontroller Systeme GmbH

28/169 User's & reference manual for embOS real time OS

4.4. OS_DelayUntil(): Suspend until

Description
Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (int t);

Parameter Meaning

Time to delay until. Must be within the following range:

0 < (t - OS_Time) < 2'°-1 = Ox7FFF = 32767 for 8/16-bit
CPUs

0 < (t - OS_Time) < 2*'-1 = Ox7FFFFFFF for 32-bit CPUs

Return value
Void.

Add. information

The calling task will be put into the TS_DELAY state until the time specified.

0S DelayUntil () delays until the value of the time-variable OS_Time has
reached a certain value. It is very useful if you have to avoid accumulating de-
lays.

Example

int sec,min;

void TaskShowTime () {
int t0 = OS_GetTime () ;
while (1) {
ShowTime () ; /* Routine to display time */
OS_DelayUntil (t0+=1000) ;
if (sec<59) sec++;
else {
sec=0;
min++;
}
}
}

In the example above, the use of 0S _Delay () could lead to accumulating de-
lays and would cause the simple "clock" to be slow.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 29/169

4.5. OS_SetPriority(): Change priority of a task

Description

Assigns a specified priority to a specified task.

Prototype

void OS SetPriority(OS TASK * pt, unsigned char Priority);

Parameter Meaning
pt Pointer to a data structure of type OS TASK.
Priority of the task. Must be within the following range:
Priority 1<=Priority <= 255
Higher values indicate higher priorities.

Return value
Void.

Add. information

Can be called at any time from any task or software timer. Calling this function
might lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

30/169 User's & reference manual for embOS real time OS

4.6. OS_GetPriority(): Retrieve priority of a task

Description
Returns the priority of a specified task.

Prototype
unsigned char OS GetPriority (OS TASK* pt) ;

Parameter Meaning
pt Pointer to a data structure of type OS TASK.

Return value
Priority of the specified task as unsigned char (range 1 to 255).

Add. information

If pt is the NULL pointer, the function returns the priority of the currently run-
ning task.

If pt does not specify a valid task, the debug version of embOS calls
0S_Error ().

The release version of embOS cannot check the validity of pt and may there-
fore return invalid values if pt does not specify a valid task.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 31/169

4.7. OS_SetTimeSlice(): Change timeslice of a task

Description
Assigns a specified timeslice value to a specified task.

Prototype

unsigned char OS SetTimeSlice (OS _TASK * pt,
unsigned char TimeSlice);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK

New timeslice value for the task. Must be within the following
TimeSlice range:
1<=TimeSlice <= 255.

Return value
Previous timeslice value of the task as unsigned char.

Add. information

Can be called at any time from any task or software timer. Setting the timeslice
value only affects the tasks running in round-robin mode. This means another
task with the same priority must exist.

The new timeslice value is interpreted as reload value. It is used after the next
activation of the task. It does not affect the remaining timeslice of a running
task.

© 1996-2006 Segger Microcontroller Systeme GmbH

32/169

User's & reference manual for embOS real time OS

4.8. OS_Suspend(): Suspend a task

Description

Suspends the specified task.

Prototype

void OS_ Suspend (0S TASK* pTask) ;

Parameter Meaning

Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for the task that
pTask should be suspended. Since version 3.30b of embOS,
passing a NULL pointer is allowed and will suspend the
current task.

Return value

Add.

Void.

information

If pTask is the NULL pointer, the current task suspends.

If the function succeeds, execution of the specified task is suspended and the
task’s suspend count is incremented.

The specified task will be suspended immediately. It can only be restarted by a
call of 0OS_Resume ().

Every task has a suspend count with a maximum value of
OS_MAX SUSPEND_CNT. If the suspend count is greater than zero, the task is
suspended.

Calling 0S_Suspend () more often than 0OS_MAX SUSPEND CNT times without
calling 0S_Resume (), the task’s internal suspend count is not incremented and
OS_Error () is called with error 0OS ERR_SUSPEND TOO OFTEN in debug
builds.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 33/169

4.9. OS_Resume(): Restarts a suspended task

Description

Decrements the suspend count of specified task and resumes the task, if the
suspend count reaches zero.

Prototype
void OS_Resume (OS_TASK* pTask) ;
Parameter Meaning
Pointer to a data structure of type OS_TASK which is used
pTask as task control block (and reference) for the task that
should be resumed.

Return value
Void.

Add. information

The specified task’s suspend count is decremented. If the resulting value is 0,
the execution of the specified task is resumed.

If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the
scheduler.

In debug versions of embOS, the OS_Resume () function checks the suspend
count of the specified task. If the suspend count is 0 when OS_Resume () is
called, the specified task is not currently suspended and OS_Error () is called
with error 0S_ ERR RESUME BEFORE SUSPEND.

© 1996-2006 Segger Microcontroller Systeme GmbH

34/169 User's & reference manual for embOS real time OS

4.10. OS_GetSuspendCnt(): Retrieve suspension count of a task

Description

This function may be used to examine whether a task is suspended by previous
calls of 0OS_Suspend ().

The function returns the suspension count and thus suspension state of the
specified task.

Prototype
unsigned char OS GetSuspendCnt (OS TASK* pTask) ;
Parameter Meaning
PTask Pointer to a data structure of type OS TASK.

Return value

Suspension count of the specified task as unsigned character value.
0: Task is not suspended.
>0: Task is suspended by at least one call of 0S_Suspend ().

Add. information

If pTask does not specify a valid task, the debug version of embOS calls
0S_Error ().

The release version of embOS cannot check the validity of pTask and may
therefore return invalid values if pTask does not specify a valid task.

When tasks are created and terminated dynamically, OS_IsTask () may be
called prior calling 0S_GetSuspendCnt () to examine whether the task is
valid.

The returned value can be used to resume a suspended task by calling
OS_Resume () as often as indicated by the returned value.

Example

/** demo-function to illustrate the use of 0OS_GetSuspendCnt () */

void ResumeTask (OS_TASK* pTask) {
unsigned char SuspendCnt;
SuspendCnt = OS_GetSuspendCnt (pTask) ;
while (SuspendCnt > 0) {
0S_Resume (pTask) ; /* May cause a task switch */
SuspendCnt--;
}
}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 35/169

4.11. OS_Terminate(): Terminate a task

Description
Ends (terminates) a task.

Prototype
void OS Terminate (OS_TASK* pTask) ;

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

Return value
Void.

Add. information

If pTask is the NULL pointer, the current task terminates.
The specified task will terminate immediately. The memory used for stack and
task control block can be reassigned.

Since version 3.26 of embOS, all resources which are held by the terminated
task are released. Any task may be terminated regardless of its state. This
functionality is default for any 16bit or 32bit CPU and may be changed by re-
compiling embOS sources.

On 8bit CPUs terminating tasks that hold any resources is prohibited. To enable
safe termination, the embOS sources have to be recompiled with the compile
time switch OS_SUPPORT CLEANUP ON TERMINATE activated.

Important:
This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

36/169 User's & reference manual for embOS real time OS

4.12. OS_WakeTask(): Resume a time suspended task

Description
Ends delay of a task immediately.

Prototype
void OS_WakeTask (OS_TASK* pTask) ;

Parameter Meaning
Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

pTask

Return value
Void.

Add. information

Puts the specified task (already suspended for a certain amount of time with
0S _Delay () or 0OS DelayUntil () back to the state TS_READY (ready for
execution).

The specified task will be activated immediately if it has a higher priority than
the priority of the task that had the highest priority before.

If the specified task is not in the state TS_DELAY (because it has already been
activated or the delay has already expired or for some other reason), this com-
mand is ignored.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 37/169

4.13. OS_IsTask(): Check whether a task is valid

Description

Determines whether a task control block actually belongs to a valid task.

Prototype

char OS IsTask (0OS_TASK* pTask) ;

Parameter Meaning
pTask Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

Return value

Add.

Character value:
0: TCB is not used by any task
1: TCB is used by a task

information

This function checks to see if the specified task is still in the internal task list. If
the task was terminated, it is removed from the internal task list.

This function may be useful to determine whether the task control block and
stack for the task may be reused for another task in applications that create and
terminate tasks dynamically.

© 1996-2006 Segger Microcontroller Systeme GmbH

38/169 User's & reference manual for embOS real time OS

4.14. OS_GetTasklD(): Retrieve ID of current task

Description
Returns the ID of the currently running task.

Prototype
OS_TASKID OS GetTaskID(void) ;

Return value

OS_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates
that no task is executing.

Add. information

This function may be used to determine which task is executing. This may be
helpful if the reaction of any function depends on the currently running task.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 39/169

4.15. OS_GetpCurrentTask(): Retrieve TCB of current task

Description

Returns a pointer to the task control block structure of the currently running
task.

Prototype
OS TASK* 0OS GetpCurrentTask (void) ;

Return value
OS_TASK?*: A pointer to the task control block structure.

Add. information

This function may be used to determine which task is executing. This may be
helpful if the reaction of any function depends on the currently running task.

© 1996-2006 Segger Microcontroller Systeme GmbH

40/169 User's & reference manual for embOS real time OS

5. Software timers

A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the
macro OS_CREATETIMER ().

Timers can be stopped, started and retriggered much like hardware timers.
When defining a timer, you specify any routine that is to be called after the
expiration of the delay. Timer routines are similar to interrupt routines; they
have a priority higher than the priority of all tasks. For that reason they should
be kept short just like interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be
interrupted by any hardware interrupt. Generally, timers run in single-shot
mode, which means they expire only once and call their callback routine only
once. By calling 0S_RetriggerTimer () from within the callback routine, the
timer is restarted with its initial delay time and therefore works just as a free-
running timer.

The state of timers can be checked by the functions 0S_GetTimerStatus (),
0S_GetTimerValue (), and OS_GetTimerPeriod ().

Maximum timeout / period

The timeout value is stored as integer, thus a 16-bit value on 8/16-bit CPUs, a
32-bit value on 32 bit CPUs. The comparisons are done as signed compari-
sons, (since expired time-outs are permitted). This means that only 15-bits can
be used on 8/16 bit CPUs, 31 bits on 32-bit CPUs. An other factor to take into
account is the maximum time spent in critical regions. Since during critical re-
gions timer may expire, but the timer routine can not be called (timers are “put
on hold”), the maximum time that the system spends at once in a critical region
needs to be deducted. In most systems, this is no more than a single tick.
However, to be safe, we have assumed that your system spends no more than
up to 255 ticks in a row in a critical region and defined a macro which defines
the maximum timeout value. It is normally Ox7F00 for 8/16-bit systems or
7FFFFFOO for 32-bit Systems and defined in RTOS.h as
OS_TIMER_MAX_TIME. If your system does spend more than 255 ticks with-
out break in a critical section (effectively disabling the scheduler during this time

. not recommended), you have to make sure your application uses shorter
timeouts.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 41/169

5.1. OS_CREATETIMER(): Create a software timer

Description
Macro that creates and starts a software-timer.

Prototype
void OS CREATETIMER (OS TIMER* pTimer,
OS_TIMERROUTINE* Callback,
unsigned int Timeout) ;
Parameter Meaning
. Pointer to the OS_TIMER data structure containing the data of
pTimer .
the timer.
Pointer to the callback routine to be called from RTOS after
Callback

expiration of the delay.

Initial timeout in basic embOS time units (nominal ms):
Timeout Minimum 1

Maximum 32767.

Return value
Void.

Add. information

The timers are kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).

This macro uses the functions OS_CreateTimer () and OS_StartTimer ().
It is supplied for backward compatibility; In newer programs these routines
should be called directly instead.

OS TIMERROUTINE is defined in Rtos.h as follows:
typedef void OS_TIMERROUTINE (void) ;

Source of the macro (in RTOS . h)

#define OS CREATETIMER (pTimer,c,d)
OS_CreateTimer (pTimer,c,d) ;
OS_StartTimer (pTimer) ;

\
\

Example

OS_TIMER TIMER100;

void Timer1l00 (void)
LED = LED ? 0 : 1
OS_RetriggerTimer

{
; /* toggle LED */
(&TIMER100); /* make timer periodical */

void InitTask(void)
/* Create and start Timerl100 */
OS CREATETIMER (&TIMER100, Timerl00, 100) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

42/169 User's & reference manual for embOS real time OS

5.2. OS_CreateTimer(): Create a software timer

Description
Creates a software timer (but does not start it).

Prototype
void OS CreateTimer (OS_TIMER¥* pTimer,
OS_TIMERROUTINE* Callback,
unsigned int Timeout) ;
Parameter Meaning
: Pointer to the OS_TIMER data structure containing the data of
pTimer .
the timer.
Pointer to the callback routine to be called from RTOS after
Callback

expiration of the delay.

Initial timeout in basic embOS time units (nominal ms):
Timeout Minimum 1

Maximum 32767.

Return value
Void.

Add. information

The timers are kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).

The timer is not automatically started. This has to be done explicitly by a call of
OS_StartTimer () or OS RetriggerTimer ().

08 TIMERROUTINE is defined in Rtos.h as follows:
typedef void OS_TIMERROUTINE(void);

Example

OS_TIMER TIMER100;

void Timerl00 (void)
LED = LED ? 0 : 1
O0S_RetriggerTimer

{
; /* toggle LED */
(&§TIMER100); /* make timer periodical */

void InitTask(void) ({
/* Create Timerl100, start it elsewhere */
OS_CreateTimer (&TIMER100, Timerl00, 100);

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 43/169

5.3. OS_StartTimer(): Start a timer

Description
Starts a specified timer.

Prototype
void OS StartTimer (OS _TIMER* pTimer) ;

Parameter Meaning
Pointer to the OS_TIMER data structure containing the data of
the timer.

pTimer

Return value
Void.

Add. information

OS_StartTimer() is used for the following reasons:

Start a timer which was created by OS_CreateTimer(). The timer will start with
its initial timer value.

Restart a timer which was stopped by calling OS_StopTimer(). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers.
It also has no effect on timers that are not running, but are expired. Use
OS_RetriggerTimer () to restart those timers.

© 1996-2006 Segger Microcontroller Systeme GmbH

44/169 User's & reference manual for embOS real time OS

5.4. OS_StopTimer(): Stop a timer

Description
Stops a specified timer.

Prototype :
void OS StopTimer (OS TIMER* pTimer) ;

Parameter Meaning
Pointer to the OS_TIMER data structure containing the data of
the timer.

pTimer

Return Value
Void

Add. information

The actual value of the timer (the time until expiration) is kept until
OS_StartTimer () lets the timer continue.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 45/169

5.5. OS_RetriggerTimer(): Restart a timer

Description
Restarts a specified timer with its initial time value.

Prototype
void OS RetriggerTimer (OS_TIMER* pTimer) ;
Parameter Meaning
. Pointer to the OS_TIMER data structure containing the data of
pTimer .
the timer.

Return value
Void.

Add. information

OS_RetriggerTimer () restarts the timer using the initial time value pro-
grammed at creation of the timer or with the function 0S_SetTimerPeriod ().

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

void TimerCursor (void) {
if (CursorOn) ToggleCursor() ; /* invert character at cursor-position */
O0S_RetriggerTimer (&TIMERCursor); /* make timer periodical */

void InitTask(void) {
/* Create and start TimerCursor */
OS_CREATETIMER (&TIMERCursor, TimerCursor, 500);

}

© 1996-2006 Segger Microcontroller Systeme GmbH

46/169 User's & reference manual for embOS real time OS

5.6. OS_SetTimerPeriod(): Set restart value

Description
Sets a new timer reload value for a specified timer.

Prototype

void OS_SetTimerPeriod (OS _TIMER* pTimer,
unsigned int Period) ;

Parameter Meaning
. Pointer to the OS_TIMER data structure containing the data of
pTimer .
the timer.
Timer period in basic embOS time units (nominal ms):
Period Minimum 1
Maximum 32767.

Return value
Void.

Add. information

OS_SetTimerPeriod () sets the initial time value of the specified timer. Pe-
riod is the reload value of the timer to be used as initial value when the timer
is retriggered by OS_RetriggerTimer ().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse (void) {
if TogglePulseOutput () ; /* Toggle output */
0S_RetriggerTimer (&TIMERCursor); /* make timer periodical */

void InitTask(void) {
/* Create and start Pulse Timer with first pulse = 500ms */
OS_CREATETIMER(&TIMERPulse, TimerPulse, 500) ;
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriod (&TIMERPulse, 200);

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 47/169

5.7. OS_DeleteTimer(): Delete a timer

Description
Stops and deletes a specified timer.

Prototype :
void OS DeleteTimer (OS _TIMER* pTimer) ;

Parameter Meaning

Pointer to the OS_TIMER data structure containing the data of
the timer.

pTimer

Return Value
Void

Add. information

The timer is stopped and therefore removed out of the linked list of running tim-
ers. In debug builds of embOS, the timer is also marked as invalid.

© 1996-2006 Segger Microcontroller Systeme GmbH

48/169

User's & reference manual for embOS real time OS

5.8. OS_GetTimerPeriod(): Retrieve restart value

Description

Returns the current reload value of a specified timer.

Prototype

unsigned int OS_GetTimerPeriod (OS TIMER* pTimer) ;

Parameter

Meaning

pTimer

Pointer to the OS_TIMER data structure containing the data of

the timer.

Return value

Unsigned integer between 1 and 32767, which is the permitted range of timer

values.

Add. information

The period returned is the reload value of the timer set as initial value when the
timer is retriggered by OS_RetriggerTimer ().

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 49/169

5.9. OS_GetTimerValue(): Retrieve remaining time

Description
Returns the remaining timer value of a specified timer.

Prototype
unsigned int OS_GetTimerValue (OS TIMER* pTimer) ;

Parameter Meaning

Pointer to the OS_TIMER data structure containing the data of
the timer.

pTimer

Return value

Unsigned integer between 0 and 32767, which is the permitted range of timer
values.

Add. information

The timer value is the remaining time until the timer expires and calls its call-
back function.

© 1996-2006 Segger Microcontroller Systeme GmbH

50/169 User's & reference manual for embOS real time OS

5.10. OS_GetTimerStatus(): Retrieve timer status

Description
Returns the current timer status of a specified timer.

Prototype
unsigned char OS GetTimerStatus (OS_TIMER* pTimer) ;

Parameter Meaning
Pointer to the OS_TIMER data structure containing the data of
the timer.

pTimer

Return value

Unsigned char, denoting whether the specified timer is running or not:
0: timer is stopped
I'=0: timer is running.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 51/169

5.11. OS_GetpCurrentTimer(): Retrieve current timer

Description
Returns a pointer to the data structure of the timer that just expired.

Prototype
OS _TIMER* OS GetpCurrentTimer (void) ;

Return value
OS_TIMER?*: A pointer to the control structure of a timer.

Add. information

The return value of OS_GetpCurrentTimer () is valid during execution of a
timer callback function; otherwise it is undetermined.

If only one callback function should be used for multiple timers, this function
can be used to examine the timer that expired.

#include "RTOS.H"

/**
*

* Types

*/

typedef struct ({ Timer object with own user data
OS_TIMER Timer;
void* pUser;

} TIMER EX;

/**
*

* Variables

*/

TIMER_EX Timer User;
int a;

/**
*

* Local Functions

*/

void CreateTimer (TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
void* pUser)
timer->pUser = pUser;
OS CreateTimer ((OS_TIMER*) timer, Callback, Timeout) ;

TIMER EX* p (TIMER EX*)O0S_GetpCurrentTimer () ;

void cb(void) { /* timer callback function for multiple timers */
void* pUser = p->pUser; /* Examine user data */

0S_RetriggerTimer (&p->Timer) ; /* retrigger timer */

}

/**
*

* main
*/
int main(void) {
0S_InitKern() ; /* initialize 0S */
OS_InitHW() ; /* initialize Hardware for 0S */
CreateTimer (&Timer User, cb, 100, &a);
0S_Start () ; /* Start multitasking */
return 0;

© 1996-2006 Segger Microcontroller Systeme GmbH

52/169 User's & reference manual for embOS real time OS

6. Resource semaphores

Resource semaphores are used to manage resources by avoiding conflicts
caused by simultaneous use of a resource. The resource managed can be of
any kind: a part of the program that is not reentrant, a piece of hardware like
the display, a flash prom that can only be written to by a single task at a time, a
motor in a CNC control that can only be controlled by one task at a time, and a
lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS Use() or
0S_Request () routines of embOS. If the resource is available, the program
execution of the task continues, but the resource is blocked for other tasks. If a
second task now tries to use the same resource while it is in use by the first
task, this second task is suspended until the first task releases the resource.
However, if the first task that uses the resource calls 0S_Use () again for that
resource, it is not suspended because the resource is blocked only for other
tasks.

The following little diagram illustrates the process of using a resource:

OS_Use()
v

Access resource

v

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times
the resource has been claimed by calling OS_Request () or OS Use () by a
particular task. It is released when that counter reaches 0, which means the
OS_Unuse () routine has to be called exactly the same number of times as
OS _Use () or OS_Request (). If it is not, the resource remains blocked for
other tasks.

On the other hand, a task cannot release a resource that it does not own by
calling 0S_Unuse (). In the debug version of embOS, a call of 0S_Unuse ()
for a semaphore that is not owned by this task will result in a call to the error
handler 0S_Error ().

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 53/169

Example for use of resource semaphore

Here, two tasks access an LC display completely independently from each
other. The LCD is a resource that needs to be protected with a resource sema-
phore. One task may not interrupt another task which is writing to the LCD, be-
cause otherwise the following might occur:

e Task A positions the cursor.
e Task B interrupts Task A and repositions the cursor.
e Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every the LCD must be accessed by a task, it is
first claimed by a call to 0S_Use () (and is automatically waited for if the re-
source is blocked). After the LCD has been written to, it is released by a call to

OS Unuse ().

/*

* demo program to illustrate the use of resource semaphores
*/

OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain, TaskClock;
OS_RSEMA SemaLCD;

void TaskClock (void) {

char t=-1;
char s[] = "00:00";
while (1) {
while (TimeSec==t) Delay(10) ;

t= TimeSec;

s[4] = TimeSec%10+'0';

s[3] = TimeSec/10+'0"';

s[1] = TimeMin%10+'0';

s[0] = TimeMin/10+'0"';

OS_Use (&SemaLCD) ; /* make sure nobody else uses LCD */
LCD Write(10,0,s);

OS_Unuse (&SemaLCD) ; /* release LCD */

}
}

void TaskMain(void) {
signed char pos ;
LCD Write (0,0, "Software tools by Segger ! "o
OS Delay (2000) ;
while (1) {

for (pos=14 ; pos >=0 ; pos--) {
OS_Use (&SemaLCD) ; /* make sure nobody else uses LCD */
LCD Write(pos,1,"train "); /* draw train */
OS_Unuse (&SemaLCD) ; /* release LCD */
0S_Delay (500) ;
OS_Use (&SemaLCD) ; /* make sure nobody else uses LCD */
LCD_Write(O,l," "o
OS_Unuse (&SemaLCD) ; /* release LCD */

}
}

void InitTask(void) ({
OS_CREATERSEMA (&SemaLCD) ; /* Creates resource semaphore */
OS_ CREATETASK (&TaskMain, 0, Main, 50, StackMain) ;
OS_CREATETASK (&TaskClock, 0, Clock, 100, StackClock) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

54/169

User's & reference manual for embOS real time OS

In most applications, the routines that access a resource should automatically
call 0S_Use () and OS_Unuse () so that when using the resource you do not
have to worry about it and can use it just as you would in a single-task system.
The following is an example of how to implement a resource into the routines
that actually access the display:

/*

* simple example when accessing single line dot matrix LCD

*/

OS_RSEMA RDisp; /* define resource semaphore */

void UseDisp() /* simple routine to be called before using display */

OS_Use (&RDisp) ;

}

void UnuseDisp() { /* simple routine to be called after using display */
0S_Unuse (&RDisp) ;

void DispCharAt (char c, char x) {
UseDisp () ;
LCDGoto (x, y);
LCDWritel (ASCII2LCD(c)) ;
UnuseDisp () ;

}

void DISPInit (void) {
OS_CREATERSEMA (&RDisp) ;
}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

55/169

6.1. OS_CREATERSEMA(): Create resource semaphore

Description

Macro that creates a resource semaphore.

Prototype

void OS_CREATERSEMA (OS_RSEMA* pRSema) ;

Parameter

Meaning

pPRSema

Pointer to the data structure for a resource semaphore.

Return value
Void

Add. information

After creation, the resource is not blocked; the value of the counter is O.

© 1996-2006 Segger Microcontroller Systeme GmbH

56/169

User's & reference manual for embOS real time OS

6.2. OS_Use(): Use a resource

Description

Claims a resource and blocks it for other tasks.

Prototype

int OS Use (OS_RSEMA* pRSema) ;

Parameter Meaning

PRSema Pointer to the data structure for a resource semaphore.

Return value

The counter value of the semaphore.
A value larger than 1 means the resource was already locked by the calling

task.

Add. information

The following situations are possible:

Case A: The resource is not in use.

If the resource is not used by a task, which means the counter of the
semaphore is 0, the resource will be blocked for other tasks by incre-
menting the counter and writing a unique code for the task that uses it
into the semaphore.

Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program con-
tinues without a break.

Case C: The resource is being used by another task.

The execution of this task is suspended until the resource semaphore is
released. In the meantime if the task blocked by the resource sema-
phore has a higher priority than the task blocking the semaphore, the
blocking task is assigned the priority of the task requesting the resource
semaphore. This is called priority inversion. Priority inversion can only
temporarily increase the priority of a task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to
the rules of the scheduler, of all the tasks waiting for the resource, the task with
the highest priority will get access to the resource and can continue program
execution.

Important:

This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

57/169

The following diagram illustrates the function of the 0S_Use () routine

Yes, by this task

\ 4

OS_Use(...)

Resource
in use?

Yes, by
other task ™|

Wait for resource
to be released

Mark current task
as owner

v

Increase Usage
counter

Usage counter = 1

return

return

© 1996-2006 Segger Microcontroller Systeme GmbH

58/169 User's & reference manual for embOS real time OS

6.3. OS_Unuse(): Release a resource

Description
Releases a semaphore currently in use by a task.

Prototype
void OS Unuse (OS_RSEMA * pRSema) ;

Parameter Meaning
PRSema Pointer to the data structure for a resource semaphore.

Return value
Void.

Add, information

OS_Unuse () may be used on a resource semaphore only after that sema-
phore has been used by calling OS_Use () or 0OS_Request ().

0S_Unuse () decrements the usage counter of the semaphore which may
never become negative. If this counter becomes negative, the debug version
will call the embOS error handler.

Important:
This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

59/169

6.4. OS_Request(): Request a resource

Description

Requests a specified semaphore, blocks it for other tasks if it is available. Con-
tinues execution in any case.

Prototype

char OS_Request (OS_RSEMA* pRSema) ;

Parameter

Meaning

PRSema

Pointer to the data structure for a resource semaphore.

Return value

1: Resource was available, in use now by calling task
0: Resource was not available.

Add. Information

The following diagram illustrates how OS_Request () works:

OS_Request (RSEMA*ps)

No

In use by this task ?

Yes

v

Inc Usage counter

Resource in use by other task ?

Mark current task
as owner

Usage counter = 1

Example

LED_ LCDBUSY

LED_ LCDBUSY

DispTime () ;
OS Unuse (&R

if (!0S_Request (&RSEMA_LCD)

= 1;

OS Use (&RSEMA_LCD) ;

= 0;

SEMA_LCD) ;

)

{
/*
/*
/*
/*

/*
/*

indicate that task is waiting for
resource

wait for resource

indicate task is no longer waiting

Access the resource LCD
resource LCD is no longer needed

*/
*/
*/
*/

*/
*/

© 1996-2006 Segger Microcontroller Systeme GmbH

60/169 User's & reference manual for embOS real time OS

6.5. OS_GetSemaValue(): Retrieve usage counter value

Description
Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (OS _RSEMA* pSema) ;

Parameter Meaning
PRSema Pointer to the data structure for a resource semaphore.

Return value

The counter of the semaphore.
A value of 0 means the resource is available.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 61/169

6.6. OS_GetResourceOwner(): Retrieve blocking task

Description
Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* OS GetResourceOwner (OS RSEMA* pSema) ;

Parameter Meaning
PRSema Pointer to the data structure for a resource semaphore.

Return value

Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

62/169

User's & reference manual for embOS real time OS

6.7. OS_DeleteRSema(): Delete a resource semaphore

Description

Deletes a specified resource semaphore. The memory of that semaphore may
be reused for other purposes or may be used to create an other resources
semaphore using the same memory.

Prototype

void OS DeleteRSema (OS_RSEMA* pRSema) ;

Parameter

Meaning

pPRSema

Pointer to a data structure of type OS RSEMA.

Return value
Void.

Add. information

Before deleting a resource semaphore, make sure that no task is claiming the
resources semaphore.

The debug version of embOS will call 0S_Error (), if a resources semaphore
is deleted when it is already used.

In systems with dynamic creation of resource semaphores, it is required to de-
lete a resource semaphore, before re-creating it. Otherwise the semaphore
handling will not work correctly.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 63/169

/. Counting Semaphores

Counting semaphores are counters that are managed by embOS. They are not
as widely used as resource semaphores, events or mailboxes, but they can be
very useful sometimes. They are used in situations where a task needs to wait
for something that can be signaled one or more times. The semaphores can be
accessed from any point, any task, or any interrupt in any way.

Example for use of counting semaphore

OS_STACKPTR int StackO0[96], Stackl[64]; /* stack-space */
OS_TASK TCBO, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void TaskO (void) {
Loop:
Disp ("TaskO will wait for task 1 to signal");
OS WaitCSema (&SEMALCD) ;
Disp ("Taskl has signaled !!");
0S_Delay(100) ;
goto Loop;

}

void Taskl (void) {

Loop:
0S_Delay (5000) ;
OS_SignalCSema (&SEMALCD) ;
goto Loop;

}

void InitTask(void) {

OS_CREATECSEMA (&SEMALCD) ; /* Create Semaphore */
OS_CREATETASK(&TCBO, NullTaskO, 100, StackO0); /* Create TaskO */
OS_CREATETASK(&TCBl, NullTaskl, 50, Stackl); /* Create Taskl */

© 1996-2006 Segger Microcontroller Systeme GmbH

64/169

User's & reference manual for embOS real time OS

7.1. OS_CREATECSEMA(): Create counting semaphore

Description

Macro that creates a counting semaphore with an initial count value of zero.

Prototype

void OS_CREATECSEMA (OS_CSEMA* pCSema) ;

Parameter Meaning

pCSema Pointer to a data structure of type OS CSEMA.

Return value

Add.

Void.

information

In order to create a counting semaphore, a data structure of the type
OS_CSEMA needs to be defined in memory and initialized using
OS_CREATECSEMA ().

The value of a semaphore after creation using this macro is always zero.

If for any reason you have to create a semaphore with an initial counting value
above zero, use the function OS_CreateCSema ().

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 65/169

7.2. OS_CreateCSema(): Create counting semaphore

Description
Creates a counting semaphore with a specified initial count value.

Prototype

void OS CreateCSema (OS_CSEMA* pCSema,
unsigned char InitValue) ;

Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.

Initial count value of the semaphore:
0 <= InitValue <= 255.

InitValue

Return value
Void.

Add. information

In order to create a counting semaphore, a data structure of the type
OS_CSEMA needs to be defined in memory and initialized using
OS CreateCSema().

If the value of the semaphore after creation should be zero, the macro
OS_CREATECSEMA () should be used.

© 1996-2006 Segger Microcontroller Systeme GmbH

66/169 User's & reference manual for embOS real time OS

7.3. OS_SignalCSema(): Increment counter

Description
Increments the counter of a semaphore

Prototype
void OS SignalCSema (OS_CSEMA * pCSema) ;

Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.

Return value
Void.

Add. information

OS_SignalCSema () signals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this
semaphore, the task that has the highest priority will become the active task.
The counter can have a maximum value of 255. The application should make
sure that this limit will not be exceeded.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

67/169

7.4. OS_SignalCSemaMax(): Increment counter upto a maximum

value

Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype

void OS_SignalCSemaMax (OS_CSEMA * pCSema,
unsigned char MaxValue) ;

Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.
MaxValue 1 <= MaxValue <= 255 Limit of semaphore count value.

Return value
Void.

Add. information

OS_SignalCSemaMax () signals an event to a semaphore by incrementing its
counter, as long as current value of semaphore counter is below the specified
maximum value. If one or more tasks are waiting for an event to be signaled to
this semaphore, the tasks are put into ready state and the task that has the

highest priority will become the active task.

Calling OS_SignalCSemaMax() with a MaxValue of 1 handles a counting

semaphore as a binary semaphore.

© 1996-2006 Segger Microcontroller Systeme GmbH

68/169

User's & reference manual for embOS real time OS

7.5. OS_WaitCSema(): Decrement counter

Description

Decrements the counter of a semaphore.

Prototype

void OS WaitCSema (OS CSEMA* pCSema) ;

Parameter

Meaning

pCSema

Pointer to a data structure of type OS CSEMA.

Return value
Void.

Add. information

If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues.

If the counter is 0, WaitCSema () waits until the counter is incremented by an-
other task, a timer or an interrupt handler via a call to 0OS_SignalCSema ().
The counter is then decremented and program execution continues.

An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program execution.

Important:

This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 69/169

7.6. OS_WaitCSemaTimed(): Decrement counter with timeout

Description

Decrements a semaphore counter if the semaphore is available within a speci-
fied time.

Prototype

int OS WaitCSemaTimed (OS_CSEMA* pCSema,
int TimeOut) ;

Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.
TimeOut Maximum time until semaphore should be available

Return value

Integer value:
0: Failed, semaphore not available within timeout time
1: OK, semaphore was available and counter decremented.

Add. information
If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues.
If the counter is 0, WaitCSemaTimed () waits until the semaphore is signaled
by another task, a timer or an interrupt handler via a call to
OS_SignalCSema (). The counter is then decremented and program execu-
tion continues.
If the semaphore was not signaled within the specified time, the program exe-
cution continues but returns a value of 0.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program execution.

Important:

This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

70/169 User's & reference manual for embOS real time OS

7.7. OS_GetCSemaValue(): Retrieve counter value

Description
Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (OS CSEMA* pCSema) ;

Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.

Return value

The counter value of the semaphore.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 71/169

7.8. OS_DeleteCSema(): Delete a counting semaphore

Description

Deletes a specified semaphore. The memory of that semaphore may be reused
for other purposes.

Prototype
void OS DeleteCSema (OS CSEMA* pCSema) ;
Parameter Meaning
pCSema Pointer to a data structure of type OS CSEMA.

Return value
Void.

Add. information

Before deleting a semaphore, make sure that no task is waiting for it and that
no task will signal that semaphore at a later point.
The debug version will reflect an error if a deleted semaphore is signaled.

© 1996-2006 Segger Microcontroller Systeme GmbH

72/169 User's & reference manual for embOS real time OS

8. Mailboxes

8.1. Why mailboxes?

In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to
another. If we needed to transfer data between tasks via a buffer for example,
we could use a resource semaphore every time we accessed the buffer. But
doing so would make the program less efficient. Another major disadvantage
would be that we could not access the buffer from an interrupt handler since the
interrupt handler is not allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would
have to disable interrupts every time and in every place that we accessed these
variables. This is possible, but it is a path full of pitfalls. It is also not easy for a
task to wait for a character to be placed in a buffer without polling the global
variable that contains the number of characters in the buffer. Again, there is a
way out — the task could be notified by an event signaled to the task every time
a character is placed in the buffer.

Complicated, you think ?

That is why there is an easier way to do this with a real time OS:
The use of mailboxes.

8.2. Basics

A mailbox is a buffer that is managed by the real time operating system. The
buffer behaves like a normal buffer; you can put something (called a message)
in and retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a
message that is put in first will usually be retrieved first. “Message” might sound
abstract, but very simply just means "item of data". It will become clearer in the
following typical applications explained in the following section.

The number of mailboxes is limited only by the amount of available memory.

Message size: 1 <= x <=127 bytes.
Number of messages: 1 <=x<=32767.

These limitations have been placed on mailboxes in order to guarantee efficient
coding and also to ensure efficient management. The limitations are normally
not a problem.

For handling messages larger than 127 bytes, you may use queues. For more
information, please refer to Chapter 9: “Queues”.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 73/169

8.3. Typical applications

A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt han-
dler to check the keyboard. When a key is detected as having been pressed,
that key is put into a mailbox that is used as a keyboard buffer. The message is
then retrieved by the task that handles keyboard input. The message in this
case is typically a single byte that holds the key code; the message size is
therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you
do not have to worry about it since it is reliable, proven code and you have a
type-ahead buffer at no extra cost. On top of that, a task can easily wait for a
key to be pressed without having to poll the buffer. It simply calls the
OS_GetMail () routine for that particular mailbox. The number of keys that can
be stored in the type-ahead buffer depends only on the size of the mailbox
buffer, which you define when creating the mailbox.

A buffer for serial 1/0

In most cases, serial I/O is done with the help of interrupt handlers. The com-
munication to these interrupt handlers is very easy with mailboxes. Both your
task programs and your interrupt handlers store or retrieve data to/from the
same mailboxes. As with a keyboard buffer, the message size is 1 character.

For interrupt-driven sending, the task places the character(s) in the mailbox us-
ing OS_PutMail () or OS_PutMailCond (); the interrupt handler that is acti-
vated when a new character can be sent retrieves this character with
OS GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using OS_PutMailCond () ; the task
receives it using OS_GetMail () or 0OS_GetMailCond ().

A buffer for commands sent to a task

Assume you have one task controlling a motor as you might have in applica-
tions that control a machine. A simple way to give commands to this task for
controlling the motor would be to define a structure for commands. The mes-
sage size would then be the size of this structure.

© 1996-2006 Segger Microcontroller Systeme GmbH

74/169 User's & reference manual for embOS real time OS

8.4. OS_CREATEMB(): Create a mailbox

Description
Macro that creates a new mailbox.

Prototype

void OS_ CREATEMB (OS MAILBOX* PMB,
unsigned char sizeofMsg,
unsigned int maxnofMsg,
void* pMsg) ;

Parameter Meaning

Pointer to a data structure of type OS_MAILBOX reserved for
the management of the mailbox.

sizeofMsg |Size of a message in bytes. (1 <= sizeofMsg <= 127)
MaxnofMsg |Maximum no. of messages. (1 <= MaxnofMsg <= 65535)
Pointer to a memory area used as buffer. The buffer has to be
pMsg big enough to hold the given number of messages of the speci-
fied size: sizeofMsg * maxnofMsg bytes.

pMB

Return value
Void.

Examples
Mailbox used as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan (void) {
/* create mailbox functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);

}

Mailbox used to transfer complex commands from one task to another:

/*
* example for mailbox used to transfer commands to a task
* that controls 2 motors

*/

typedef struct {
char Cmd;
int Speed[2];
int Position([2];
} MOTORCMD ;

OS_MAILBOX MBMotor;

#define MOTORCMD SIZE 4
char BufferMotor [sizeof (MOTORCMD) *MOTORCMD SIZE] ;

void MOTOR Init (void) {
/* create mailbox that holds commands messages */
OS_CREATEMB(&MBMotor, sizeof (MOTORCMD) , MOTORCMD SIZE, &BufferMotor) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 75/169

8.5. Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and
transfer single-byte messages. This is the case, for example, with a mailbox
that takes the character received or sent via serial interface, or normally with a
mailbox used as keyboard buffer. In some of these cases, time is very critical,
especially if a lot of data is transferred in short periods of time.

In order to minimize the overhead caused by the mailbox management of
embOS, variations on some mailbox functions are available for single-byte
mailboxes. The general functions 0S PutMail (), OS PutMailCond(),
OS_GetMail (), and OS_GetMailCond () can transfer messages of sizes be-
tween 1 and 127 bytes each. Their single-byte equivalents 0OS PutMaill (),
OS_PutMailCondl (), OS_GetMaill (), and OS_GetMailCondl () function
the same way with the exception that they execute much faster since manage-
ment is simpler. It is recommended to use the single-byte versions if you trans-
fer a lot of single byte-data via mailboxes.

The routines 0S_PutMaill (), OS_PutMailCondl (), OS_GetMaill (), and
OS_GetMailCondl () function exactly the same way as their more universal
equivalents and are therefore not described separately. The only difference is
that they can only be used for single-byte mailboxes.

© 1996-2006 Segger Microcontroller Systeme GmbH

76/169 User's & reference manual for embOS real time OS

8.6. OS_PutMail() / OS_PutMail1(): Store a message

Description
Stores a new message of a predefined size in a mailbox.

Prototype

void OS_ PutMail (OS_MAILBOX * pMB, void* pMail) ;
void OS PutMaill (OS _MAILBOX * pMB, const char* pMail) ;

Parameter Meaning
PMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value
Void.

Add. information

If the mailbox is full, the calling task is suspended.
Since this routine might require a suspension, it must not be called from an in-
terrupt routine. Use 0S_PutMailCond ()/0S_PutMailCondl () instead if you
have to store data in a mailbox from within an ISR.

Important:
This function may not be called from within an interrupt handler.

Example
Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN StoreKey(char k) {
OS_PutMaill (&MBKey, &k); /* store key, wait if no space in buffer */
}

void KEYMAN Init (void) {
/* create mailbox functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 77/169

8.7. OS_PutMailCond() / OS_PutMailCond1(): Store a message if
possible

Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able
to accept one more message.

Prototype

char OS PutMailCond (O0S MAILBOX * pMB, void* pMail) ;
char OS PutMailCondl (OS MAILBOX * pMB, const char* pMail) ;

Parameter Meaning
PMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Add. information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from
an interrupt routine.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer|[6];

char KEYMAN StoreCond (char k) {
return OS_PutMailCondl (&MBKey, &k); /* store key if space in buffer */

}

This example can be used with the sample program shown earlier to handle a
mailbox as keyboard buffer.

© 1996-2006 Segger Microcontroller Systeme GmbH

78/169 User's & reference manual for embOS real time OS

8.8. OS_PutMailFront() / OS_PutMailFront1(): Store a message in
front into a mailbox

Description

Stores a new message of a predefined size into a mailbox in front of all other
messages. This new message will be retrieved first.

Prototype

void OS_ PutMailFront (OS_MAILBOX * pMB, void* pMail) ;
void OS_PutMailFrontl (OS_MAILBOX * pMB,
const char* pMail) ;

Parameter Meaning
PMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value
Void.

Add. information

If the mailbox is full, the calling task is suspended. Since this routine might re-
quire a suspension, it must not be called from an interrupt routine. Use
OS_PutMailFrontCond ()/OS_ PutMailFrontCondl () instead if you have
to store data in a mailbox from within an ISR.

This function is useful to store “emergency” messages into a mailbox which
have to be handled quick.

It may also be used in general instead of OS_PutMail () to change the FIFO
structure of a mailbox into a LIFO structure.

Important:
This function may not be called from within an interrupt handler.

Example
Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBCmd;
char MBCmdBuffer([6];

void KEYMAN StoreCommand (char k) {
O0S_PutMailFrontl (&MBCmd, &k); /* store command, wait if no space in buffer*/

void KEYMAN Init (void) {
/* create mailbox functioning as command buffer */
OS_CREATEMB (&MBCmd, 1, sizeof (MBCmdBuffer), &MBCmdBuffer) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 79/169

8.9. OS_PutMailFrontCond() / OS_PutMailFrontCond1(): Store a
message in front into a mailbox if possible

Description

Stores a new message of a predefined size into a mailbox in front of all other
messages, if the mailbox is able to accept one more message. The new mes-
sage will be retrieved first.

Prototype

char OS PutMailFrontCond (OS_MAILBOX * pMB, void* pMail) ;
char OS PutMailFrontCondl (OS MAILBOX * pMB,
const char* pMail) ;

Parameter Meaning
PMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Add. information

If the mailbox is full, the message is not stored.

This function never suspends the calling task. It may therefore be called from
an interrupt routine.

This function is useful to store “emergency” messages into a mailbox which
have to be handled quick.

It may also be used in general instead of 0S_PutMail () to change the FIFO
structure of a mailbox into a LIFO structure.

© 1996-2006 Segger Microcontroller Systeme GmbH

80/169

User's & reference manual for embOS real time OS

8.10. OS_GetMail() / OS_GetMail1(): Retrieve a message

Description

Retrieves a new message of a predefined size from a mailbox.

Prototype

void OS GetMail (OS MAILBOX * pMB, void* pDest) ;
void OS_GetMaill (OS_MAILBOX * pMB, char* pDest) ;

Parameter Meaning

PMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that
there is sufficient space for an entire message. The message
size (in bytes) has been defined upon creation of the mailbox

pDest

Return value

Void.

Add. information
If the mailbox is empty, the task is suspended until the mailbox receives a new
message.
Since this routine might require a suspension, it may not be called from an in-
terrupt routine. Use OS_GetMailCond/OS GetMailCondl instead if you have
to retrieve data from a mailbox from within an ISR.

Important:
This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
char c;
OS_GetMaill (&MBKey, &c);
return c;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 81/169

8.11. OS_GetMailCond() / OS_GetMailCond1(): Retrieve a
message if possible

Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype

char OS GetMailCond (OS MAILBOX * pMB, void* pDest) ;
char OS GetMailCondl (OS MAILBOX * pMB, char* pDest) ;

Parameter Meaning
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area and
pDest that there is sufficient space for an entire message. The mes-
sage size (in bytes) has been defined upon creation of the
mailbox

Retrun value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination
remains unchanged.

Add. information

If the mailbox is empty, no message is retrieved, but the program execution

continues.
This function never suspends the calling task. It may therefore also be called

from an interrupt routine.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer([6];

/*

* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.

* Otherwise, 0 is returned.

*/

char GetKey (void) {
char ¢ =0;
OS_GetMailCondl (&MBKey, &c)
return c;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

82/169 User's & reference manual for embOS real time OS

8.12. OS_GetMailTimed(): Retrieve a message within a given time

Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available within a given time.

Prototype
char OS_GetMailTimed(OS_MAILBOX * pMB,
void* pDest,
int Timeout) ;

Parameter Meaning
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area and

pDest that there is sufficient space for an entire message. The mes-
sage size (in bytes) has been defined upon creation of the
mailbox
T Maximum time in timer ticks until the requested mail has to be
imeout .
available.

Retrun value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination
remains unchanged.

Add. information

If the mailbox is empty, no message is retrieved, the task is suspended for the
given timeout.

The task continues execution, according to the rules of the scheduler, as soon
as a mail is available within the given timeout, or after the timeout value has
expired.

Important:
This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*

* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.

* Otherwise, 0 is returned.

*/

char GetKey(void) {
char ¢ =0;
0S_GetMailTimed (&MBKey, &c, 10) /* Wait for 10 timer ticks */
return c;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 83/169

8.13. OS_WaitMail(): Wait until a mail is available

Description

Waits until a mail is available, but does not retrieve the message from the mail-
box.

Prototype
void OS WaitMail (OS_MAILBOX* pMB)

Parameter Meaning
PMB Pointer to the mailbox.

Return value
Void.

Add. information

If the mailbox is empty, the task is suspended until a mail is available, otherwise
the task continues.

The task continues execution, according to the rules of the scheduler, as soon
as a mail is available, but the mail is not retrieved from the mailbox.

Important:
This function may not be called from within an interrupt handler.

© 1996-2006 Segger Microcontroller Systeme GmbH

84/169 User's & reference manual for embOS real time OS

8.14. OS_ClearMB(): Empty a mailbox

Description
Clears all messages in a specified mailbox.

Prototype
void OS_ClearMB (0OS MAILBOX * pMB) ;

Parameter Meaning
PMB Pointer to the mailbox.

Return value
Void.

Add. information

None.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*

* Clear keyboard type ahead buffer

*/

void ClearKeyBuffer (void) {
0S_ClearMB (&MBKey) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 85/169

8.15. OS_GetMessageCnt(): Get number of messages in mailbox

Description
Returns number of messages currently in a specified mailbox.

Prototype
char OS_GetMessageCnt (OS _MAILBOX * pMB) ;
Parameter Meaning
pMB Pointer to the mailbox.

Return value

The number of messages in the mailbox.

Add. information

None.

Example

char GetKey(void) {
if (OS_GetMessageCnt (&MBKey)) return WaitKey () ;
return O0;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

86/169 User's & reference manual for embOS real time OS

8.16. OS_DeleteMB(): Delete a mailbox

Description
Deletes a specified mailbox.

Prototype
void OS_DeleteMB (OS _MAILBOX * pMB) ;

Parameter Meaning
PMB Pointer to the mailbox.

Return value
Void.

Add. information

In order to keep the system fully dynamic, it is essential that mailboxes can be
created dynamically. This also means there has to be a way to delete a mailbox
when it is no longer needed. The memory that has been used by the mailbox
for the control structure and the buffer can then be reused or reallocated.
It is the programmer’s responsibility to:

e make sure that the program no longer uses the mailbox to be deleted

e make sure that the mailbox to be deleted actually exists (i.e. has been

created first).

OS_MAILBOX MBSerIn;
char MBSerInBuffer([6];

void Cleanup (void) {
OS _DeleteMB (MBSerlIn) ;
return 0;

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 87/169

9. Queues

9.1. Why queues?

In the preceding chapter, intertask communication using mailboxes was de-
scribed. Mailboxes can handle small messages with fixed data size only.
Queues enable intertask communication with larger messages or with mes-
sages of various sizes.

9.2. Basics

A queue consists of a data buffer and a control structure that is managed by the
real time operating system. The queue behaves like a normal buffer; you can
put something (called a message) in and retrieve it later. Queues work as FIFO:
first in, first out. So a message that is put in first will be retrieved first.

There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into
a queue, the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but
returns a pointer to the message and its size. This enhances perform-
ance because the data is copied only once, when the message is written
into the queue.

3. The retrieving function has to delete every message after processing it.

Both the number and size of queues is limited only by the amount of available
memory.

Any data structure can be written into a queue. The message size is not fixed.

© 1996-2006 Segger Microcontroller Systeme GmbH

88/169 User's & reference manual for embOS real time OS

9.3. OS_Q_Create(): Create a message queue

Description
Creates and initializes a message queue.

Prototype
void OS_Q Create (0OS _Q* pQ,
void*pData,
OS_UINT Size) ;
Parameter Meaning
20 Pointer to a data structure of type OS_Q reserved for the man-
agement of the message queue.
pData Pointer to a memory area used as data buffer for the queue.
Size Size of the data buffer in bytes.

Return value
Void.

Examples
Queue used to transfer data to memory:

#define MEMORY QSIZE 10000;
static O0S_Q MemoryQ;
static char _acMemQBuffer [MEMORY QSIZE];

void MEMORY Init (void) {
0S_Q Create (& MemoryQ, & acMemQBuffer, sizeof (acMemQBuffer)) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

9.4. OS_Q_Put(): Store message

Description

Stores a new message of given size in a queue.

Prototype

int OS_Q Put (0S_Q* pQ, const void* pSrc, OS_UINT Size);

Parameter Meaning
PQ Pointer to the queue.
pSrc Pointer to the message to store
Size Size of the message to store

Return value

0: Success; message stored.
1: Message could not be stored (queue is full).

Add. information

If the queue is full, the function returns a value unequal to 0.

This routine never suspends the calling task. It may therefore also be called

from an interrupt routine.

Example

char MEMORY Write (char* pData, int Len) {
return OS_Q Put (& MemoryQ, pData, Len)) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

90/169

User's & reference manual for embOS real time OS

9.5. OS_Q_GetPtr(): Retrieve message

Description

Retrieves a message from a queue.

Prototype

int OS_Q GetPtr (0OS_Q* pQ, void**ppData) ;

Parameter Meaning
pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Return value

Add.

The message size of the retrieved message.
Sets the pointer to the message that should be retrieved.

information

If the queue is empty, the calling task is suspended until the queue receives a
new message.

Since this routine might require a suspension, it must not be called from an in-
terrupt routine. Use OS_GetPtrCond () instead.

The retrieved message is not removed from the queue. This has to be done by
a call of 0S_Q Purge () after the message was processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q GetPtr (& MemoryQ, &pData) ; /* Get message */
Memory WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q Purge (& MemoryQ) ; /* Delete message */

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 91/169

9.6. OS_Q_GetPtrCond(): Retrieve message if possible

Description
Retrieves a message from a queue, if one message is available.

Prototype
int OS_Q GetPtrCond(0OS_Q* pQ, void**ppData) ;
Parameter Meaning
PQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Add. information

If the queue is empty, the function returns 0. The value of ppData is undefined.
This function never suspends the calling task. It may therefore also be called
from an interrupt routine.

If a message could be retrieved, it is not removed from the queue. This has to
be done by a call of 0S_Q Purge () after the message was processed.

Example

static void MemoryTask (void) ({
char MemoryEvent;
int Len;
char* pData;
while (1) ({

Len = OS_Q GetPtrCond (& MemoryQ, &pData) ; /* Check message */
if (Len > 0) {

Memory WritePacket (* (U32*)pData, pData+4, Len); /* Process message */

0S_Q Purge (& MemoryQ) ; /* Delete message */
} else {

DoSomethingElse () ;

© 1996-2006 Segger Microcontroller Systeme GmbH

92/169 User's & reference manual for embOS real time OS

9.7. OS_Q_Purge(): Delete one message in queue

Description
Deletes the last retrieved message in a queue.

Prototype
void OS_Q Purge (0OS_Q* pQ) ;
Parameter Meaning
pQ Pointer to the queue.

Return value
Void.

Add. information

This routine should be called by the task that retrieved the last message from
the queue, after the message is processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = OS_Q GetPtr (& MemoryQ, &pData) ; /* Get message */
Memory WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q Purge (& MemoryQ) ; /* Delete message */

}
}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

93/169

9.8. OS_Q_Clear(): Delete all messages in queue

Description

Deletes all message in a queue.

Prototype

void OS _Q Clear (0S_Q* pQ) ;

Parameter

Meaning

pPQ

Pointer to the queue.

Return value
Void.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

94/169 User's & reference manual for embOS real time OS

9.9. OS_Q_GetMessageCnt(): Get number of messages in queue

Description
Returns the number of messages currently in a queue.

Prototype
int OS_Q GetMessageCnt (0OS_Q* pQ) ;
Parameter Meaning
pQ Pointer to the queue.

Return value

The number of messages in the queue.

Add. information

None.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 95/169

10. Events

Events are another means of communication between tasks. In contrast to
semaphores and mailboxes, events are messages to a single, specified recipi-
ent. In other words, an event is sent to a specified task.

The purpose of an event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is
signaled by another task, a S/W timer or an interrupt handler. The event can be
anything that the software is made aware of in any way. Examples include the
change of an input signal, the expiration of a timer, a key press, the reception of
a character or a complete command.

Every task has a 1-byte (8-bit) mask, which means that 8 different events can
be signaled to and distinguished by every task. By calling 0S_wWaitEvent (),
a task waits for one of the events specified as bitmask. As soon as one of the
events occurs, it has to be signaled to this task by calling 0S_SignalEvent ().
The waiting task will then be put in the READY state immediately. It will be acti-
vated according to the rules of the scheduler as soon as it becomes the task
with the highest priority of all the tasks in the READY state.

© 1996-2006 Segger Microcontroller Systeme GmbH

96/169 User's & reference manual for embOS real time OS

10.1. OS_WaitEvent(): Wait for event, then clear all events

Description

Waits for one of the events specified in the bitmask and clears the event mem-
ory after an event occurs.

Prototype
char OS WaitEvent (char EventMask) ;
Parameter Meaning
EventMask The events that the task will be waiting for.

Return value

All events that have actually occurred.

Add. information

If none of the specified events are signaled, the task is suspended. The first of
the specified events will wake the task. These events are signaled by another
task, a S/W timer or an interrupt handler.

Any bit in the 8-bit event mask may enable the according event.

Example

0S_WaitEvent (3) ; /* Wait for event 1 or 2 to be signaled */

For a further example, see 0S_SignalEvent ().

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 97/169

10.2. OS_WaitSingleEvent(): Wait for event, then clear masked
events only

Description
Waits for one of the events specified as bitmask and clears only that event after
it occurs.

Prototype
char OS WaitSingleEvent (char EventMask) ;

Parameter Meaning
EventMask The events that the task will be waiting for.

Return value

All masked events that have actually occurred.

Add. information

If none of the specified events are signaled, the task is suspended. The first of
the specified events will wake the task. These events are signaled by another
task, a S/W timer or an interrupt handler.

Any bit in the 8-bit event mask may enable the according event.

All unmasked events remain unchanged.

Example

OS WaitSingleEvent (3) ; /* Wait for event 1 or 2 to be signaled */

© 1996-2006 Segger Microcontroller Systeme GmbH

98/169 User's & reference manual for embOS real time OS

10.3. OS_WaitEventTimed():Wait for event with timeout

Description

Waits for the specified events for a given time, and clears the event memory af-
ter an event occurs.

Prototype
char OS WaitEventTimed (char EventMask, int TimeOut) ;
Parameter Meaning
EventMask The events that the task will be waiting for.

Maximum time in timer ticks until the events have to be sig-

TimeOut naled. (1 <= TimeOut <= 32767)

Return value

The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Add. information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled
by another task, a S/W timer or an interrupt handler within the specified Time-
Oout time.

If no event is signaled, the task is activated after the specified timeout and all
actual events are returned and then cleared.

Any bit in the 8-bit event mask may enable the according event.

Example

0S_WaitEventTimed (3, 10); /* Wait for event 1/2 to be signaled within 10 ms */

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 99/169

10.4. OS_WaitSingleEventTimed(): Wait for event, then clear
masked events, with timeout

Description

Waits for the specified events for a given time; after an event occurs, only that
event is cleared.

Prototype
char OS WaitSingleEventTimed (char EventMask, int TimeOut) ;

Parameter Meaning
EventMask The events that the task will be waiting for.
Maximum time in timer ticks until the events have to be sig-
naled. (1 <= TimeOut <= 32767)

TimeOut

Return value

The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Add. information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled
by another task, a S/W timer or an interrupt handler within the specified Time-
Out time.

If no event is signaled, the task is activated after the specified timeout and the
function returns zero.

Any bit in the 8-bit event mask may enable the according event.

All unmasked events remain unchanged.

Example

0S_WaitSingleEventTimed (3, 10); /* Wait for event 1/2 to be signaled within 10
ms */

© 1996-2006 Segger Microcontroller Systeme GmbH

100/169

User's & reference manual for embOS real time OS

10.5. OS_SignalEvent(): Signal a task that an event has occured

Description

Signals event(s) to a specified task.

Prototype

void OS_SignalEvent (char Event, OS TASK* pTask) ;

Parameter Meaning

The event(s) to signal:
1 means event 1
2 means event 2
4 means event 3

Event
128 means event 8.
Multiple events can be signaled as the sum of the single
events (e.g. 6 will signal events 2 & 3).

pTask Task that the events are sent to.

Return value
Void.

Add. information

If the specified task is waiting for one of these events, it will be put in the
READY state and activated according to the rules of the scheduler.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 101/169

Example
The task that handles the serial input and the keyboard waits for a character to
be received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* just a small demo for events

*/

#define EVENT KEYPRESSED (1)
#define EVENT SERIN (2)

OS_STACKPTR int StackO0[96], Stackl[64]; /* stack space */
O0S_TASK TCBO, TCB1; /* Data area for tasks (task control blocks) */

void TaskO (void) {
OS_U8 MyEvent;
while (1)
MyEvent = OS WaitEvent (EVENT KEYPRESSED | EVENT SERIN)
if (MyEvent & EVENT KEYPRESSED) {
/* handle key press */

if (MyEvent & EVENT SERIN) {
/* handle serial reception */
}

}
}

void TimerKey (void) {
/* more code to find out if key has been pressed */
0S_SignalEvent (EVENT SERIN, &TCBO); /* notify Task that key was pressed */

}

void InitTask(void) {
OS CREATETASK (&TCBO, 0, TaskO, 100, StackoO); /* Create Task0 */

If the task were only waiting for a key to be pressed, 0S GetMail () could
simply be called. The task would then be deactivated until a key is pressed. If
the task has to handle multiple mailboxes, as in this case, events are a good
option.

© 1996-2006 Segger Microcontroller Systeme GmbH

102/169 User's & reference manual for embOS real time OS

10.6. OS_GetEventsOccured(): Get a list of events

Description
Returns a list of events that have occurred for a specified task.

Prototype
char OS_ GetEventsOccured (0S_TASK* pTask) ;

Parameter Meaning
The task who's event mask is to be returned,
NULL means current task.

pTask

Return value
The event mask of the events that have actually occurred.

Add. information

By calling this function, the actual events remain signaled. The event memory is
not cleared.

This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are available.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 103/169

10.7. OS_ClearEvents(): Clear list of events

Description

Returns the actual state of events and then clears the events of a specified
task.

Prototype
char OS ClearEvents (0OS_TASK* pTask) ;

Parameter Meaning
The task who's events are to be returned and cleared,
NULL means current task.

pTask

Return value
The events that were actually signaled before clearing.

© 1996-2006 Segger Microcontroller Systeme GmbH

104/169 User's & reference manual for embOS real time OS

11. Heap type memory management

ANSI “C” offers some basic dynamic memory management functions. These
are malloc, free, and realloc.

Unfortunately, these routines are not thread-safe; they can only be used from
one task or by multiple tasks if they are called sequentially. Therefore, embOS
offers task-safe variants of these routines. These variants have the same
names as their ANSI counterparts, but are prefixed OS_; they are called
OS_malloc(), OS_free(), OS_realloc(). The thread-safe variants that embOS
offers use the standard ANSI routines, but make sure that the calls are serial-
ized using a resource semaphore.

If heap memory management is not supported by the standard C-libraries for a
specific CPU, embOS heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use
any resources if it is not referenced by the application (i.e. if the application
does not use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory
used for the functions (known as heap) may fragment. This can lead to a situa-
tion where the total amount of memory is sufficient, but there is not enough
memory available in a single block to satisfy an allocation request.

11.1. APl reference

API routine Short explanation
0S_malloc |Allocates a block of memory on the heap.
0S_free Frees a block of memory previously allocated.
0S_realloc |Changes allocation size.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

105/169

12. Fixed block size memory pools

Fixed block memory pools contain a specific number of fixed-size blocks of
memory. The location in memory of the pool, the size of each block and the
number of blocks are set at run time by the application via a call to the create
function. The advantage of fixed memory pools is that a block of memory can
be allocated from within any task in a very short, determined period of time.

12.1. API reference

All API functions for fixed block size memory pools are prefixed 0S_MEMF .

API routine

Short explanation

Create / Delete

OS MEMF Create

Create fixed block memory pool.

OS_MEMF Delete

Delete fixed block memory pool.

Allocation

OS_MEMF Alloc

Allocate memory block from a given mem-
ory pool. Wait indefinitely if no block is
available.

OS_MEMF AllocTimed

Allocate memory block from a given mem-
ory pool. Wait no longer than given timeout
if no block is available.

OS MEMF Request

Allocate block from a given memory pool, if
available. Non-blocking.

Release

OS_MEMF_ Release

Release memory block from a given mem-
ory pool.

OS MEMF FreeBlock

Release memory block from any pool.

Info

OS_MEMF_ GetNumFreeBlocks

Returns the number of available blocks in a
pool.

OS_MEMF_ IsInPool

Returns !=0 if block is in memory pool.

OS_MEMF_ GetMaxUsed

Returns the maximum number of blocks in
a pool which have been used at a time.

OS MEMF_ GetNumBlocks

Returns the number of blocks in a pool.

OS_MEMF GetBlockSize

Returns the size of one block of given pool.

12.2. OS_MEMF_Create(): Create a fixed size memory pool

Description

Creates and initializes a fixed block size memory pool.

Prototype

void OS_MEMF_Create(OS_MEMF* PMEMF,
void* pPool,
OS Ulé6 NumBlocks,
OS Ulée BlockSize) ;

© 1996-2006 Segger Microcontroller Systeme GmbH

106/169

User's & reference manual for embOS real time OS

Parameter Meaning
PMEMF Pointer to the control data structure of memory pool.
Pointer to memory to be used for the memory pool. Required
pPoo1 size is:

NumBlocks * (BlockSize +

OS MEMF_SIZEOF BLOCKCONTROL).
NumBlocks [Number of blocks in the memory pool.
BlockSize |Size of one block in bytes.

Return value

Add.

Void.

information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for
control and debug purposes. It is guaranteed to be 0 in release or stack check
builds.

Before using any memory pool, it has to be created.

The debug version of libraries keeps track of created and deleted memory
pools. The release and stack check versions do not.

12.3. OS_MEMF_Delete(): Delete a fixed size memory pool

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and
memory blocks inside this pool may no longer be used.

Prototype

void OS_MEMF_ Delete (OS_MEMF* pMEMF) ;

Parameter Meaning

PMEMF Pointer to the control data structure of memory pool.

Return value

Add.

Void.

information

This routine is provided for completeness. It is not used in the majority of appli-
cations because there is no need to dynamically create/delete memory pools.
Most applications prefer to have a static memory pool design; memory pools
are created at startup (before calling 0S_Start ()) and will never be deleted.
The debug version of libraries mark the memory pool as deleted.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 107/169

12.4. OS_MEMF_Alloc(): Retrieve one block from memory pool

Description

Requests allocation of a memory block.
Waits until a block of memory is available.

Prototype
void* OS MEMF Alloc (OS MEMF* pMEMF, int Purpose) ;

Parameter Meaning

pMEMF Pointer to the control data structure of memory pool.

Purpose This is a parameter which is used for debugging only. Its value
has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Return value
Pointer to the allocated block.

Add. Information

If there is no free memory block in the pool, the calling task is suspended until a

memory block becomes available.
The retrieved pointer must be delivered to OS_MEMF_Release () as parameter

to free the memory block. The pointer must not be modified.

12.5. OS_MEMF_AllocTimed(): Retrieve block with timeout

Description

Requests allocation of a memory block.
Waits until a block of memory is available or the timeout has expired.

Prototype
void* OS MEMF AllocTimed (OS MEMF* pMEMF,
int Timeout,
int Purpose) ;

Parameter Meaning

PMEMF Pointer to the control data structure of memory pool.

Timeout Timeout, given in ticks. 0 or negative values are permitted.
Purpose This is a parameter which is used for debugging only. Its value
has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Add. Information

© 1996-2006 Segger Microcontroller Systeme GmbH

108/169 User's & reference manual for embOS real time OS

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired.
The retrieved pointer must be delivered to OS_MEMF_Release () as parameter
to free the memory block. The pointer must not be modified.

12.6. OS_MEMF_Request(): Retrieve memory block if available

Description

Requests allocation of a memory block.
Continues execution in any case.

Prototype
void* OS MEMF Request (OS MEMF* pMEMF, int Purpose) ;
Parameter Meaning
PMEMF Pointer to the control data structure of memory pool.

This is a parameter which is used for debugging only. Its value
has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Purpose

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Add. Information

The calling task is never suspended by calling 0OS_MEMF_Request ().
The retrieved pointer must be delivered to OS_MEMF_Release () as parameter
to free the memory block. The pointer must not be modified.

12.7. OS_MEMF _Release(): Free a memory block in pool

Description
Releases a memory block that was previously allocated.
Prototype
void OS_MEMF Release (OS_MEMF* pMEMF, void* pMemBlock) ;
Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

pMemBlock | Pointer to the memory block to free.

Return value
Void.

Add. Information

The pMemblock pointer has to be the one that was delivered form any retrival
function described above. The pointer must not be modified between allocation
and release.

The memory block becomes available for other tasks waiting for a memory
block from the pool.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 109/169

If any task is waiting for a fixed memory block, it is activated according to the
rules of the scheduler.

12.8. OS_MEMF_FreeBlock(): Free a memory block

Description

Releases a memory block that was previously allocated. The memory pool
does not need to be denoted.

Prototype
void OS MEMF FreeBlock (void* pMemBlock) ;

Parameter Meaning
pMemBlock |Pointer to the memory block to free.

Return value
Void.

Add. Information

The pMemblock pointer has to be the one that was delivered form any retrieval
function described above. The pointer must not be modified between allocation
and release.

This function may be used instead of 0S_ MEMF Release (). It has the advan-
tage that only one parameter is needed. embOS itself will find the associated
memory pool.

The memory block becomes available for other tasks waiting for a memory
block from the pool.

If any task is waiting for a fixed memory block, it is activated according to the
rules of the scheduler.

12.9. OS_MEMF_GetNumBlocks(): Returns number of blocks in
pool

Description
Info routine to examine the total number of all memory blocks in the pool.
Prototype
int OS MEMF GetNumFreeBlocks (0OS MEMF* pMEMF) ;
Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value

returns the number of blocks in the specified memory pool. This is the value
that was given as parameter during creation of the memory pool.

© 1996-2006 Segger Microcontroller Systeme GmbH

110/169 User's & reference manual for embOS real time OS

12.10. OS_MEMF_GetBlockSize(): Returns size of one memory
block

Description
Info routine to examine the size of one memory block in the pool.
Prototype
int OS_MEMF_ GetBlockSize (0OS_MEMF* pMEMF) ;
Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value

returns the size in bytes of one memory block in the specified memory pool.
This is the value that was given as parameter during creation of the memory
pool.

12.11. OS_MEMF_GetNumFreeBlocks(): Returns number of free
blocks in pool

Description
Info routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF GetNumFreeBlocks (0OS_MEMF* pMEMF) ;

Parameter Meaning
PMEMF Pointer to the control data structure of memory pool.

Return value
The number of free blocks actually available in the specified memory pool.

12.12. OS_MEMF_GetMaxUsed(): Returns max. number of used
blocks in pool

Description

Info routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype
int OS MEMF GetMaxUsed (OS_MEMF* pMEMF) ;

Parameter Meaning
PMEMF Pointer to the control data structure of memory pool.

Return value

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 111/169

returns the maximum number of blocks in the specified memory pool that were
used concurrently since creation of the pool.

12.13. OS_MEMF _IsInPool(): Check if block belongs to pool

Description

Info routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype

char OS MEMF IsInPool (OS_MEMF* pMEMF, void* pMemBlock) ;

Parameter

Meaning

PMEMF

Pointer to the control data structure of memory pool.

pMemBlock

Pointer to a memory block which should be checked

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

© 1996-2006 Segger Microcontroller Systeme GmbH

112/169 User's & reference manual for embOS real time OS

13. Stacks

The stack is the memory area used to store the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt rou-
tines also use the stack to save the return address and flag register, except in
cases where the CPU has a separate stack for interrupt functions. Take a look
at the CPU & Compiler Specifics manual of embOS documentation for details
on your processor’s stack. A "normal" single-task program needs exactly one
stack. In a multitasking system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the
stack usage of the routines in the worst-case nesting. If the stack is too small, a
section of the memory that is not reserved for the stack will be overwritten, and
a serious program failure is most likely to occur. embOS monitors the stack
size (and, if available, also interrupt stack size in the debug version), calling the
failure routine OS_Error () if it detects a stack overflow. However, embOS
cannot reliably detect a stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a
waist of memory. The debug and stack check builds of embOS fill the stack
with control characters when it is created and check these characters every
time the task is deactivated in order to detect a stack overflow. If an overflow is
detected, 0S_Error () will be called.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 113/169

13.1. System stack

Before embOS takes over control (before call to OS Start()), a program
does use the so-called system stack. This is the same stack that a non- em-
bOS program for this CPU would use. After transferring control to the embOS
scheduler by calling 0S_Start (), system stack is used only when no task is
executed for the following:

e embOS scheduler
e embOS software timers (and the callback)

For details regarding required size of your system stack, please refer to the
CPU & Compiler Specifics manual of embOS documentation.

13.2. Task stack

Each embOS task has a separate stack. The location and size of this stack is
defined when creating the task. The minimum size of a task stack pretty much
depends on the CPU and compiler. For details, please see the CPU & Compiler
Specifics manual of embOS documentation.

13.3. Interrupt stack

To reduce stack size in a multitasking environment, some processors use a
specific stack area for interrupt service routines (called a hardware interrupt
stack). If there is no interrupt stack, you will have to add stack requirements of
your interrupt service routines to each task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may
support a separate stack for interrupts by calling the function
OS_EnterIntStack() at beginning of an interrupt service routine and
OS_LeaveIntStack() at its very end. In case the CPU already supports
hardware interrupt stacks or if a separate interrupt stack is not supported at all,
these function calls are implemented as empty macros.

We recommend using OS_EnterIntStack() and OS_ LeaveIntStack ()
even if there is currently no additional benefit for your specific CPU, because
code that uses them might reduce stack size on another CPU or a new version
of embOS with support for an interrupt stack for your CPU. For details about in-
terrupt stacks, please see the CPU & Compiler Specifics manual of embOS
documentation.

© 1996-2006 Segger Microcontroller Systeme GmbH

114/169

User's & reference manual for embOS real time OS

13.4. OS_GetStackSpace()

Description

Returns the unused portion of a task stack.

Prototype

int OS_GetStackSpace (0S TCB* pTask) ;

Parameter Meaning

The task who's stack space is to be checked.

Task
pras NULL means current task.

Return value

Add.

The unused portion of the task stack in bytes.

information

In most cases, the stack size required by a task cannot be easily calculated,
since it takes quite some time to calculate the worst-case nesting and the calcu-
lation itself is difficult.

However, the required stack size can be figured out using the function
OS_GetStackSpace (), which returns the number of unused bytes on the
stack. If there is a lot of space left, you can reduce the size of this stack and
vice versa.

This function is only available in the debug and stack check builds of
embOS , since only these builds initialize the stack space used for the
tasks.

Important

This routine does not reliably detect the amount of stack space left, be-
cause it can only detect modified bytes on the stack. Unfortunately, space
used for register storage or local variables is not always modified. In most
cases, this routine will detect the correct amount of stack bytes, but in
case of doubt, be generous with your stack space or use other means to
verify that the allocated stack space is sufficient.

Example

void CheckSpace (void) {
printf ("Unused Stack[0] %d", OS_GetStackSpace (&TCB[0]) ;
OS Delay (1000) ;
printf ("Unused Stack[1] %d", OS_GetStackSpace (&TCBI[1]) ;
0OS Delay (1000) ;

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 115/169

14. Interrupts

In this chapter, you will find a very basic description of using interrupt service
routines (ISRs) in cooperation with embOS. Specific details for your CPU and
compiler may be found in the CPU & Compiler Specifics manual of embOS
documentation.

Interrupts are interruptions of a program caused by hardware. When an inter-
rupt occurs, the CPU normally saves some of its registers and executes a sub-
routine called an interrupt service routine, or ISR. After the ISR is completed,
the program returns to the highest-priority task in the READY state. Normal in-
terrupts are maskable; they can occur at any time unless they are disabled with
the CPU's “disable interrupt” instruction. ISRs are also nestable — they can be
recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond
very quickly to external events such as the status change on an input, the expi-
ration of a hardware timer, reception or completion of transmission of a charac-
ter via serial interface, or other events. Interrupts effectively allow events to be
processed as they occur.

14.1. Interrupt latency

Interrupt latency is the time between interrupt request and execution of the first
instruction of the interrupt service routine.

Every computer system has an interrupt latency. The latency depends on vari-
ous factors and differs even on the same computer system. The value that one
is typically interested in is the worst case interrupt latency.

The interrupt latency is a sum of a lot of different smaller delays explained be-
low.

14.1.1. Causes of interrupt latencies

e The first delay is typically in the hardware: The interrupt request signal
needs to be synchronized to the CPU clock. Depending on the synchroniza-
tion logic, typically up to 3 CPU cycles can be lost before the interrupt re-
quest has reached the CPU core.

e The CPU will typically complete the current instruction. This instruction can
take a lot of cycles; on most systems, divide, push-multiple or memory-copy
instructions are the instructions which require most clock cycles. On top of
the cycles required by the CPU, there are in most cases additional cycles
required for memory access. In an ARM7 system, the instruction
STMDB SP!, {R0O-R11,LR}; Push parameters and perm. Registers
is typically the worst case instruction.

It stores 13 32-bit registers on the stack. The CPU requires 15 clock cycles.

e The memory system may require additional cycles for wait states.

e After completion of the current instruction, the CPU performs a mode switch
or pushes registers (typically PC and flag registers) on the stack. In general,
modern CPUs (such as ARM) perform a mode switch, which requires less
CPU cycles than saving registers.

e Pipeline fill
Most modern CPUs are pipelined. Execution of an instruction happens in
various stages of the pipeline. An instruction is executed when it has
reached its final stage of the pipeline. Since the mode switch has flushed
the pipeline, a few extra cycles are required to refill the pipeline.

© 1996-2006 Segger Microcontroller Systeme GmbH

116/169 User's & reference manual for embOS real time OS

14.1.2. Additional causes for interrupt latencies

There can be additional causes for interrupt latencies.

These depend on the type of system used, but we list a few of them.

e Latencies caused by cache line fill
If the memory system has one or multiple caches, these may not contain
the required data. In this case, not only the required data is loaded from
memory, but in a lot of cases a complete line fill needs to be performed,
reading multiple words from memory

e Latencies caused by cache write back.
A cache miss may cause a line to be replaced. If this line is marked as dirty,
it needs to be written back to main memory, causing an additional delay.

e Latencies caused by MMU translation table walks.
Translation table walks can take a considerable amount of time, especially
as they involve potentially slow main memory accesses. In real-time inter-
rupt handlers, translation table walks caused by the TLB not containing
translations for the handler and/or the data it accesses can increase inter-
rupt latency significantly.

e Application program.
Of course the application program can cause add. latencies by disabling in-
terrupts. This can make sense in some situations, but of course causes
add. latencies.

e Interrupt routines
On most systems, one interrupt disables further interrupts. Even if the inter-
rupts are re-enabled in the ISR, this takes a few instructions, causing add.
latency.

e RTOS (Real Time Operating system)
An RTOS also needs to temporarily disable the interrupts which can call
API-functions of the RTOS.
Some RTOSes disable all interrupts, effectively worsening interrupt laten-
cies for all interrupts,
some (like embOS) disable only low-priority interrupts and do thereby not
affect the latency of high priority interrupts.

14.2. Zero interrupt latency

Zero interrupt latency in the strict sense is not possible as explained above.
What we mean when we say "Zero interrupt latency" is that the latency of high
priority interrupts is not affected by the RTOS; a system using embOS will have
the same worst-case interrupt latency for high priority interrupts as a system
running without

14.3. High / low priority interrupts

Most CPUs support interrupts with different priorities. Different priorities have

two effects:

o |f different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and it's ISR is executed first.

e Interrupts can never be interrupted by other interrupts of the same or lower
level of priority

How many different levels of interrupts there are depends on the CPU and the

interrupt controller. Details are explained in the CPU/MCU/SOC manuals and

the embOS port specific documentation.

embOS distinguishes two different levels of interrupts: High / Low priority inter-

rupts.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 117/169

The embOS port specific documentation explains where "the line is drawn",
which interrupts are considered high and which interrupts are considered low
priority.

In general, the differences are:
Low priority interrupts

e May call embOS API functions
e Latencies caused by embOS

High priority interrupts
e May not call embOS API functions
¢ No Latencies caused by embOS (Zero latency)

Example of different interrupt priority levels

M16C CPUs support 8 interrupt priority levels. With embOS, the 3 highest pri-
ority levels are treated as “High priority interrupts”.
ARM CPUs support normal interrupts (IRQ) and fast interrupt (FIQ). Using em-
bOS, the FIQ is treated as “High priority interrupt”.

© 1996-2006 Segger Microcontroller Systeme GmbH

118/169 User's & reference manual for embOS real time OS

14.4. Rules for interrupt handlers

14.4 1. General rules

There are some general rules for interrupt handlers. These rules apply to both
single-task programming as well as to multitask programming using embOS.

¢ Interrupt handlers preserve all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make
sure that all registers modified during interrupt execution are saved at the
beginning and restored at the end of the interrupt routine.

¢ Interrupt handlers have to be finished quickly.
Calculations of intensive parts of the program should be kept out of interrupt
handlers. An interrupt handler should only be used to store a received value
or to trigger an operation in the regular program (task). It should not wait in
any form or perform a polling operation.

14.4.2. Additional rules for preemptive multitasking

A preemptive multitasking system like embOS needs to know if the program
that is executing is part of the current task or an interrupt handler. This is be-
cause embOS cannot perform a task switch during the execution of an inter-
rupt handler; it can only do so at the end of an interrupt handler.

If a task switch were to occur during the execution of an ISR, the ISR would
continue as soon as the interrupted task became the current task again. This is
not a problem for interrupt handlers that do not allow further interruptions
(which do not enable interrupts) and that do not call any embOS functions.

This leads us to the following rule:

¢ Interrupt functions that re-enable interrupts or use any embOS function need
to call 0S_EnterInterrupt () atthe beginning, before executing any other
command and, before they return, call either OS LeaveInterrupt () or
0S_LeaveInterruptNoSwitch () as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in
the routine 0S_LeaveInterrupt (). The end of the ISR is executed at a later
point, when the interrupted task is made ready again. If you debug an interrupt
routine, do not be confused. This has proven to be the most efficient way of ini-
tiating a task switch from within an interrupt service routine.

If fast task-activation at the end of an interrupt service routine is not required,
OS_LeavelInterruptNoSwitch () can be used instead.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 119/169

14.5. Calling embOS routines from within an ISR

Before calling any embOS function from within an ISR, embOS has to be in-
formed that an interrupt service routine is running.

14.5.1. OS_EnterInterrupt()

Description
Informs embOS that interrupt code is executing.

Prototype

void OS_EnterInterrupt (void) ;

Return value
Void.

Add. information

If 0S_EnterInterrupt () is used, it should be the first function to be called in
the interrupt handler. It must be used with either OS LeaveInterrupt () or
0S LeaveInterruptNoSwitch () as the last function called.

The use of this function has the following effects:

disables task switches

keeps interrupts in internal routines disabled

14.5.2. OS_Leavelnterrupt().

Description

Informs embOS that the end of the interrupt routine has been reached; exe-
cutes task switching within ISR.

Prototype
void OS_LeaveInterrupt (void) ;

Return value
Void.

Add. information

If OS_LeaveInterrupt () is used, it should be the last function to be called in
the interrupt handler.

If the interrupt has caused a task switch, it is executed now (unless the program
which was interrupted was in a critical region).

© 1996-2006 Segger Microcontroller Systeme GmbH

120/169 User's & reference manual for embOS real time OS

14.5.3. OS_LeavelnterruptNoSwitch().

Description

Informs embOS that the end of the interrupt routine has been reached but
does not execute task switching within ISR.

Prototype
void OS LeavelnterruptNoSwitch (void) ;

Return value
Void.

Add. information

If OS_LeaveInterruptNoSwitch () is used, it should be the last function to
be called in the interrupt handler. If the interrupt has caused a task switch, it is
not executed from within the ISR, but at the next possible occasion. This will be
the next call of an embOS function or the scheduler interrupt if the program is
not in a critical region.

14.5.4. Example
Interrupt routine using OS_Enterinterrupt()/OS_Leavelnterrupt():

__interrupt void ISR Timer (void)
OS_EnterInterrupt () ;
OS_SignalEvent (1, &Task) ; /* any functionality could be here */
0OS_LeavelInterrupt () ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 121/169

14.6. Enabling / disabling interrupts from "C"

During the execution of a task, maskable interrupts are normally enabled. In
certain sections of the program, however, it can be necessary to disable inter-
rupts for short periods of time to make a section of the program an atomic op-
eration that cannot be interrupted. An example would be the access to a global
volatile variable of type long on an 8/16-bit CPU. In order to make sure that the
value does not change between the two or more accesses that are needed, the
interrupts have to be temporarily disabled:

Bad example

volatile long lvar;

void routine (void) {
lvar ++;

}

The problem with disabling and re-enabling interrupts is that functions that dis-
able/enable the interrupt cannot be nested.

Your “C” compiler offers two intrinsic functions for enabling and disabling inter-
rupts. These functions can still be used, but it is recommended to use the func-
tions that embOS offers (to be precise, they only look like functions, but are
macros in reality). If you do not use these recommended embOS functions,
you may run into a problem if routines which require a portion of the code to run
with disabled interrupts are nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible.
Also, you should not call routines when interrupts are disabled, because this
could lead to long interrupt latency times (the longer interrupts are disabled, the
higher the interrupt latency). As long as you only call embOS functions with in-
terrupts enabled, you may also safely use the compiler-provided intrinsics to
disable interrupts.

14.6.1. OS_IncDI() / OS_DecRI()

The following functions are actually macros defined in RTOS . h, so they execute
very quickly and are very efficient. It is important that they are used as a pair:
OS_IncDI () first, then OS_DecRI().

OS IncDI()

Short for Increment and Disable Interrupts
Increments the interrupt disable counter (OS_DICnt) and disables interrupts.

OS_DecRI()

Short for Decrement and Restore Interrupts
Decrements the counter and enables interrupts if the counter reaches 0.

Example

volatile long lvar;

void routine (void) {
OS_ IncDI () ;
1lvar ++;
OS DecRI() ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

122/169 User's & reference manual for embOS real time OS

OS_IncDI () increments the interrupt disable counter which is used for the en-
tire OS and is therefore consistent with the rest of the program in that any rou-
tine can be called and the interrupts will not be switched on before the matching
OS_DecRI () has been executed.

If you need to disable interrupts for a short moment only where no routine is
called, as in the example above, you could also use the pair 0S DI () and
OS_RestoreI (). These are a bit more efficient because the interrupt disable
counter OS_DICnt is not modified twice, but only checked once. They have the
disadvantage that they do not work with routines because the status of
OS_DICnt is not actually changed, and they should therefore be used with
great care. In case of doubt, use OS_IncDI () and OS DecRI ().

14.6.2. 0S_DI()/ OS_EI() / OS_Restorel()

0OS DI()

Short for Disable Interrupts
Disables interrupts. Does not change the interrupt disable counter.

OS _EI()

Short for Enable Interrupts
Please refrain from using this function directly unless you are sure that the in-
terrupt enable count has the value zero, because it does not take the interrupt
disable counter into account.

OS Restorel()

Short for Restore Interrupts
Restores the status of the interrupt flag, based on the interrupt disable counter.

Example

volatile long lvar;

void routine (void) ({
0S DI();
1lvar ++;
OS _RestoreI();

14.7. Definitions of interrupt control macros (in RTOS.h)

#define 0OS_IncDI () { 0S_ASSERT DICnt(); OS_DI(); OS _DICnt++; }
#define OS DecRI () { 0os_ASSERT DICnt(); if (--0S_DICnt==0) OS_EI(); }
#define 0OS_RestorelI () { 0S_ASSERT DICnt(); if (OS_DICnt==0) OS_EI(); }

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 123/169

14.8. Nesting interrupt routines

Per default, interrupts are disabled in an ISR because the CPU disables inter-
rupts with the execution of the interrupt handler. Re-enabling interrupts in an in-
terrupt handler allows the execution of further interrupts with equal or higher
priority than that of the current interrupt. These are known as nested interrupts,
illustrated in the diagram below:

Task ISR1 ISR2 ISR3

< Interrupt 1

< Interrupt 2

Interrupt 3

Time

ID

For applications requiring short interrupt latency, you may re-enable interrupts
inside an ISR by wusing O0S EnterNestableInterrupt() and
OS_LeaveNestableInterrupt () within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is
not really recommended to enable the execution of interrupts form within an in-
terrupt handler. As it is important that embOS keeps track of the status of the
interrupt enable/disable flag, the enabling and disabling of interrupts from within
an ISR has to be done using the functions that embOS offers for this purpose.

The routine OS_EnterNestableInterrupt () enables interrupts within an
ISR and prevents further task switches; OS LeaveNestableInterrupt ()
disables interrupts right before ending the interrupt routine again in order to re-
store the default condition. Re-enabling interrupts will make it possible for an
embOS scheduler interrupt to shortly interrupt this ISR. In this case, embOS
needs to know that an other ISR is still active and that it may not perform a task
switch.

© 1996-2006 Segger Microcontroller Systeme GmbH

124/169

User's & reference manual for embOS real time OS

14.8.1. OS_EnterNestablelnterrupt()

Description

Re-enables interrupts and increments the embOS internal critical region
counter, thus disabling further task switches.

Prototype

void OS EnterNestableInterrupt (void) ;

Return value

Void.
Add. information
This function should be the first call inside an interrupt handler when nested in-
terrupts are required.
The function OS_EnterNestableInterrupt () is implemented as a macro
and offers the same functionality as OS_EnterInterrupt () in combination
with 0S_DecRI (), but is more efficient, resulting in smaller and faster code.
Example

Refer to the example for 0OS_LeaveNestableInterrupt ().

14.8.2. OS_LeaveNestablelnterrupt()

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype

void OS_ LeaveNestableInterrupt (void) ;

Return value

Add.

Void.

information

This function is the counterpart of 0OS EnterNestableInterrupt (), and
has to be the last function call inside an interrupt handler when nested inter-
rupts have been enabled before with OS_EnterNestableInterrupt ().

The function OS_LeaveNestableInterrupt () is implemented as a macro
and offers the same functionality as O0S_LeaveInterrupt ()in combination
with 0S_IncDI (), butis more efficient, resulting in smaller and faster code.

14.8.3. OS_LeaveNestablelnterruptNoSwitch()

Description

Disables further interrupts, informs embOS that the end of ISR is reached, but
does not perform a task switch.

Prototype

void OS LeaveNestableInterruptNoSwitch (void) ;

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 125/169

Return value
Void.

Add. information

If OS_LeaveNestableInterruptNoSwitch () is used, it should be the last
function to be called in the interrupt handler. If the interrupt has caused a task
switch, it is not executed from within the ISR, but at the next possible occasion.
This will be the next call of an embOS function or the scheduler interrupt if the
program is not in a critical region.

Example of nestable interrupt handler

__interrupt void ISR Timer (void)

0OS_EnterNestablelInterrupt(); /* Enable interrupts, but disable task switch*/
/*

* any code legal for interrupt-routines can be placed here

*/

IntHandler () ;

0S_LeaveNestableInterrupt(); /* Disable interrupts, allow task switch */

© 1996-2006 Segger Microcontroller Systeme GmbH

126/169 User's & reference manual for embOS real time OS

14.9. Non-maskable interrupts (NMis)

embOS performs atomic operations by disabling interrupts. However, a non-
maskable interrupt (NIM) cannot be disabled, meaning it can interrupt these
atomic operations. Therefore, NMIs should be used with great care and may
under no circumstances call any embOS routines.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 127/169

15. Critical regions

Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed
except in situations where the active task has to wait. Effectively, preemptions
are switched off.

A typical example for a critical region would be the execution of a program sec-
tion that handles a time-critical hardware access (e.g. writing multiple bytes into
a EEPROM where the bytes have to be written in a certain amount of time), or
a section that writes data into global variables used by a different task and
therefore needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outer-
most loop is left. Interrupts are still legal in a critical region. Software timers and
interrupts are executed as critical regions anyhow, so it does not hurt but does
not do any good either to declare them as such. If a task switch becomes due
during the execution of a critical region, it will be performed right after the region
is left.

© 1996-2006 Segger Microcontroller Systeme GmbH

128/169

User's & reference manual for embOS real time OS

15.1. OS_EnterRegion(): Enter critical region

Description

Indicates to the OS the beginning of a critical region.

Prototype

void OS_EnterRegion (void) ;

Return value

Void.

Add. information
OS_EnterRegion() is not actually a function but a macro. However, it be-
haves very much like a function with the difference that it is much more effi-
cient.
Usage of the macro indicates to embOS the beginning of a critical region. A
critical region counter (OS_RegionCnt), which is 0 by default, is incremented so
that the routine can be nested.
The counter will be decremented by a call to the routine OS_LeaveRegion ().
If this counter reaches 0 again, the critical region ends.
Interrupts are not disabled using OS_EnterRegion (); however, disabling in-
terrupts will disable preemptive task switches.

Example

void SubRoutine (void)
OS_EnterRegion() ;
/* this code will not be interrupted by the 0S */
0S_LeaveRegion() ;

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 129/169

15.2. OS_LeaveRegion(): Leave critical region

Description
Indicates to the OS the end of a critical region.

Prototype:

void OS_LeaveRegion (void) ;

Return value
Void.

Add. information

OS_LeaveRegion () is not actually a function but a macro. However, it be-
haves very much like a function with the difference that it is much more effi-
cient.

Usage of the macro indicates to embOS the end of a critical region. A critical
region counter (OS_RegionCnt), which is 0 by default, is decremented.

If this counter reaches 0 again, the critical region ends.

Example
Refer to the example for 0OS_EnterRegion ().

© 1996-2006 Segger Microcontroller Systeme GmbH

130/169 User's & reference manual for embOS real time OS

16. System variables

The system variables are described here for a deeper understanding of how the
OS works and to make debugging easier.
Please, do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should
only be altered by functions of embOS. However, some of these variables can
be very useful, especially the time variables.

16.1. Time Variables

16.1.1. OS_Time

Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Prototype
extern volatile OS I32 OS Time;

Add. information

The time variable has a resolution of one time unit, which is normally 1/1000
sec (1 ms) and is normally the time between two successive calls to the
embOS interrupt handler.

Instead of accessing this variable directly, you should do so by using
OS_GetTime () or OS_GetTime32 () as explained in Chapter 18: “Time-
related routines”.

16.1.2. OS_TimeDex
Basically for internal use only. Contains the time at which the next task switch
or timer activation is due. If ((int)(OS_Time - OS_TimeDex)) >=0, the task list
and timer list will be checked for a task or timer to activate. After activation,
OS_TimeDex will be assigned the time stamp of the next task or timer to be ac-
tivated.

16.2. OS internal variables and data-structures

embOS internal variables are not explained here as they are in no way re-
quired to use embOS. Your application should not rely on any of the internal
variables, as only the documented API functions are guaranteed to remain un-
changed in future versions of embOS.

Important
Do not alter any system variables.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 131/169

17. Configuration for your target system (RTOSINIT.c)

You do not have to configure anything in order to get started with embOS. The
start project supplied will execute on your system. Small changes in the con-
figuration will be necessary at a later point for system frequency or for the
UART used for communication with the optional embOSView.

The file RTOSInit.c is provided in source code form and can be modified in
order to match your target hardware needs. It is compiled and linked with your
application program.

17.1. Hardware-specific routines

Routine Explanation

Initializes the hardware timer used for
generating interrupts.

embOS needs a timer-interrupt to determine
when to activate tasks that wait for the expira-
tion of a delay, when to call a software timer,
and to keep the time variable up-to-date.

The idle loop is always executed whenever no
OS_Idle() other task (and no interrupt service routine) is
ready for execution.

Reads the timestamp in cycles. Cycle length
OS_GetTime Cycles() depends on the system. This function is used
for system information sent to embOSView.
Converts cycles into us (used with profiling
only).

Initializes communication for embOSView
(used with embOSView only).

The embOS timer-interrupt handler. When
OS ISR Tick() using a different timer, always check the
specified interrupt vector.

Rx Interrupt service handler for embOSView
(used with embOSView only).

Tx Interrupt service handler for embOSView
(used with embOSView only).

Send 1 byte via UART (used with embOSView
OS_COM_Sendl () only). DO NOT call this function from your
application.

OS_TInitHW ()

OS_ConvertCycles2us ()

0S_COM_Init ()

OS ISR rx()

OS ISR tx()

17.2. Configuration defines

For most embedded systems, configuration is done by simply modifying the fol-
lowing defines, located at the top of the RTOSInit.c file:

© 1996-2006 Segger Microcontroller Systeme GmbH

132/169 User's & reference manual for embOS real time OS

Define Explanation
System frequency (in Hz).
OS_FSYS Example: 20000000 for 20MHz.
0S_UART Selection of UART to be used for embOSView

(-1 will disable communication),

OS BAUDRATE | Selection of baudrate for communication with embOSView.

17.3. How to change settings

The only file which you may need to change is RTOSInit.c. This file contains
all hardware-specific routines. The one exception is that some ports of embOS
require an additional interrupt vector table file (details can be found in the CPU
& Compiler Specifics manual of embOS documentation).

17.3.1. Setting the system frequency OS_FSYS

Relevant defines
OS_FSYS

Relevant routines

0S_ConvertCycles2us () (used with profiling only)

For most systems it should be sufficient to change the OS_FSYS define at the
top of RTOSInit.c. When using profiling, certain values may require a change
in 0OS_ConvertCycles2us (). The RTOSInit.c file contains more informa-
tion about in which cases this is necessary and what needs to be done.

17.3.2. Using a different timer to generate the tick-interrupts for embOS

Relevant routines
OS_ InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or
tick, normally equal to 1 ms. This is done by a timer initialized in the routine
OS_InitHW (). If you have to use a different timer for your application, you
must modify OS_InitHW () to initialize the appropriate timer. For details about
initialization, please read the comments in RTOSInit.c.

17.3.3. Using a different UART or baudrate for embOSView

Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS _COM Init ()
OS_COM_Sendl ()
0S ISR rx()
OS_ ISR tx()

In some cases, this is done by simply changing the define OS_UART. Please
refer to the contents of the RTOSInit.c file for more information on which
UARTS are supported for your CPU.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 133/169

17.3.4. Changing the tick frequency

Relevant defines
OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. OS_FSYS de-
fines the clock frequency of your system in Hz (times per second). The value of
OS_FSYS is taken to calculate the desired reload counter value for the system
timer for 1000 interrupts/sec. The interrupt frequency is therefore normally 1
kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable OS_Time will no
longer be equivalent to multiples of 1 ms. However, if you use a multiple of 1
ms as tick time, the basic time unit can be made 1 ms by using the (optional)
configuration macro OS_CONFIG() (see below). The basic time unit does not
have to be 1 ms; it might just as well be 100 us or 10 ms or any other value. For
most applications, 1 ms is a convenient value.

17.4. OS_CONFIG()

OS_CONFIG() can be used to configure embOS in situations where the basic
timer-interrupt interval (tick) is a multiple of 1 ms and the time values for delays
still should use 1 ms as the time base. OS_CONFIG() tells embOS how many
system time units expire per embOS tick and what the system frequency is.

Examples

1) The following will increment the time variable OS_Time by 1 per RTOS timer-
interrupt. This is the default for embOS, so usage of OS_CONFIG() is not re-
quired.

OS_CONFIG(8000000,8000) ; /* Configure OS : System-frequency, ticks/int */

2) The following will increment the time variable OS_Time by 2 per embOS
timer-interrupt.

OS CONFIG(8000000,16000) ; /* Configure OS : System-frequency, ticks/int */

If, for example, the basic timer was initialized to 500 Hz, which would result in
an embOS timer-interrupt every 2 ms, a call of 0S_Delay (10) would result in
a delay of 20 ms, because all timing values are interpreted as ticks. A call of
OS_CONFIG() with the parameter shown in example 2 would compensate for
the difference, resulting in a delay of 10 ms when calling OS_Delay (10).

© 1996-2006 Segger Microcontroller Systeme GmbH

134/169 User's & reference manual for embOS real time OS

18. Time-related routines

embOS supports two basic types of run-time measurement which may be used
to calculate the execution time of any section of user code. Low-resolution
measurements use a time base of ticks, while high-resolution measurements
are based on a time unit called a cycle. The length of a cycle depends on the
timer clock frequency.

18.1. Low-resolution measurement

The system time variable OS_Time is measured in ticks, or ms. The low-
resolution functions 0S_GetTime () and OS_GetTime32 () are used to return
the current contents of this variable. The basic idea behind low-resolution
measurement is quite simple: the system time is returned once before the sec-
tion of code to be timed and once after, and the first value is subtracted from
the second to obtain the time it took for the code to execute.

The term low-resolution is used because the time values returned are meas-
ured in completed ticks. Consider the following: With a normal tick of 1 ms, the
variable OS_Time is incremented with every tick-interrupt, or once every ms.
This means that the actual system time can potentially be more than what a
low-resolution function will return (i.e. if an interrupt actually occurs at 1.4 ticks,
the system will still have measured only 1 tick as having elapsed). The problem
becomes even greater with run-time measurement since the system time must
be measured twice. Each measurement can potentially be up to 1 tick less than
the actual time, so the difference between two measurements could theoreti-
cally be inaccurate by up to two ticks.

The following diagram illustrates how low-resolution measurement works. We
can see that the section of code actually begins at 0.5 ms and ends at 5.2 ms,
which means that its actual execution time is (5.2 — 0.5) = 4.7 ms. However
(with a tick of 1 ms), the first call to 0S_GetTime () returns 0, and the second
call returns 5. The measured execution time of the code would therefore result

in(5-0)=5ms.
OS_GetTime() =>0 OS_GetTime() => 5
Code to be timed {
OS_Time 0.5ms 5.2ms >
Oms 1ms 2ms 3ms 4ms 5ms 6ms

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 135/169

For many applications, low-resolution measurement may be fully sufficient for
your needs. In some cases, it may be more desirable due to its ease of use and
faster computation time than high-resolution measurement.

18.1.1. OS_GetTime()

Description
Returns the current system time in ticks.

Prototype
int OS_GetTime (void) ;

Return value
The system variable OS_Time as a 16- or 32-bit integer value.

Add. Information

This function returns the system time as a 16-bit value on 8/16-bit CPUs, and
as a 32-bit value on 32-bit CPUs.

The OS_Time variable is a 32-bit value. Therefore, if the return value is 32-bit,
it is simply the entire contents of the OS_Time variable. If the return value is 16-
bit, it is the lower 16 bits of the OS_Time variable.

18.1.2. OS_GetTime32()

Description
Returns the current system time in ticks as a 32-bit value.

Prototype
long OS_GetTime32 (void) ;

Return value
The system variable OS_Time as a 32-bit integer value.

Add. Information

This function always returns the system time as a 32-bit value. Since the
OS_Time variable is also a 32-bit value, the return value is simply the entire
contents of the OS_Time variable.

18.1.3. Example of typical use of low-resolution measurement
/*

* Measure the execution time with low resolution and return it in ms (ticks)
*
/
int BenchmarkLoRes (void) ({
int t;
t = OS_GetTime() ;
UserCode () ; /* Execute the user code to be benchmarked */
t = 0OS_GetTime() - t;
return t;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

136/169 User's & reference manual for embOS real time OS

18.2. High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling
builds of embOS, allowing for fine-tuning of time measurement. While system
resolution depends on the CPU used, it is typically about 1 us, making high-
resolution measurement about 1000 times more accurate than low-resolution
calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the
illustration below, which measures the execution time of the same code used in
the low-resolution calculation. Fot this example, we assume that the CPU has a
timer running at 10 MHz and is couting up. The number of cycles per tick is
therefore (10 MHz / 1 kHz) = 10,000. This means that with each tick-interrupt,
the timer restarts at 0 and counts up to 10,000.

t1 = 5,000 . t2=52,000

/ Code t6 be timéd |

v

Cycles 0.5ms 52ms

0 10,000 10,000 10,000 10,000 10,000 10,000

The call to 0S_Timing Start () calculates the starting value at 5,000 cycles,
while the call to 0S_Timing End () calculates the ending value at 52,000 cy-
cles (both values are kept track of internally). The measured execution time of
the code in this example would therefore be (52,000 — 5,000) = 47,000 cycles,
which corresponds to 4.7 ms.

Although the function OS_Timing GetCycles () may be used to return the
execution time in cycles as above, it is typically more common to use the func-
tion OS_Timing Getus (), which returns the value in microseconds (us). In
the above example, the return value would be 4,700 us.

Data structure

All high-resolution routines take as parameter a pointer to a data structure of
type OS_TIMING, defined as follows:

#define OS_TIMING OS U32

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

137/169

18.2.1. OS_Timing_Start()

Description
Marks the beginning of a section of code to be timed.
Prototype
void OS Timing Start (0OS_TIMING* pCycle);
Parameter Meaning
pCycle Pointer to a data structure of type OS TIMING.

Return value
Void.

Add. Information

This function must be used with 0S_ Timing End().

18.2.2. OS_Timing_End()

Description
Marks the end of a section of code to be timed.
Prototype
void OS_Timing End(OS_TIMING* pCycle) ;
Parameter Meaning
pCycle Pointer to a data structure of type OS TIMING.

Return value
Void.

Add. Information

This function must be used with 0S_Timing Start ().

© 1996-2006 Segger Microcontroller Systeme GmbH

138/169 User's & reference manual for embOS real time OS

18.2.3. OS_Timing_Getus()

Description

Returns the execution time of the code between OS Timing Start () and
0S_Timing_ End () in microseconds.

Prototype
OS U32 0OS Timing Getus (0OS_TIMING* pCycle) ;

Parameter Meaning
pCycle Pointer to a data structure of type OS TIMIING.

Return value

The execution time in microseconds (us) as a 32-bit integer value.

18.2.4. OS_Timing_GetCycles()

Description

Returns the execution time of the code between OS Timing Start () and
OS_Timing End() in cycles.

Prototype
OS U32 OS Timing GetCycles (0OS _TIMING* pCycle) ;

Parameter Meaning
pCycle Pointer to a data structure of type OS TIMING.

Return value

The execution time in cycles as a 32-bit integer.

Add. Information

Cycle length depends on the timer clock frequency.

18.2.5. Example of typical use of high-resolution management
/*

* Measure the execution time with hi resolution and return it in us
*
/

0S_U32 BenchmarkHiRes (void)
0S U32 t;
OS Timing Start (&t) ;
UserCode () ; /* Execute the user code to be benchmarked */
OS Timing End(&t) ;
Return OS_Timing Getus(&t) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 139/169

18.3. Example

The following sample demonstrates the use of low-resolution and high-
resolution measurement to return the execution time of a section of code:

/**

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
IR R E R SRR R EEE SRR EEE R EREREEEEEE]

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
—————————————— END-OF -HEADER - - == == —=-———=——=————————————-% /

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode (void) {

for (Dummy=0; Dummy < 11000; Dummy++); /* Burn some time */
/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes (void) {
int t;
t = OS_GetTime () ;
UserCode () ; /* Execute the user code to be benchmarked */
t = OS_GetTime() - t;
return t;
/*
* Measure the execution time with hi resolution and return it in us
*/
0S_U32 BenchmarkHiRes (void) {
0S U32 t;
OS Timing Start (&t) ;
UserCode () ; /* Execute the user code to be benchmarked */

OS Timing End(&t) ;
return OS Timing Getus(&t) ;

void Task (void) {

int tLo;

0S U32 tHi;

char ac[80];

while (1) {
tLo = BenchmarkLoRes ()
tHi = BenchmarkHiRes ()
sprintf (ac, "LoRes: %d ms\n", tLo);
OS_SendString(ac) ;
sprintf (ac, "HiRes: %d us\n", tHi);
OS_SendString(ac) ;

’

’

/**
*

* main

*
**/

void main(void)

0S_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for 0OS */
/* You need to create at least one task here ! */
OS CREATETASK(&TCB, "HP Task", Task, 100, Stack);

0S_Start () ; /* Start multitasking */

}

© 1996-2006 Segger Microcontroller Systeme GmbH

140/169

User's & reference manual for embOS real time OS

The output of the above sample is as follows:

LoRes:
HiRes:
LoRes:
HiRes:
LoRes:

7 ms
6641 us
7 ms
6641 us
6 ms

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 141/169

19. STOP / HALT / IDLE modes

Most CPUs support power-saving STOP, HALT or IDLE modes. Using these
types of modes is one possible way to save power consumption during idle
times. As long as the timer-interrupt will wake up the system with every embOS
tick, or as long as other interrupts will activate tasks, these modes may be used
to save power consumption.

If required, you may modify the 0S_Idle () routine, which is part of the hard-
ware-dependant module RTOSInit.c, to switch the CPU to power-saving
mode during idle times. Please check out the CPU & Compiler Specifics man-
ual of embOS documentation for details on your processor.

© 1996-2006 Segger Microcontroller Systeme GmbH

142/169 User's & reference manual for embOS real time OS

20. embOSView: profiling and analyzing

20.1. Overview

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used to communicate with the target.

The hardware-dependent routines and defines to communicate with embOS-
View are located in RTOSInit.c. This file has to be configured properly. For
details on how to configure this file, please refer the CPU & Compiler Specifics
manual of embOS documentation.

The embOSView utility is shipped as embosView.exe with embOS and runs
under Windows 9x / NT / 2000. The latest version is available on our website at
www.segger.com.

G emb0S Viewer ¥3.06

File “iew Optionz Trace MWindow 2

G Task list

P[iDI Id I M ame I Statuz I Datal Timeautl Stackl I:F'LILDaI:II Contest... I Found... I
120 23B2 MainT ask Dielay 0E0544] 115/512@0:21b2 324% 19375 0:2
119 23, Task0O[RR] Ready 40/51 20202302 NTE 11964 02
119 2408 Tazkl [RR) Ready 40451 202042502 Nz 11503 0:2
119 2530 TaszkZ [RR) Ready 40/512(20427b2 332FE 12402 0s42

tis System wariables CPU load vs. time
M ame | Y alue

05_YERSION 306
CFU M1BCALR
LibM ode NT
05_Time 60502

05_MumT asks 4
05_Status 0.k,

05_pActiveT azk 29dc
05_pCurrentT agk 29dc
SyzStack 5425603541
IntStack. 11441 28E0:3641

TraceBuffer BO0S00 [0

Trace | Time | Tazkld | TaskHame | APIM ame

1] JEFBE 2406 Tazk1 [RR] Tazk deactivated -

1 IB7RE 290C TaskO [RR] Tazk activated

2 IBAAT 290C TaskO[RR] T ask deactivated

3 IBAAT 2982 b ainT ask Tazk activated

4 IBFRT 29B2 hainT azk. 05_Delay(3)

A IE7RY 29BZ2 b ainT azk Tazk deactivated

[IBFRT 290C TaskO [RR] Tazk activated

7 I67RE 290C TaskO [RR] T ask deactivated

a 68 2430 Task2 [RR] Tazk activated

9 AEFED 2430 Tazkz [RR] Tazk deachivated

10 JE7ED 29BZ2 b ainT azk Tazk activated

11 JEFED 29B2 hainT azk. 05_Delav(3)

12 JEFE0 29BZ2 MainT azk Tazk deactivated

13 6760 2406 Task1 [RR] Tazk activated

14 I67EZ 2406 Tazk1 [RR] Tazk deachivated

15 IE7EZ 29DC TazkO[RR] Tazk activated ;I
| Butes: 10437 / 23097 Packets: 785 / 634 |38400baud on COM 1

embOSView is a very helpful tool for analysis of the running target application.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 143/169

20.2. Task list window

embOSView shows the state of every created task of the target application in
the Task 1list window. The information shown depends on the library used in
your application.

ltem Explanation Builds
Prio Current priority of task. All
Task ID, which is the address of the task control
Id All
block.
Name Name assigned during creation. All
Status ;Lér;ent state of task (ready, executing, delay, All
Data Depends on status. All
Timeout Time of next activation. All
Stack Used stack size/max. stack size/stack location. |S, SP, D, DP, DT
CPULoad |Percentage CPU load caused by task. SP, DP, DT
Cor_wtext- Number of activations since reset. SP, DP, DT
Switches

The task list window is helpful in analysis of stack usage and CPU load for
every running task.

20.3. System variables window

embOSView shows the actual state of major system variables in the system
variables window. The information shown also depends on the library used in
your application:

ltem Explanation Builds
OS VERSION Current version of embOS. All
CPU Target CPU and compiler All
LibMode Library mode used for target application.| All
OS Time Current system time in timer ticks. All
OS NumTasks Current number of defined tasks. All
OS_Status Current error code (or O.K.). All
OS pActiveTask |Active task that should be running. SP, D, DP, DT
OS pCurrentTask | Actual currently running task. SP, D, DP, DT
SysStack gti?:i size/max. size/location of system SP. DP, DT
IntStack lSJtZii size/max. size/location of interrupf SP. DP, DT
TraceBuffer Current count/maximum size and cur- all trace builds

rent state of trace buffer.

20.4. Sharing the SIO for terminal I/O

The serial input/output (SIO) used by embOSView may also be used by the ap-
plication at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be
used to output debug messages. Input and output is done via the terminal win-
dow, which can be shown by selecting view/Terminal from the menu.

© 1996-2006 Segger Microcontroller Systeme GmbH

144/169 User's & reference manual for embOS real time OS

To ensure communication via the terminal window in parallel with the viewer
functions, the application uses the function 0S_SendString () for sending a
string to the terminal window and the function 0S_SetRxCallback () to hook
a reception routine that receives one byte.

20.4.1. OS_SendString()

Description
Sends a string over SIO to the terminal window.
Prototype
void OS_SendString(const char* s);
Parameter Meaning
s Pointer to a zero-terminated string that should be sent to the
terminal.

Add. information

This function uses 0S_COM_Send1() which is defined in RTOSInit.c.

20.4.2. OS_SetRxCallback()

Description
Sets a callback hook to a routine for receiving one character.

Prototype

typedef void OS_RX CALLBACK(OS U8 Data)
OS_RX CALLBACK* OS SetRxCallback (OS RX CALLBACK* cb) ;

Parameter Meaning

cb Pointer to the application routine that should be called when
one character is received over serial interface.

Return value

OS_RX CALLBACK®* as described above. This is the pointer to the callback
function that was hooked before the call.

Add. information

The user function is called from embOS. The received character is passed as
parameter. See the example below.

Example

void GUI_X OnRx(0OS_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X Init (void) {
0S_SetRxCallback(&GUI_ X OnRx) ;

}

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 145/169

20.5. Using the API trace

embOS versions 3.06 or higher contain a trace feature for API calls. This re-
quires the use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API
calls can be started and stopped from embOSView via the Trace menu, or
from within the application by using the functions 0S_ TraceEnable () and
OS_TraceDiasable (). Individual filters may be defined to determine which
API calls should be traced for different tasks or from within interrupt or timer
routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is
periodically read by embOSView. The result is shown in the Trace window:

ek Trace

Trace | Time | T askld | T azkMame | APIM ame -

0 I6FAE 2408 Tazk1 [RR] T azk deactivated -
1 J6AAE 2900 TazkO [RR] T azk activated

2 IBTRY 29DC Tazk0 [RR] T azk deactivated

3 IEAAY 2982 kainT azk, T azk achivated

4 J6FRY 29B2 b ainT ask 05_Delap(3)

4] IETRY 29BZ2 MainT azk, T azk. deactivated

G IBTRY 29DC Tazk0 [RR] T azk activated

7 JBTRE 29DC Tazk0 [RR) T azk deactivated

3 IEAAE 2430 Tazkz [RR] T azk activated

9 JEFE0 2430 Tazkz [RR] T azk deactivated

10 JEVED 259B2 b ainT azk T azk activated

11 JBFRD 29B2 MainT ask 05_Delay(3)

12 JBTED 29BZ MainT azk, T azk. deactivated

13 JEFE0 2408 Tazk1 [RR] T azk activated

14 JBTEZ 2A06 Tazk1 [RR] T azk deactivated -

| ey

Every entry in the trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID and task name (limited to 15 characters)
are also recorded. Parameters of API calls are recorded if possible, and are
shown as part of the APIName column. In the example above, this can be seen
with 0S_Delay (3).

Once the trace buffer is full, trace is automatically stopped. The trace list and
buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be
set up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the
task. As the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls
that occur outside a running task. These calls may come from the idle loop or
during startup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.

© 1996-2006 Segger Microcontroller Systeme GmbH

146/169

User's & reference manual for embOS real time OS

Options @R

Communication I Gereral Trace | CPL g I Log I
— Filker
T ask Mame [Filter 2 to 4]
| MainTask [Fier 4 Enable
| I Filter 3 Enable
| I Filter 2 Enable
ISR ar SWw-Timer [+ Filter 1 Enable
| B Tasgk ¥ Filter 0 Enable
LTI T ask deactivated “
| ICIE W T ask activated
| I WIC] Timer callback,
LT 05 Delay
HENNn I:IS _Delaylntil
L IEIEICIE] 05 SetPriority
| IEECIC 05 wWakeT azk Select al
| IEIECIC 05_CreateT ask -
[ICIECIC] 05 Teminate Desskect al
[ICIECIC] 05 WaitE vent ;I Deselect a
k. I Canicel | Apply

To enable or disable a filter, simply check or uncheck the corresponding check-
boxes labeled Filter 4 Enableto Filter 0 Enable.

For any of these five filters, individual API functions can be enabled or disabled
by checking or unchecking the corresponding checkboxes in the list. To speed
up the process, there are two buttons available:

Select all enables trace of all API functions for the currently enabled
(checked) filters.

Deselect all disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2 to 4 allow tracing of task-specific API calls. A task name can therefore
be specified for each of these filters. In the example above, Filter 4 is config-
ured to trace calls of 0OS_Delay () from the task called MainTask.

After the settings are saved (via the 2pply or OK button), the new settings are
sent to the target application.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 147/169

20.6. Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOS-
View. Per default, trace is initially disabled in an application program. It may be
very helpful to control the recording of trace events directly from the application,
using the following functions.

20.6.1. OS_TraceEnable()

Description
Enables tracing of filtered API calls.

Prototype

void OS_TraceEnable (void) ;

Add. information

The trace filter conditions should have been set up before calling this function.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.2. OS_TraceDisable()

Description
Disables tracing of APl and user function calls.

Prototype

void OS_TraceDisable (void) ;

Add. information

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.3. OS_TraceEnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the
trace function.

Prototype
void OS_ TraceEnableAll (void) ;

Add. information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.4. OS_TraceDisableAll()

Description

Sets up Filter 0 (any task), disables tracing of all API calls and also disables
trace.

© 1996-2006 Segger Microcontroller Systeme GmbH

148/169 User's & reference manual for embOS real time OS

Prototype
void OS_TraceDisableAll (void) ;

Add. information

The trace filter conditions of all the other trace filters are not affected, but trac-
ing is stopped.

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.5. OS_TraceEnableld()

Description

Sets the specified ID value in Filter O (any task), thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableId(0OS U8 Id);
Parameter Meaning
ID value of API call that should be enabled for trace:
Id 0<=1d<=127
Values from O to 99 are reserved for embOS.

Add. information

To enable trace of a specific embOS API function, you must use the correct 1d
value. These values are defined as symbolic constants in RTOS . h.

This function may also be used to enable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.6. OS_TraceDisableld()

Description

Resets the specified ID value in Filter O (any task), thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS TraceDisableId(0OS U8 Id) ;
Parameter Meaning
ID value of API call that should be enabled for trace:
Id 0<=1d<=127
Values from 0 to 99 are reserved for embOS.

Add. information

To disable trace of a specific embOS API function, you must use the correct 14
value. These values are defined as symbolic constants in RTOS . h.

This function may also be used to disable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 149/169

20.6.7. OS_TraceEnableFilterld()

Description
Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS TraceEnableFilterId(OS U8 FilterIndex, OS U8 id)

Parameter Meaning

Index of the filter that should be affected:
FilterIndex [0 <=FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0<=1d<=127

Values from 0 to 99 are reserved for embOS.

Add. information

To enable trace of a specific embOS API function, you must use the correct 1d
value. These values are defined as symbolic constants in RTOS . h.

This function may also be used to enable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API

call is removed by the preprocessor.

20.6.8. OS_TraceDisableFilterld()

Description
Resets the specified ID value in the specified trace filter, thus disabling trace of
the specified function, but does not stop trace.

Prototype
void OS TraceDisableFilterId(OS U8 FilterIndex, OS U8 id)

Parameter Meaning

Index of the filter that should be affected:
FilterIndex [0 <=FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0<=14<=127

Values from 0 to 99 are reserved for embOS.

Add. information

To disable trace of a specific embOS API function, you must use the correct 1d
value. These values are defined as symbolic constants in RTOS . h.

This function may also be used to disable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

© 1996-2006 Segger Microcontroller Systeme GmbH

150/169 User's & reference manual for embOS real time OS

20.7. Trace record functions

The following functions are used to write (record) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used in-
ternally by the trace build libraries. If, for some reason, you want to trace your
own functions with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

e To record data, trace must be enabled.

e An ID value in the range from 100 to 127 must be used as the 1d pa-
rameter. ID values from 0 to 99 are internally reserved for embOS.

e The events specified as 1d have to be enabled in any of the trace filters.

e Active system time and the current task are automatically recorded to-
gether with the specified event.

20.7.1. OS_TraceVoid()

Description
Writes an entry identified only by its ID into the trace buffer.
Prototype
void OS_ TraceVoid (0OS U8 Id) ;
Parameter Meaning
ID value that should be written into trace buffer:
Id 0<=1d<=127
Values from 0O to 99 are reserved for embOS.

Add. information

This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

20.7.2. OS_TracePtr()

Description
Writes an entry with ID and a pointer as parameter into the trace buffer.
Prototype
void OS TracePtr (0OS U8 id, void* p);
Parameter Meaning
ID value that should be written into trace buffer:
1d 0<=1d<=127
Values from 0 to 99 are reserved for embOS.
P Any void pointer that should be recorded as parameter.

Add. information

The pointer passed as parameter will be displayed in the trace list window of
embOSView.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 151/169

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.7.3. OS_TraceData()

Description
Writes an entry with ID and an integer as parameter into the trace buffer.
Prototype
void OS TraceData (0S U8 id, int v);
Parameter Meaning
ID value that should be written into trace buffer:
Id 0<=1d<=127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.

Add. information

The value passed as parameter will be displayed in the trace list window of em-

bOSView.
This functionality is available in trace builds only. In non-trace builds, the API

call is removed by the preprocessor.

20.7.4. OS_TraceDataPtr()

Description
Writes an entry with ID, an integer and a pointer as parameter into the trace
buffer.
Prototype
void OS TraceDataPtr (OS U8 id, int v, void*p);
Parameter Meaning
ID value that should be written into trace buffer:
Id 0<=1d4<=127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Add. information

The values passed as parameter will be displayed in the trace list window of

embOSView.
This functionality is available in trace builds only. In non-trace builds, the API

call is removed by the preprocessor.

20.7.5. OS_TraceU32Ptr()

Description
Writes an entry with ID, a 32-bit unsigned integer and a pointer as parameter
into the trace buffer.

Prototype

© 1996-2006 Segger Microcontroller Systeme GmbH

152/169 User's & reference manual for embOS real time OS
void OS TraceU32Ptr (OS U8 id, OS U32 p0O, void*pl) ;
Parameter Meaning

ID value that should be written into trace buffer:

Id 0<=1d<=127
Values from 0 to 99 are reserved for embOS.

0 Any unsigned 32-bit value that should be recorded as
parameter.

pl Any void pointer that should be recorded as parameter.

Add. information

This function may be used to record two pointers.
The values passed as parameter will be displayed in the trace list window of

embOSView.

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 153/169

20.8. Application-controlled trace example

As described in the previous section, the user application can enable and set
up the trace conditions without the need of a connection or command from em-
bOSView. The trace record functions can also be called from any user function
to write data into the trace buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing APl and
user functions just after starting the application, when the communication to
embOSView is not yet available or when the embOSView setup is not com-
plete.

The example below shows how a trace filter can be set up by application. The
function OS_TraceEnableID () sets the trace filter 0 which affects calls from
any running task. Therefore, the first call to SetState () in the example would
not be traced because there is no task running at that moment. The additional
filter setup routine OS_TraceEnableFilterId () is called with filter 1, which
results in the tracing of calls from outside running tasks.

#include “RTOS.h”

#ifndef OS_TRACE FROM START
#define OS_TRACE FROM START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE ID SETSTATE 100

char MainState;

/* Sample of application routine with trace */
void SetState(char* pState, char Value) {
#if OS TRACE
OS TraceDataPtr (APP_TRACE ID SETSTATE, Value, pState);
#endif
* pState = Value;

/* Sample main routine, that enables and setup API and function call trace
from start */
void main(void) {
OS_InitKern() ;

OS_InitHW() ;

#if (OS_TRACE && OS_TRACE_FROM START)
/* OS_TRACE is defined in trace builds of the library */
OS_TraceDisableAll () ; /* Disable all API trace calls */
OS TraceEnableId (APP_TRACE ID SETSTATE) ; /* TUser trace */
0S_TraceEnableFilterId (APP_TRACE ID SETSTATE); /* User trace */
OS TraceEnable() ;

#endif

/* Application specific initilisation */

SetState (&MainState, 1) ;

OS CREATETASK (&TCBMain, "MainTask", MainTask, PRIO MAIN, MainStack);
0S_Start () ; /* Start multitasking -> MainTask() */

Per default, embOSView lists all user function traces in the trace list window as
Routine, followed by the specified ID and two parameters as hexadecimal
values. The example above would result in the following:

Routinel00 (0Oxabcd, 0x01)

where Oxabcd is the pointer address and 0x01 is the parameter recorded from
OS TraceDataPtr ().

© 1996-2006 Segger Microcontroller Systeme GmbH

154/169 User's & reference manual for embOS real time OS

20.9. User-defined functions

In order to be able to use the built-in trace (available in trace builds of embOS)
for application program user functions, embOSView can be customized. This
customization is done in the setup file emb0S . ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not
see an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID
number, the function name and the type of two optional parameters that can be
traced. The format is explained in the following sample emb0S . ini file:

File: embOS.ini
embOSView Setup file

embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.

Note: The file is not required in order to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

HoH HHHH

Every parameter has to be preceeded by a colon.

#

Define add. API functions.

Syntax: API(<Index>, <Routinename> [parameters])

Index: Integer, between 100 and 127

Routinename: Identifier for the routine. Should be no more than 32
characters

parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:

int

ptr

#

#

API(100, "RoutinelOO")
API(101, "RoutinelOl", int)

API(102, "RoutinelO2", int, ptr)
T

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 155/169

21. Debugging

21.1. Run time errors

Some error conditions can be detected during run time. These are:

Usage of uninitialized data structures

Invalid pointers

Resource unused that has not been used by this task before
OS_LeaveRegion () called more often than OS_EnterRegion ()
Stack overflow (this feature is not available with some processors)

Which run time errors can be detected depends on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (it is not
that significant, but there is a difference). If embOS detects a run time error, it
calls the following routine:

void OS_Error (int ErrCode) ;

This routine is shipped in source as part of the module OS_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops for-
ever as follows:

/*
*/

Run-time error reaction

void 0S_Error (int ErrCode) ({
0S_EnterRegion() ; /* Avoid further task switches */
OS DICnt =0; /* Allow interrupts so we can communicate */
0S EI();
0S_Status = ErrCode;
while (OS_Status) ;

If you are using embOSView, you can see the value and meaning of OS_Status
in the system variable window.

When using an emulator, you should set a breakpoint at the beginning of this
routine or simply stop the program after a failure. The error code is passed to
the function as parameter.

You can modify the routine to accommodate your own hardware; this could
mean that your target hardware sets an error-indicating LED or shows a little
message on the display.

When modifying the 0s _Error () routine, the first statement needs to be
the disabling of scheduler via 0S EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the 0S_Error () routine, you will see that it is more complicated
than necessary. The actual error code is assigned to the global variable
OS_Status. The program then waits for this variable to be reset. Simply reset
this variable to 0 using your in circuit-emulator, and you can easily step back to
the program sequence causing the problem. Most of the time, looking at this
part of the program will make the problem clear.

© 1996-2006 Segger Microcontroller Systeme GmbH

156/169

User's & reference manual for embOS real time OS

21.2. List of error codes

Value

Symbolic name

Explanation

120

0S_ERR_STACK

Stack overflow or invalid stack.

128

OS_ERR_INV_TASK

Task control block invalid, not
initialized or overwritten.

129

OS_ERR_INV_TIMER

Timer control block invalid, not
initialized or overwritten.

130

OS_ERR_INV_MAILBOX

Mailbox control block invalid, not
initialized or overwritten.

132

OS_ERR_INV_CSEMA

Control block for counting sema-
phore invalid, not initialized or
overwritten.

133

OS_ERR_INV_RSEMA

Control block for resource sema-
phore invalid, not initialized or
overwritten.

135

OS_ERR_MAILBOX_ NOT1

One of the following 1-byte mailbox
functions has been used on a
multi- byte mailbox:

OS_PutMaill ()

OS_ PutMailCondl ()
OS_GetMaill()

OS GetMailCondl ().

136

OS_ERR MAILBOX DELETE

OS_DeleteMB () was called on a
mailbox with waiting tasks.

137

OS_ERR CSEMA DELETE

OS_DeleteCSema () was called
on a counting semaphore with
waiting tasks.

138

OS_ERR RSEMA DELETE

OS_DeleteRSema () was called
on a resource semaphore which is
claimed by a task.

140

OS_ERR_MAILBOX NOT_ IN LIST

The mailbox is not in the list of
mailboxes as expected. Possible
reasons may be that one mailbox
data structure was overwritten.

142

OS_ERR TASKLIST CORRUPT

The OS internal tasklist is
destroyed.

150

OS_ERR _UNUSE_BEFORE_USE

OS_Unuse () has been called be-
fore 0S Use ().

151

OS_ERR_LEAVEREGION BEFORE
ENTERREGION

OS_LeaveRegion () has been
called before
OS EnterRegion().

152

OS_ERR_LEAVEINT

Error in OS LeaveInterrupt ().

153

OS_ERR_DICNT

The interrupt disable counter
(OS_DICnt) is out of range (0-15).
The counter is affected by the
following API calls:

OS IncDI()

0S_DecRI ()
OS_EnterInterrupt ()

OS Leavelnterrupt ().

154

OS_ERR INTERRUPT DISABLED

OS Delay () or
OS_DelayUntil () called from
inside a critical region with inter-

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 157/169

Value Symbolic name Explanation

rupts disabled.

lllegal function call in interrupt ser-
vice routine:

160 |OS_ERR ILLEGAL IN ISR A routine that may not be called
from within an ISR has been called
from within an ISR.

lllegal function call in interrupt ser-
vice routine:

161 |OS_ERR_ILLEGAL_IN_TIMER A routine that may not be called
from within a software timer has
been called from within a timer.
Task control block has been initial-
170 |OS_ERR_2USE TASK ized by calling a create function
twice.

Timer control block has been ini-
171 |OS_ERR _2USE TIMER tialized by calling a create function
twice.

Mailbox control block has been
172 |OS_ERR_2USE_MAILBOX initialized by calling a create func-
tion twice.

Binary semaphore has been initial-
173 |0S_ERR 2USE BSEMA ized by calling a create function
twice.

Counting semaphore has been
174 |OS_ERR_2USE CSEMA initialized by calling a create func-
tion twice.

Resource semaphore has been
175 |0S_ERR 2USE RSEMA initialized by calling a create func-
tion twice.

OS_Rx interrupt handler for em-
180 |0S_ERR NESTED RX INT bOSView is nested. Disable
nestable interrupts.

Fixed size memory block control
structure not created before use.
Pointer to memory block does not
belong to memory pool on Release
Pointer to memory block is already
free when calling

OS_MEMF Release (). Possibly,
same pointer was released twice.
OS_MEMF_Release () was called
for a memory pool, that had no
193 |OS_ERR_MEMF_RELEASE memory block allocated (All avail-
able blocks were already free be-
fore).

Nested call of OS_Suspend () ex-
ceeded OS MAX SUSPEND CNT
OS_ERR_RESUME BEFORE_SUSPE [0S _Resume () called on a task
ND that was not suspended.

190 |0S_ERR_MEMF_INV

191 |0S_ERR_MEMF INV PTR

192 |0S_ERR_MEMF PTR_FREE

200 |0S_ERR_SUSPEND_TOO OFTEN

201

The latest version of defined error table is part of the comment just before the
OS_Error () function declaration in the source file 0S_Error.c.

© 1996-2006 Segger Microcontroller Systeme GmbH

158/169 User's & reference manual for embOS real time OS

22. Supported development tools

embOS has been developed with and for a specific “C” compiler version for the
selected target processor. Please check the file RELEASE.HTML for details. It
works with the specified “C” compiler only, since other compilers may use dif-
ferent calling conventions (incompatible object file formats) and therefore might
be incompatible. However, if you prefer to use a different “C” compiler, please
contact us and we will do our best to satisfy your needs in the shortest possible
time.

Reentrance

All routines that can be used from different tasks at the same time have to be
fully reentrant. A routine is in use from the moment it is called until it returns or
the task that has called it is terminated.

All routines supplied with your real time operating system are fully reentrant. If
for some reason you need to have non-reentrant routines in your program that
can be used from more than one task, it is recommended to use a resource
semaphore to avoid this kind of problem.

“C” routines and reentrance

Normally, the "C" compiler generates code that is fully reentrant. However, the
compiler has options that force it to generate non-reentrant code (in order to
optimize compiler performance). It is recommended not to use these options,
although it is possible to do so under certain circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they
are fully reentrant. Everything else has to be thought about carefully.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 159/169

23. Limitations

Max. no. of tasks: limited by available RAM only
Max. no. of priorities: 255

Max. no. of semaphores: limited by available RAM only
Max. no. of mailboxes: limited by available RAM only
Max. no. of queues: limited by available RAM only
Max. size. of queues: limited by available RAM only
Max. no. of timers limited by available RAM only
Event flags : 8 bits / task

We appreciate your feedback regarding possible additional functions and we
will do our best to implement these functions if they fit into the concept.

Please do not hesitate to contact us. If you need to make changes to embOS,
the full source code is available.

© 1996-2006 Segger Microcontroller Systeme GmbH

160/169 User's & reference manual for embOS real time OS

24. Source code of kernel and library

embOS is available in two versions:

1. Obiject version: Object code + hardware init source.
2. Full source version: Full sources.

Since this is the document that describes the object version, the internal data
structures are not explained in detail. The object version offers the full function-
ality of embOS including all supported memory models of the compiler, the de-
bug libraries as described and the source code for idle task and hardware init.
However, the object version does not allow source-level debugging of the li-
brary routines and the kernel.

The full source version gives you the ultimate options: embOS can be recom-
piled for different data sizes; different compile options give you full control of the
generated code, making it possible to optimize the system for versatility or
minimum memory requirements. You can debug the entire system and even
modify it for new memory models or other CPUs.

The source code distribution of embOS contains the following additional files:

e CPU folder contains all CPU and compiler specific source code and
header files used to build the embOS libraries. It also contains the sam-
ple start project, workspace and source files for the embOS demo pro-
ject delivered in the Start folder. Normally, you should not modify any of
the files in the CPU folder.

e GenOSSrc folder contains all embOS sources and a batch file used to
compile all of them in batch mode as described in the following chapter.

24.1. Building embOS libraries

The embOS libraries can only be built if you purchased a source code version
of embOS.

In the root path of embOS, you will find a DOS batch file PREP.BAT, which
needs to be modified to match the installation directory of your “C” compiler.
Once this is done, you can call the batch file M. BAT to build all embOS librar-
ies for your CPU.

The build process should run without any error or warning message. If the build
process reports any problem please check the following:

e Are you using the same compiler version as mentioned in the file
RELEASE.HTML?

e Can you compile a simple test file after running PREP.BAT and does it
really use the compiler version you have specified?

e |s there anything mentioned about possible compiler warnings in the
RELEASE.HTML?

If you still have a problem, please let us know.

The whole build process is controlled with a few amount of batch files which are
located in the root directory of your source code distribution:

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 161/169

Prep.bat: Used to set up the environment for compiler, assembler and
linker. Please ensure, that this file sets the path and additional include
directories which are needed for your compiler. Normally, this batch file
is the only one which might have to be modified to build the embOS li-
braries. Normally, this file is called from M.bat during the build process
of all libraries.

Clean.bat: Deletes the whole output of the embOS library build process.
It is called automatically during the build process, before new libraries
are generated. Normally it deletes the start\ folder. Therefore be care-
ful not to call this batch file accidentally. Normally this file is called initially
by M. bat during the build process of all libraries.

cc.bat: This batch file calls the compiler and is used to compile one
embOS source file without debug information output. Most compiler op-
tions are defined in this file and should normally not be modified. For
your purposes, you might activate debug output and may also modify the
optimization level. All modifications should be done with care. Normally
this file is called from the embOS internal batch file cC_0S.bat and can
not be called directly.

ccd.bat: This batch file calls the compiler and is used to compile
OS_Global.c which contains all global variables. All compiler settings
are equal to those used in cc.bat, except debug output is activated to
enable debugging of global variables when using embOS libraries. Nor-
mally this file is called from the embOS internal batch file cC_0S.bat
and can not be called directly.

asm.bat: This batch file calls the assembler and is used to assemble the
assembly part of embOS which normally contains the task switch func-
tionality. Normally this file is called from the embOS internal batch file
CC_OS.bat and can not be called directly.

MakeH.bat: Used to build the embOS header file RTOS.h which is
composed from the CPU/compiler specific part 0S_Chip.h and the ge-
neric part 0S RAW.h. Normally RTOS.h is output in the subfolder
Start\Inc.

M1.bat: This batch file is called from M.bat and is used to build one
specific embOS library, it can not be called directly.

M.bat: This batch file has to be called to generate all embOS libraries. It
initially calls Clean.bat and therefore deletes the whole start folder.
The generated libraries are then placed in a new Start\ folder which
contains start projects, libraries, header and sample start programs.

24.2. Major compile time switches

Many features of embOS may be modified by compile time switches. All of
them are predefined to reasonable values in the distribution of embOS.

The compile time switches must not be changed in RTOS . h.

When compile time switches should be modified to alter any of the embOS
features, the modification has to be done in 0S_RAW.h or has to be passed as
parameter during the library build process. embOS sources have to be re-
compiled and RTOS . h has to be rebuilt with the modified switches.

24.2.1. OS_RR_SUPPORTED

This switch defines whether round robin scheduling algorithm is supported. All
embOS versions enable round robin scheduling per default. When you never
use round robin scheduling and all of your tasks run on different individual pri-

© 1996-2006 Segger Microcontroller Systeme GmbH

162/169

User's & reference manual for embOS real time OS

orities, you may disable round robin scheduling by defining this switch to 0. This
will save RAM, ROM and will also speed up the task switching process.

Please ensure, that none of your tasks ever run on the same priority when you
disable round robin scheduling.

This compile time switch must not be modified in RTOS . h. It can only be modi-

fied in 0S_RAW.h before embOS libraries are rebuilt.

24.2.2. 0S_SUPPORT_CLEANUP_ON_TERMINATE

This compile time switch is new since version 3.26 of embOS. If enabled, it al-
lows termination of tasks which are claiming resource semaphores or are sus-
pended on any synchronization object.

Per default, this switch is activated for 16- and 32-bit CPUs.

For 8-bit CPUs it is disabled.

Even though the overhead is minimal and execution time is not affected signifi-
cantly, you may define this switch to zero when you do not terminate tasks in
your application, or if your application ensures, that tasks are never suspended
on any synchronization object or claim any resource semaphores when they
are terminated.

Disabling this switch will save some RAM in the task control structure and will
also speed up the wait functions for synchronization objects.

When using an 8bit CPU, you have to enable this switch (define it to be un-
equal to 0) to enable termination of tasks which are suspended on synchroniza-
tion objects or claim resource semaphores.

This compile time switch must not be modified in RTOS . h. It can only be modi-
fied in OS_RAW.h or has to be passed as “define” during the build process
when embOS libraries are rebuilt.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 163/169

25. Additional modules
25.1. Keyboard manager: KEYMAN.C

Keyboard driver module supplied in "C". It serves both as example and as a
module that can actually be used in your application. The module can be used
in most applications with only little changes to the hardware-specific portion. It
needs to be initialized on startup and creates a task that checks the keyboard
50 times per second.

Changes required for your hardware

void ReadKeys (void) ;

Example of how to implement into your program

void main(void)
0S_InitKern() ; /* initialize 0OS (should be first !) */
OS_InitHW() ; /* initialize Hardware for OS (see RtosInit.c)*/
/* You need to create at least one task here | */
OS_CREATETASK(&TCBO, "HP Task", TaskO0, 100, StackO); /*Create Task0*/
OS CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl); /*Create Taskl*/
InitKeyMan () ; /* Initialize keyboard manager */
0OS _Start();

}

© 1996-2006 Segger Microcontroller Systeme GmbH

164/169 User's & reference manual for embOS real time OS

25.2. Additional libraries and modules

For all embOS-compatible real time operating systems, there are additional li-
braries and modules available. However, these modules can also be used with-
out embOS or with a different operating system. Since these libraries are
written in ANSI "C", they can be used on any target CPU for which an ANSI "C"
compiler exists. In general, these modules are highly optimized for both low
memory consumption (especially in RAM) and high speed.

The modules can be scaled for optimum performance at minimum memory
consumption using compile-time switches. Unused portions of the modules are
not even compiled; your program stays lean and fast.

emWin The complete solution for graphical LCDs. A fully
scaleable graphical user interface featuring:
o different fonts (from 4*6 to 16*32)
¢ line drawing, bitmap drawing
e advanced drawing (e.g. circles)
e display routines for strings, dec/hex/bin values,
multiple windows
e ultra-fast, yet still very compact (typically between
8 and 20 kB ROM)
Everything you need for graphic displays!
Any LCD * Any LCD controller * Any CPU
Both monochrome and color versions available, as well
as bitmapconverter, font converter, PC simulation and
viewer. Check out our website!

emlLoad Boot-loader software.

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 165/169

26. FAQ (frequently asked questions)

Q: Can | implement different priority scheduling algorithms ?

A: Yes, the system is fully dynamic, which means that task priorities can
be changed while the system is running (using OS_SetPriority ()). This fea-
ture can be used to change priorities in a way so that basically every desired
algorithm can be implemented. One way would be to have a task control task
with a priority higher than that of all other tasks that dynamically changes priori-
ties. Normally, the priority-controlled round-robin algorithm is perfect for real
time applications.

Q: Can | use a different interrupt source for embOS ?
A: Yes, any periodical signal can be used, i.e. any internal timer, but it
could also be an external signal.

Q: What interrupt priorities can | use for the interrupts my program uses?
A: Any.

© 1996-2006 Segger Microcontroller Systeme GmbH

166/169 User's & reference manual for embOS real time OS
Glossary
Some technical terms used in this manual are explained below.
Active Task Only one task can execute at any given time. The task that is
currently executing is called the active task.
Cooperative A scheduling system in which each task is allowed to run until
multitasking it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.
Counting A type of semaphore that keeps track of multiple resources.
semaphore Used when a task must wait for something that can be sig-
naled more than once.
CPU Central Processing Unit. The "brain" of a microcontroller; the

Critical region

Event

ISR

Mailbox

Message

Multitasking

NMI

Preemptive
multitasking

Processor

Priority

Priority inver-
sion

part of a processor that carries out instructions.

A section of code which must be executed without interrup-
tion.

A message sent to a single, specified task that something has
occurred. The task then becomes ready.

Interrupt Service Routine. The routine called automatically by
the processor when an interrupt is acknowledged. ISRs must
preserve the entire context of a task (all registers).

A data buffer managed by the RTOS, used to send a mes-
sage to a task.

An item of data (sent to a mailbox, queue, etc.).

The execution of multiple software routines independently of
one another. The OS divides the processor’s time so that the
different routines (tasks) appear to be happening simultane-
ously.

Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer-interrupt.

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the interrupted
task is returned to.

Short for microprocessor. The CPU core of a controller

The relative importance of one task to another. Every task in
an RTOS has a priority.

A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. The lower priority task temporarily gets the

© 1996-2006 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 167/169

Queue

Resource

Resource
semaphore

RTOS

Scheduler

Semaphore

Software timer

Stack

Superloop

Task

Tick

Timeslice

highest priority until it releases the resource.

Like a mailbox, but used to send one or more messages to a
task.

Anything in the computer system with limited availability (e.g.
memory, timers, computation time). Essentially, anything
used by a task.

A type of semaphore used to manage resources by ensuring
that only one task has access to a resource at a time.

Real Time Operating System.

The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

A data structure used for synchronizing tasks.

A data structure which calls a user-specified routine after a
specified delay.

An area of memory with FIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

A program that runs in an infinite loop and uses no real time
kernel. ISRs are used for real time parts of the software.

A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one an-
other.

The OS timer interrupt. Usually equals 1 ms.

The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.

© 1996-2006 Segger Microcontroller Systeme GmbH

168/169 User's & reference manual for embOS real time OS
Index
OS _DeleteMB....................... 86
OS_DeleteTimer.................. 47
A ! OS Dluceereeeieeieeeeee 122
Additional modules............ 163 Idle mode.......ccccceeeeeiiiniis 141 OS El oo 122
ANSI....ooiiee e, 8 Internal data structures 130 OSZEnterInterrupt _____________ 119
Interrupt control macros.... 122 OS_EnterNestablelnterrupt124
B Interrupt frequency............ 133 OS_EnterRegion................ 128
, Interrupts..................... 115-26 OS_EITOr ..o, 155
Baudrate, for embOSView 132 and preemptive multitasking OS_Eror.c fileccooo....... 155
--------------------------------- 118 OS_free ...ccovvevvvrenienrnnnnnn. 104
c anaﬁling/disabling --------- ﬁé OS_FSYS oo 132
; Igh Prionty................... OS_GetCSemaValue 70
g gtraorgtlzammlng language 18 |nterrUPt |'atency 115 OS_GetEventsoccured _____ 102
A e Low priority 116 OS_GetMailcocvurruenen. 80
compile time switches 161 Nestingccovvevveeveennne. 123 0S GetMail1 80
Configuration, of embOS ..131- Zero interrupt latency.... 116 OS_GetMaiIC.c;ﬁ“ci """"""""" 81
33 _ S e
Cooperative multitasking..... 12 K gg—g::m:::%%‘s; """""""" g;
Counting semaphores...63-71 0S GetMessa eC'rﬁ """""" 85
Critical regions 127-29 Keyboard driver............... 163 OS GotpCarentTask .30
KEYMAN.Cc.ecovies 163 0S_GetpCurrentTimer 51
D OS_GetPriofity...........o......... 30
Debug version, of embOS... 20 L 0OS_GetResourceOwner......61
Debugging.................. 155-57 Libraries, building............. 160 OS_GetSemavalue............. 60
Defines, for configuration .. 131 Limitations, of embOS 159 0S_GetStackSpace 114
Development tools 158 OS_GetSuspendCnt............ 34
M 8§_geg_asle 130122
E _GetTime............. ,
Mailboxes................ 15, 72-86 0S_GetTime_Cycles......... 131
embOS single-byte 75 OS_GetTime32.................. 135
building libraries of........ 160 Main routingcccc....... 19 OS_GetTimerPeriod............ 48
builds of ... 20 Memory management OS_GetTimerStatUS 50
configuration of 131-33 Fixed block size............. 105 OS_GetTimerValue.............. 49
debug version 20 Heap memory............... 104 OS_ldle......ccocvveeiiin, 131
features ofc.......... 9 Multitaskingc....... 12 OS_INCDI ..o 121
librariesccccoeeeeeiennnn. 21 Cooperative _____________________ 12 OS_|n|tHW 131
limitations of 159 preemptive...........coevee.... 12 OS_ISR_IX oo 131
release version 20 OS ISR _TicK....covvecurrreen. 131
embOS.inifile.................... 154 N OS_ISR tX..cocvveciiieereee. 131
embOSView 142-54 OS IsTasK....ccccceeeeveurrrennnn. 37
customizingcce..... 154 Nested interrupts............... 123 OS_Leavelnterrupt 119
SIO e, 143 NMIS...ooviiieieiieceieeeie 126 OS_LeavelnterruptNoSwitch
system variables window143 e 120
task list window............. 143 (o) OS_LeaveNestablelnterrupt124
tracing APl calls 153 OS_LeaveNestablelnterruptNo
Eventsccceeeee. 15, 95-103 OS_BAUDRATE 132 SWItCh ..o 124
OS_ClearEvents................ 103 OS_LeaveRegion 129
F OS_ClearMB....................... 84 OS _malloc......ccoueeuveurnne. 104
OS_COM_Init....ccceevuveeneen. 131 OS_MEMF_Alloc............... 107
Features of embOS............... 9 OS_COM_Send1.............. 131 OS_MEMF_AllocTimed.....107
Fixed Size Memory OS _CONFIG.......ccvveeeee. 133 OS_MEMF Create............. 105
management........... 10511 OS_ConvertCycles2us...... 131 OS_MEMF _Delete............. 106
OS _CreateCSema.............. 65 OS_MEMF_FreeBlock....... 109
G OS_CREATECSEMA 64 OS_MEMF_GetBlockSize .110
. OS_CREATEMB................. 74 0OS_MEMF_GetMaxUsed..110
Global variables 15,72 OS_CREATERSEMA 55 0S_MEMF_GetNumBlocks109
OS CreateTask.................. 25 0OS_MEMF_GetNumFreeBlock
H OS_CREATETASK............. 23 Sttt et e e 110
Halt mode 141 OS_CreateTimer................. 42 OS_MEMF_lIsInPool.......... 111
Hardware-soecific routines 131 OS_CREATETIMER........... 41 OS_MEMF_Release.......... 108
P OS_DecRl...ccovvvrierianrane. 121 OS_MEMF_Request 108
Heap memory management104 OS_Delay......oorrreercrrrrree 27 OS_PutMail.......oooooo. 76
OS_DelayUntil..................... 28 OS_PutMail...........cccccvve..... 76
OS_DeleteCSema......... 62, 71 OS_PutMailCond................. 77

© 1996-2005 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 169/169
OS_PutMailCond1 77 OS_TraceDisableld........... 148 Scheduler..........ooiiiieeen. 13
OS_PutMailFront................ 78 OS_TraceEnable............... 147 Semaphores.........cccceeeeenn. 15
OS_PutMailFront1 78 OS_TraceEnableAll........... 147 countingccceeeuee. 63-71
OS_PutMailFrontCond........ 79 OS_TraceEnableFilterld.... 149 rESOUrCe..........ccvveeen. 52-61
OS_PutMailFrontCond1...... 79 OS_TraceEnableld............ 148 Single-byte mailboxes.......... 75
OS_Q _Clear.....coceeeevcveeennne 93 OS_TracePtrcccoevennee. 150 Single-task system.............. 11
OS_Q Create........ccc.......... 88 OS_TraceU32Ptr............... 151 Software timers.............. 40-51
OS_Q_GetMessageCnt...... 94 OS_TraceVoid................... 150 Stack overflow................... 112
OS_Q_GetPtr...cceeeeeeenees 90 OS_UART ... 132 Stack pointers 17,19
OS_Q_GetPtrCond............. 91 OS _Unuse....cccccevevveeeeninenn, 58 Stacks .ccvveeeeeeiiiine, 16, 112
OS_Q_Purge.....cccceevvieeene 92 OS _USE...ooiviiiiiiiiiiieeiiien, 56 SWItChingocvveeiiiiieeene 17
OS_ Q Put .o 89 OS_WaitCSema.................. 68 Stop mode...........ccveeeen 141
OS _realloc......ccvveeeeeeenns 104 OS_WaitCSemaTimed........ 69 ST0] 1= 4 [o]o] o J 11
OS_Request......cccccceennnnee. 59 OS_WaitEvent..................... 96 System frequency...... 131, 132
OS_Restorel.........ccceueeee. 122 OS_WaitEventTimed........... 98 System variables............... 130
OS_Resume......ccc.cceeuuneee. 33 OS_WaitMailcccceeeenns 83

OS_RetriggerTimer 45 OS_WaitSingleEvent........... 97 T

OS_RR_SUPPORTED..... 161 OS_WaitSingleEventTimed.99

0OS_SendString................. 144 0S_WakeTask.................... 36 Task routines................. 22-39
OS_SetPriorityccco........ 29 TaskS...oooi i 11
OS_SetRxCallback........... 144 P communication between...9,
OS_SetTimerPeriod 46 15

0OS SetTimeSlice 31 Preemptive multitasking 12 states Ofevvvevevevirinnnnns 18
Os:SignaICSema _______________ 66 Priofityccoveeiiiie 14 switching between........... 16
OS_SignalCSemaMax........ 67 Priority inversion 14 TCB oo, 16, 22
OS_SignalEvent 100 Profiling.......ccoooeeeiie 21 TickS oo 132
OS _Start....ccccceevevveeeeieenn. 19 Time variables.................. 130
OS_StartTimer........ccvuu...... 43 Q Timer for embOS 132
OS_StopTimer........c........... 44 Trace filters, of embOSView145
0S SUPPORT CLEANUP ON Queues........cccc........ 15, 87-94 setup functions........ 147-49

TERMINATE............... 162 Trace record functions 150-52
OS_SUSPENdoo.oo.... 32 R Tracing API calls
83—.1;5:2'”%3 """""""""" 122 Reentrance................c........ 158 with embOSView..... 145-53
OS_Timeﬁé;(""""""""""" 130 Release version, of embOS 20 U
OS Timing End .. 137 Resource semaphores..52-61,

T i UART .o, 142
83:.?:2:28:33853/0'93 122 Round-robin.............ccccc...... 13 UART, for embOSView131, 132
OS_Timing_Start............ 137 E¥OSI..: f 'II 1 1142
0S_TraceData.................. 151 osinite ie......... 31, \'
83;::2:8?;:;2 e 12; S Vector table file 132
OS_TraceDisableAll 147 Sample project 22,131

OS_TraceDisableFilterld .. 149

© 1996-2006 Segger Microcontroller Systeme GmbH

	Disclaimer
	Copyright notice
	Trademarks
	Registration
	Contact address
	Software and manual versions
	Contents
	About this document
	Assumptions
	How to use this manual
	Typographic conventions for syntax

	Introduction to embOS
	What is embOS?
	Features

	Basic concepts
	Tasks
	Single-task system (superloop)
	Multitasking systems
	Cooperative multitasking
	Preemptive multitasking

	Scheduling
	Round-robin scheduling algorithm
	Priority-controlled scheduling algorithm
	Priority inversion

	� Communication between tasks
	Global variables
	Communication mechanisms

	How task-switching works
	Switching stacks
	Change of task status
	How the OS gains control
	Different builds of embOS
	Profiling
	List of libraries

	Task routines
	OS_CREATETASK(): Create a task
	OS_CreateTask(): Create a task
	OS_Delay(): Suspend for fixed time
	OS_DelayUntil(): Suspend until
	OS_SetPriority(): Change priority of a task
	OS_GetPriority(): Retrieve priority of a task
	OS_SetTimeSlice(): Change timeslice of a task
	OS_Suspend(): Suspend a task
	OS_Resume(): Restarts a suspended task
	OS_GetSuspendCnt(): Retrieve suspension count of a task
	OS_Terminate(): Terminate a task
	OS_WakeTask(): Resume a time suspended task
	OS_IsTask(): Check whether a task is valid
	OS_GetTaskID(): Retrieve ID of current task
	OS_GetpCurrentTask(): Retrieve TCB of current task

	Software timers
	OS_CREATETIMER(): Create a software timer
	OS_CreateTimer(): Create a software timer
	OS_StartTimer(): Start a timer
	OS_StopTimer(): Stop a timer
	OS_RetriggerTimer(): Restart a timer
	OS_SetTimerPeriod(): Set restart value
	OS_DeleteTimer(): Delete a timer
	OS_GetTimerPeriod(): Retrieve restart value
	OS_GetTimerValue(): Retrieve remaining time
	OS_GetTimerStatus(): Retrieve timer status
	OS_GetpCurrentTimer(): Retrieve current timer

	Resource semaphores
	OS_CREATERSEMA(): Create resource semaphore
	OS_Use(): Use a resource
	OS_Unuse(): Release a resource
	OS_Request(): Request a resource
	OS_GetSemaValue(): Retrieve usage counter value
	OS_GetResourceOwner(): Retrieve blocking task
	OS_DeleteRSema(): Delete a resource semaphore

	Counting Semaphores
	OS_CREATECSEMA(): Create counting semaphore
	OS_CreateCSema(): Create counting semaphore
	OS_SignalCSema(): Increment counter
	OS_SignalCSemaMax(): Increment counter upto a maximum value
	OS_WaitCSema(): Decrement counter
	OS_WaitCSemaTimed(): Decrement counter with timeout
	OS_GetCSemaValue(): Retrieve counter value
	OS_DeleteCSema(): Delete a counting semaphore

	Mailboxes
	Why mailboxes?
	Basics
	Typical applications
	OS_CREATEMB(): Create a mailbox
	Single-byte mailbox functions
	OS_PutMail() / OS_PutMail1(): Store a message
	OS_PutMailCond() / OS_PutMailCond1(): Store a message if possible
	OS_PutMailFront() / OS_PutMailFront1(): Store a message in front into a mailbox
	OS_PutMailFrontCond() / OS_PutMailFrontCond1(): Store a message in front into a mailbox if possible
	OS_GetMail() / OS_GetMail1(): Retrieve a message
	OS_GetMailCond() / OS_GetMailCond1(): Retrieve a message if possible
	OS_GetMailTimed(): Retrieve a message within a given time
	OS_WaitMail(): Wait until a mail is available
	OS_ClearMB(): Empty a mailbox
	OS_GetMessageCnt(): Get number of messages in mailbox
	OS_DeleteMB(): Delete a mailbox

	Queues
	Why queues?
	Basics
	OS_Q_Create(): Create a message queue
	OS_Q_Put(): Store message
	OS_Q_GetPtr(): Retrieve message
	OS_Q_GetPtrCond(): Retrieve message if possible
	OS_Q_Purge(): Delete one message in queue
	OS_Q_Clear(): Delete all messages in queue
	OS_Q_GetMessageCnt(): Get number of messages in queue

	Events
	OS_WaitEvent(): Wait for event, then clear all events
	OS_WaitSingleEvent(): Wait for event, then clear masked events only
	OS_WaitEventTimed():Wait for event with timeout
	OS_WaitSingleEventTimed(): Wait for event, then clear masked events, with timeout
	OS_SignalEvent(): Signal a task that an event has occured
	OS_GetEventsOccured(): Get a list of events
	OS_ClearEvents(): Clear list of events

	Heap type memory management
	API reference

	Fixed block size memory pools
	API reference
	OS_MEMF_Create(): Create a fixed size memory pool
	OS_MEMF_Delete(): Delete a fixed size memory pool
	OS_MEMF_Alloc(): Retrieve one block from memory pool
	OS_MEMF_AllocTimed(): Retrieve block with timeout
	OS_MEMF_Request(): Retrieve memory block if available
	OS_MEMF_Release(): Free a memory block in pool
	OS_MEMF_FreeBlock(): Free a memory block
	OS_MEMF_GetNumBlocks(): Returns number of blocks in pool
	OS_MEMF_GetBlockSize(): Returns size of one memory block
	OS_MEMF_GetNumFreeBlocks(): Returns number of free blocks in pool
	OS_MEMF_GetMaxUsed(): Returns max. number of used blocks in pool
	OS_MEMF_IsInPool(): Check if block belongs to pool

	Stacks
	System stack
	Task stack
	Interrupt stack
	OS_GetStackSpace()

	Interrupts
	Interrupt latency
	Causes of interrupt latencies
	Additional causes for interrupt latencies

	Zero interrupt latency
	High / low priority interrupts
	Rules for interrupt handlers
	General rules
	Additional rules for preemptive multitasking

	Calling embOS routines from within an ISR
	OS_EnterInterrupt()
	OS_LeaveInterrupt(),
	OS_LeaveInterruptNoSwitch(),
	Example

	Enabling / disabling interrupts from "C"
	OS_IncDI() / OS_DecRI()
	OS_DI() / OS_EI() / OS_RestoreI()

	Definitions of interrupt control macros (in RTOS.h)
	Nesting interrupt routines
	OS_EnterNestableInterrupt()
	OS_LeaveNestableInterrupt()
	OS_LeaveNestableInterruptNoSwitch()

	Non-maskable interrupts (NMIs)

	Critical regions
	OS_EnterRegion(): Enter critical region
	OS_LeaveRegion(): Leave critical region

	System variables
	Time Variables
	OS_Time
	OS_TimeDex

	OS internal variables and data-structures

	Configuration for your target system (RTOSINIT.c)
	Hardware-specific routines
	Configuration defines
	How to change settings
	Setting the system frequency OS_FSYS
	Using a different timer to generate the tick-interrupts for embOS
	Using a different UART or baudrate for embOSView
	Changing the tick frequency

	OS_CONFIG()

	Time-related routines
	Low-resolution measurement
	OS_GetTime()
	OS_GetTime32()
	Example of typical use of low-resolution measurement

	High-resolution measurement
	OS_Timing_Start()
	OS_Timing_End()
	OS_Timing_Getus()
	OS_Timing_GetCycles()
	Example of typical use of high-resolution management

	Example

	STOP / HALT / IDLE modes
	embOSView: profiling and analyzing
	Overview
	Task list window
	System variables window
	Sharing the SIO for terminal I/O
	OS_SendString()
	OS_SetRxCallback()

	Using the API trace
	Trace filter setup functions
	OS_TraceEnable()
	OS_TraceDisable()
	OS_TraceEnableAll()
	OS_TraceDisableAll()
	OS_TraceEnableId()
	OS_TraceDisableId()
	OS_TraceEnableFilterId()
	OS_TraceDisableFilterId()

	Trace record functions
	OS_TraceVoid()
	OS_TracePtr()
	OS_TraceData()
	OS_TraceDataPtr()
	OS_TraceU32Ptr()

	Application-controlled trace example
	User-defined functions

	Debugging
	Run time errors
	List of error codes

	Supported development tools
	Limitations
	Source code of kernel and library
	Building embOS libraries
	Major compile time switches
	OS_RR_SUPPORTED
	OS_SUPPORT_CLEANUP_ON_TERMINATE

	Additional modules
	Keyboard manager: KEYMAN.C
	Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index

