embOS

Real-Time
Operating System

CPU-independent

User & reference guide

Software version 3.82
Document: UM01001
Revision: O
Date: September 24, 2009

\) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2 CHAPTER

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER GmbH & Co. KG (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2009 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks

Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Registration

Register the software via email. This way we can make sure you will receive updates
or notifications of updates as soon as they become available. For registration, pro-
vide the following information:

Company name and address

Your name

Your job title

Your email address and telephone number
Name and version of the product

Send this information to: register@segger.com
Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11

D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

Email: support@segger.com
Internet: http://www.segger.com

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

Software and manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: September 24, 2009

Software | Manual Date | By Description
API function overview now contains information about allowed
3.82 0 090922 TS | context of function usage (main, task, ISR or timer)
TOC format corrected
3.80 0 090612 | AW | Scheduler optimized for higher task switching speed.

Chapter structure updated.
Chapter "Interrupts":
* OS_LeaveNestableInterruptNoSwitch() removed.

3.62.c 0 080903 SK 1« 0OS_LeavelnterruptNoSwitch() removed.
Chapter "System tick":
* OS_TICK_Config() added.
3.60 2 080722 SK | Contact address updated.
General updates.
3.60 1 080617 SK | Chapter "Mailboxes":
- OS_GetMailCond() / OS_GetMailCond1() corrected.
General updates.
3.60 0 080117 | 0O Chapter "gystem tick" added.
3.52 1 071026 | AW | Chapter "Task routines": Added OS_SetTaskName().
Chapter "Task routines": Added OS_ExtendTaskContext().
3.52 0 070824 | OO | Chapter "Interrupts": Updated, added OS_CallISR() and
OS_CallNestableISR().
3.50c 0 070814 | AW | Chapter "List of libraries" updated, XR library type added.
3.40C 3 070716 | OO | Chapter “Performance and resource usage" updated,

Chapter “Debugging®, error codes updated:
- OS_ERR_ISR_INDEX added.
- OS_ERR_ISR_VECTOR added.
- OS_ERR_RESOURCE_OWNER added.
- OS_ERR_CSEMA_OVERFLOW added.
3.40C 2 070625 SK | Chapter “Task routines":
- OS_Yield() added.
Chapter “Counting semaphores" updated.
- OS_SignalCSema(), additional information adjusted.
Chapter “Performance and resource usage" updated:
- Minor changes in wording.

Chapter “Counting semaphores" updated.
- OS_SetCSemaValue() added.
- OS_CreateCSema(): Data type of parameter InitValue
3.40A 1 070608 SK changed from unsigned char to unsigned int.
- OS_SignalCSemaMax(): Data type of parameter MaxValue
changed from unsigned char to unsigned int.
- OS_SignalCSema(): Additional information updated.

Chapter “Performance and resource usage" added.

Chapter “Configuration of your target system (RTOSInit.c)"
renamed to “Configuration of your target system".

3.40 0 070516 SK | Chapter "STOP\WAIT\IDLE modes" moved into

chapter “Configuration of your target system".

Chapter “time-related routines"™ renamed to “Time measure-

ment".

3.320 9 070422 SK Chapter 4: OS_CREATETIMER_EX(), additional information cor-
rected.

3.32m 8 070402 | AW E::E:g: g iﬁgeg\?sr?/igwigifedc‘ta:a, 0S_Q_GetMessageCount()

3.32j 7 070216 | AW | Chapter 6: OS_CSemaRequest() function added.

3.32e 6 061220 SK | About: Company description added.
Some minor formating changes.

3.32e 5 061107 | AW | Chapter 7: OS_GetMessageCnt() return value corrected to
unsigned int.

3.32d 4 061106 | AW

Chapter 8: 0OS_Q_GetPtrTimed() function added.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

CHAPTER

Software

Manual

Date

By

Description

3.32a

061012

AW

Chapter 3: OS_CreateTaskEx() function, description of parame-
ter pContext corrected.

Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.

Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.

Chapter 9: OS_GetEventsOccured() renamed to
0OS_GetEventsOccurred().

Chapter 10: OS_EVENT_WaitTimed() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

3.32

060717

00

Event objects introduced. Chapter 10 inserted which describes
event objects.
Previous chapter "Events" renamed to "Task events"

060519

00

New software version.

060223

00

All chapters: Added API tables.
Some minor changes.

051109

AW

Chapter 7: OS_SignalCSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

050926

AW

Chapter 6: OS_DeleteRSema() function added.

w

.28

050707

AW

Chapter 4: OS_GetSuspendCnt() function added.

050425

AW

Version number changed to 3.28 to fit to current ombOS ver-
sion.

Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected

050209

AW

Chapter 4: OS_Terminate() modified due to new features of
version 3.26.

Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in detail.

041115

AW

Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

040816

AW

Chapter 8: New Mailbox functions added
OS_PutMailFront()

0OS_PutMailFront1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()

040621

RS

Software timers: Maximum timeout values and
OS_TIMER_MAX_TIME described.

Chapter 14: Description of rules for interrupt handlers
revised.

OS_LeaveNestableInterruptNoSwitch() added which was not
described before.

040329

AW

OS_CreateCSema() prototype declaration corrected. Return
type is void.

0S_Q_GetMessageCnt() prototype declaration corrected.
0S_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20

031128

AW

OS_CREATEMB() Range for parameter MaxnofMsg corrected.
Upper limit is 65535, but was declared 65536 in previous
manuals.

040831

AW

Code samples modified: Task stacks defined as array of int,
because most CPUs require alignment of stack on integer
aligned addresses.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

Software

Manual

Date

By

Description

3.20

1

031016

AW

Chapter 4: Type of task priority parameter corrected to
unsigned char.

Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resume() added.

Chapter 5: OS_GetTimerValue(): Range of return value cor-
rected.

Chapter 6: Sample program for usage of resource sema-
phores modified.

Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.

Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.

Chapter 8: OS_WaitMail() added

Chapter 10: OS_WaitEventTimed(): Range of timeout value
specified.

3.12

021015

AW

Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG
KG
KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related rou-
tines).

Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains con-
trol).

Chapter 4 (Configuration for your target system) moved to after
Chapter 15 (System variables).

Chapter 16 (Time-related routines) added.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

6 CHAPTER

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C com-
piler)

The C programming language

The target processor

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

The intention of this manual is to give you a CPU- and compiler-independent intro-
duction to embOS and to be a reference for all embOS API functions.

For a quick and easy startup with embQOS, refer to Chapter 2 in the CPU & Compiler
Specifics manual of embOS documentation, which includes a step-by-step introduc-
tion to using embOS.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword T(_axt that you 'enter at the commanq-prompt or that appears on the
display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.
Reference Reference to chapters, tables and figures or other documents.

GUIElement | Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

8 CHAPTER

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
’ C software components (middleware) for embedded

systems in several industries such as telecom, medi-
/ cal technology, consumer electronics, automotive
SEGG EH industry and industrial automation.

SEGGER'’s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office: United States Office:
http://www.segger.com http://www.segger-us.com
EMBEDDED SOFTWARE SEGGER TOOLS
(Middleware)
emWin Flasher
Graphics software and GUI Flash programmer
emWin is designed to provide an effi- Flash Programming tool primarily for microcon-
cient, processor- and display control- trollers.
ler-independent graphical user .
interface (GUI) for any application that J-Link
operates with a graphical display. JTAG emulator for ARM cores
Starterkits, eval- and trial-versions are USB driven JTAG interface for ARM cores.
available.
J-Trace
embOS JTAG emulator with trace
Real Time Operating System USB driven JTAG interface for ARM cores with
=== embOS is an RTOS designed to offer Trace memory. supporting the ARM ETM (Embed-
=] the benefits of a complete multitasking ded Trace Macrocell).
[system for hard real time applications .
with minimal resources. The profiling J-Link / J-Trace Related Software
PC tool embOSView is included. Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
emfFile programming software and flash breakpoints.

File system

emFile is an embedded file system with

FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-

mum memory consumption in RAM and

ROM while maintaining high speed.

Various Device drivers, e.g. for NAND

and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack

USB device stack

A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

g

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

Table of Contents

1 Introduction t0 eMBDOS o 15
1.1 What IS €mMbDOS .. e e e 16
1.2 ST L 1 < 17

P Y- L (ol oo (o =T o) £ RSP PPPPRTPPRTRPP 19
2.1 L=] G 20
2.1.1 LI (=T 1o 3 20
2.1.2 e (Y0 =T 20
2.2 Single-task systems (SUPEIIOOP) .uiiiiiiii i i e e e e 21
2.2.1 Advantages & disadvantagesoviiiiiiiiiii i 21
2.2.2 Using embOS in super-loop applications.......ccoiiiiiiiiiiiic i e 22
2.2.3 Migrating from superloop to multi-taskingccoiiiiiiiiiiii i 22
2.3 MUIEIEASKING SYSEOMIS . it e e as 23
2.3.1 TaSK SWIECNES . .t e 23
2.3.2 Cooperative task SWILCh......iiiiiii e 23
2.3.3 Preemtive task SWitCho e 23
2.3.4 Preemptive multitasking ..o e 24
2.3.5 Cooperative MuUltitaskingooiiiiiiiii e 25
2.4 1Yol =T 1] 1.9 T P 26
2.4.1 Round-robin scheduling algorithm ... 26
2.4.2 Priority-controlled scheduling algorithm ... 26
2.4.3 T Y a1 VA g A2 =T =1 o] o P 27
2.5 Communication between taskscciiiiiiiiiiii s 28
2.5.1 Periodical POlING .o e 28
2.5.2 Event driven communication mechanismsccoiiviiiiiiiiiii e 28
2.5.3 MailbOXES AN QUEUES .uiiiiiiiiii it e it r e e r e aae e aaaeas 28
2.5.4 1Y =] 0 =] 0 3 0 P 28
2.5.5 BV BNES ottt e 28
2.6 How task-swWitChing WOrKS. . ..o e e 29
2.6.1 SWIECHING STACKS . it e e 30
2.7 Change of task Status.....ciiiiiiiii i i e as 31
2.8 How the OS gains CONTIOl ..o e e e es 32
2.9 Different builds of @mbOSo e 33
2.9.1 PO NG tueieiii i e 33
2.9.2 LISt Of DrariEs e e 33
2.9.3 embOS fUNCHIONS CONtEXE . .uiiriiiii i e e e e e e 33

G T = 1S 2 PP 35
3.1 |l o T [BT o o PP 36
3.1.1 Example of a task routine as an endless 100p......cccviiiiiiiiiiiii i 36
3.1.2 Example of a task routine that terminates itselfccooiiiiiiiiiiii 36
3.2 Cooperative vs. preemptive task switchesccooiiiiiiiiiii i 37
3.2.1 Disabling preemptive task switches for tasks at same priorities...................... 37
3.2.2 Completely disabling preemptions for a task.......cooviiiiiiiiiiiiii i 37
3.3 7Y o I 18 o o 1= PP 38
3.3.1 O S CREATETASK() tuttttitttit ittt sttt it e ettt e e st et e e st e a et e et e aneaeaeanes 39
3.3.2 O CreateTask () coue ettt i i e e e e e aeaas 40
3.3.3 OS _CREATETASK EX () ttttuttutttitiitiitiieiieseiasie it stestsae e eestsae e e stsananeaneans 42
3.3.4 O CreateTaskEX() tivreiiiiiiiii i i i i e e ettt et a e it 43
3.3.5 L@ 1T I 7= = 1 () TP 44

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

10

3.3.6 (@ T D=1 F= 170 Lo 1 RPN 45
3.3.7 OS_ExtendTaskConteXt() .o.viieiiiiiiiiiii i s e e e s 46
3.3.8 (@ ST €11 o O8] g =T o L ol =] () P 49
3.3.9 (@ ST =1 o o Lo 1 5V () I O 50
3.3.10 (@ ST €11 oY U] 011 o [o) of () TSP 51
3.3.11 (@I =] o =11 4 1 B () TS PRI 52
3.3.12 (@I Y 1= 11 O PR 53
3.3.13 (@I =T H 0 1 1= () PP 54
3.3.14 (@IS =1 u o o) 1Y () I PP 55
3.3.15 OS _SetTaskNAMIE() . uvu i e e e e e s s reaneanans 56
3.3.16 (OIS ol 2 0 1= [T = () I PP 57
3.3.17 (@IS ¥ 1] 011 o o () 1P 58
3.3.18 (@ T =T 11 1= 1= () 1 PP 59
3.3.19 O S W aAKETASK() st ettt ittt ittt ettt ettt a e e r et aaaas 60
3.3.20 (@I 411 [1 IR PRI 61
S T ATV U 1 1 T=T £ U 63
4.1 INErOdUCEION e s 64
4.2 PN o B 1] o Vol o I PP 65
4.2.1 OS_CREATETIMER() tuttttitiittiiteiteiitestesasessesasesnesanesnesanssnesanesnesanssnesnnesnnnns 66
4.2.2 (O I Ol =) =0 N 0 1= o I PR 67
4.2.3 (O ST = o ol 10 4 U= I PR 68
4.2.4 (@ ST o] o I 11 4 T=1 () PP 69
4.2.5 (O I I = e o =T ol T 0 =T of () TP 70
4.2.6 (O ST o W 0 1= o 2= T o o T PP 71
4.2.7 (@ ST =] (= W=l W 0 1] o PP 72
4.2.8 (@ S 1= Nl g [=] g 2= T o T I () T PR 73
4.2.9 (O S 1= N g (=T V= LU =T () T PR 74
4.2.10 OS_GetTimerStatus() «vvie i it et a e ar e e rare e nneaneans 75
4.2.11 (O I CT=]ws 10U g =T a1l W10 o T=1 ol () PP 76
4.2.12 OS_CREATETIMER _EX() e uttuttittiseitsssesesasesissanesnnssnesnnsanesnnssnesnnssesnnssnenns 77
4.2.13 (O I O =) =l N 0 (=] = () T PRI 78
4.2.14 (O I = ol 10 4 1= 1 = I PRI 79
4.2.15 (@ SIS o] o 11 4 T=1 o = T PP 80
4.2.16 OS _RetriggerTimeErEX () «ueuu ettt e e e e as 81
4.2.17 OS_SetTimerPeriodEX() «uveeuireiiei it iiii i et s are s sare e eaee e raeeaneraeeaneans 82
4.2.18 (@S D=1 (W=l W 0 1= o) PRI 83
4.2.19 OS_GetTimerPerioAEX() vuureieiire ittt iiesiseiieea e s sar s eae e s raneaesnnaaneannans 84
4.2.20 OS_GetTimerValUEEX() «vviiiii it e s e e e enaas 85
4.2.21 O _GetTimerStatUSEX() cvuvrt ittt i i e aa e e a e ss e e are e e areanans 86
4.2.22 0SS _GetpCUurrentTIiMEIrEX () veeueeere ittt iiesiseiieeaneiaesanerareaerareseraeeaeeneeaneannans 87
5 RESOUICE SEMAPNOIES......eiiiiiiiiiiiiiie et e e 89
5.1 INErOdUCEHION L s 90
5.2 AP fUNCHIONS ¢ttt e e e 92
5.2.1 OS _CREATERSEMA() ettt iitiisttietate st sasesitaasesanssnesasssneennsseeaneseannennenns 93
5.2.2 (@ ST U F=1=T () I PP 94
5.2.3 (@ ST U L[S F=1=T () T PP 96
5.2.4 (@I 2T LU= o (PR 97
5.2.5 08 _GetSemMAVaAlUE() ettt s e e e 98
5.2.6 OS _GetRESOUINCEOWNEI() e ttiuttire ittt iiesasetieeateteaaseseaasesneaanernesanerneaaneanenns 99
5.2.7 OS_DeletERSEMA() +iuriirtitii ittt it ate s s e raerane e are e aareaeaanans 100
6 COoUNLING SEMAPNOIESuiiiii ittt e et e e s e e e e e e e e e aeeeeeeeennne 101
6.1]l o Yo 18 T o o T PP 102
6.2 7N o I 11 o o 1= PP 103
6.2.1 OS_CREATECSEMAL() «tttittiittintiassasesaneanesaessnesnnsanssansasesansanssansanernnennssnnnns 104
6.2.2 (OIS O =T =T @I o = 1 105
6.2.3 (O SIS o [F=1 L@ =T 1= 1 () 1P 106
6.2.4 0S_SigNalCSEMAMaAX() «etiuttiiitiiii i a e r e 107

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

6.2.5 O ST V= 1L OS] o 0 =T T 108
6.2.6 OS_WaitCSemaTimeEd() «oueieriee it rieeatereras e raae e s rara e raasanereanneanans 109
6.2.7 OS_CSEMAREGQUESE() +iueiiiitiiieii ittt rar s s raasseaaas e aaeerness 110
6.2.8 O S C =T OSY =T o g =11 (U= () T PP 111
6.2.9 OS_SetCSemaValUe() «ouu i e aa s 112
6.2.10 L@ ST =] 1] =T @RSY =] o a1) 1 113
A\ = 11| 010)= PP 115
7.1 INErOdUCEION e s 116
7.2 = =] [117
7.3 Typical @appliCationS. . i e 118
7.4 Single-byte mailboxX fuNCLiONS.o 119
7.5 APT fUNCHIONS ettt 120
7.5.1 OS _CREATEMB() tuttittittittiite st iitestesiesasesseasesaneanssassanesanesneeaneseanneanernnens 121
7.5.2 OS_PutMail() / OS_PUIMAIIL() treiiriiiiiii i s s s e e e n e eeaas 122
7.5.3 OS_PutMailCond() / OS_PutMailCond1() «.oevviuiiiieiiii e e ae e 123
7.5.4 OS_PutMailFront() / OS_PUtMailFront1()...ccceiiiieiiiiii e e 124
7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()...cccvviviiiiiiiiiiiiiiieieeaeeenen 125
7.5.6 0S_GetMail() / OS_GetMailLl().eeiieiiriiiiii i r i a i aaeas 126
7.5.7 0OS_GetMailCond() / OS_GetMailCond1() «oevviuiiiieiiiii i 127
7.5.8 OS _GetMailTIimMEA() ettt r e e e s a e r e e s e e e aneanans 128
7.5.9 L ST LV 11 = 11 I PR 129
7.5.10 (O O 1= T 17 = () L TP 130
7.5.11 OS_GetMESSAGECNT() +uureiirt it ittt a s s r e e 131
7.5.12 O _DElEEEMBI() ttttiitiitt ittt 132
8 QUEBUES ..ttt e e ettt e e e et e e e et et b e e e e eeta e aaaees 133
8.1 1l o Yo [U T o o TP 134
8.2 1=] o 135
8.3 Y o I 11 o o o 1= P 136
8.3.1 L@ T T O /<= 1 =T () PP 137
8.3.2 L@ T T 2 () T PP 138
8.3.3 L@ ST © T €= o 4 () 1 PP 139
8.3.4 L@ ST © T €= o 4 . ©e 3 T [() I PP 140
8.3.5 (O ST O €= o v ol I 1= 1 () PP 141
8.3.6 L@ T O T o o =T (PP 142
8.3.7 L@ T T O =T 1 () TP 143
8.3.8 OS_Q _GetMESSAGECNT() tuvtiitiiiitiiii i i r e r e ae e aa 144
O TASK BVEINES. .. 145
9.1 ol o Yo [6 T o o TP 146
9.2 Y o I 11 o o o 1= 147
9.2.1 L@ ST LV T V2= o | (TP 148
9.2.2 OS_WaitSiNgIEEVENE() .ottt e e 149
9.2.3 OS_WaitEventTimed () ove e i i e e e e 150
9.2.4 0OS_WaitSingleEventTimed() vvvieiiii i i e e e 151
9.2.5 OS _SIgNAlEVENT() tuiiiiii i i i e e 152
9.2.6 (O 1SI Y= u V7T o) = Tolel U1 o'=Te [() 153
9.2.7 (OIS O =T [Y 7= o =] () 1S 154
O YT o] o] o] =T o £ TR RTPPP 155
10.1 |l o T [U T o o I PP 156
10.2 F Y o I 10 U T 1= 157
10.2.1 O ST =V =V B O o/ | = () TP 158
10.2.2 OS_EVENT _WaIt() +vverriineinnnne it saesanesnesasssansanssnnsanssansansranssnssnnannesnnnns 159
10.2.3 OS_EVENT_WaitTimed() .oveeeiieeieiieiiesieesiesasssansaessansanesansnnesnnssnssnnannesnnsns 160
10.2.4 L@ ST oV AV Y = o (PP 161
10.2.5 L@ ST oV AV === f () PP 163
10.2.6 OS _EVENT _PUISE() tueiuteitine ittt ieeaseseaasesesasssnaanssanssnsranssnesnneaneannesness 164

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

12

10.2.7 (O ST =2 = AV B 1= o (P PP 165
10.2.8 OS _EVENT _Delete() tuviiriiiiiiii it i et eaeaas 166
11 Heap type memory ManageMENT.........ccoouuuuiieiieriiieeeeeeniia e eernn e e eern e eerennaas 167
11.1 9o oY [T o o 168
11.2 N = I 0T T o T 169
12 Fixed blOCK SIZ€ MEMOIY POOISuuiiiiiiiiiiiiiiei et e e 171
12.1 |l o Yo 18 T o o T PP 172
12.2 7N 2 I 11 o o o 1= 173
12.2.1 O S _ MEMFE _CrEate() vviutitiitiitii it st 174
12.2.2 (O IS 1 = D LY = =T () T 175
12.2.3 (@ I 1 =1 S AN 1T Yol (I PP 176
12.2.4 OS_MEMF_AHOCTIMEA() tttutintiteitiitere e ate et e et e et e e s e e raeeneaaans 177
12.2.5 (O IS 1 =\ = To [U= o () 178
12.2.6 O S _MEMF _REIEASE() et tuttutitiitiitit ittt ateat et ea ettt a et st rae e e anaanens 179
12.2.7 OS _MEMF _FreeBIOCK() cuuueiuiititieistentaae et iteataae st st e s e et sae e tanaanens 180
12.2.8 OS_MEMF_GEtNUMBIOCKS() +uvtutitiitiitiitiirieie i e e s s e aanaaeas 181
12.2.9 OS_MEMF_GEtBIOCKSIZE() tttutiutitiitiitie i iteiteie it et s et a e aneaaens 182
12.2.10 OS_MEMF_GetNUMFreeBIoCKS() «ouviiii i 183
12.2.11 OS_MEMF_GEtMaXUSEA() turiutiriiriitiitiit it et aa e eneaaeeaens 184
12.2.12 OS _MEMF _ISINPOOI() ttutittitiitiitiiiiiit e sttt et r e e aaeaaeas 185
R T] Vo3 €U 187
13.1 |l o Yo 18 T o o T PP 188
13.1.1 SV S M SEACK ettt e 188
13.1.2 L= 1S G = o] 188
13.1.3 INterrUPE SEACK. .t 188
13.2 7Y o 11 o o 1= 189
13.2.1 O GEetStaCKBASE() ittt ittt e 190
13.2.2 O GEtStaCKSIZE() ittt ittt e 191
13.2.3 O GEetStaCKSPACE() +iutiriiriitii i e 192
13.2.4 OS _GetStaCKUSEA() ettt e 193
I |01 (=T o U] o] £ PP PP PP 195
14.1 What are INEerrUPES 2. i 196
14.2 INtermUPE IatENCY o 197
14.2.1 Causes of interrupt latenCies. ... 197
14.2.2 Additional causes for interrupt Iatenciescov i 197
14.3 Zero interrupt [atenCy oo 199
14.4 High / low priority intermuUpts. ..o e 200
14.5 Rules for interrupt handlersccoiiiiiiii e 201
14.5.1 L= =T =1 I o U] =T PP 201
14.5.2 Additional rules for preemptive multitasking ..o 201
14.6 APT fUNCHIONS <ttt e 202
14.6.1 (@ T 0111551 2 () I PP 203
14.6.2 OS_CalINEStAbIEISR() tuttetitititeetintet ettt ee e e e seae e enearannaens 204
14.6.3 (OIS = o) =T ol o} =T o B o) o () P PP 205
14.6.4 OS _LeaVvelntermUPL() «oriiii i i e 206
14.6.5 Example using OS_EnterInterrupt()/0S_Leavelnterrupt().....ccccoviiivinniinnnn. 206
14.7 Enabling / disabling interrupts from C ... 207
14.7.1 OS_INCDI() / OS_DECRI() . ettutiiuereerneiantieiaeesneraneanesanasneransanesaneaneranennernnens 208
14.7.2 OS_DI() / OS_EI() / OS_RESEOrEI() vvurrnerneenerneirierierereeneesiesieseenerneeseesnns 209
14.8 Definitions of interrupt control macros (in RTOS.h) c.ooiiiiiiiiiiiiiciiciea 210
14.9 Nesting interrupt FOULINES. ..o e e aaas 211
14.9.1 OS_EnterNestableInterrupt() «coovviiiii i 212
14.9.2 OS_LeaveNestableINterrupl() ..ovvveiii i 213
14.10 Non-maskable interrupts (NMIS) ...icuiiiiiiiii i e 214

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

ST O g1 (o= | I =0 (] SRS 215
15.1] e Y U T {0 T 216
15.2 Y o I 81 T T o 1 217
15.2.1 (O ST = o 1w =] o 2=Te | To] o ¥ () S P 218
15.2.2 OS_LeaVEREGION() ettt ittt st e s s e r s s e e s s s seaa e e aaans 219

16 TiME MEASUIEIMENTuit it ee et e e e et e e e e e e e et e e e st e e e saba e e eab e seaan e eeaannns 221
16.1] e Y U T oY T 222
16.2 LoW-resolution MeEeasuUrEmMENt ... i s e i e e 223
16.2.1 N I 81 Vot oY 1= 224
NS T A @ 1T 1= ol 0 =T () PP 225
NS A © 1 T €Y ol T 0 1= 1 77 () Tt 226
16.3 High-resolution measurement i 227
16.3.1 N I 81 Vot o Y 1 228
16.3.1.1 OS_TimiNg_STart() «ooeeeeeiiiiiiiiii s e 229
16.3.1.2 OS_TimMiNG_ENA() ceueitiitiiiii it i i e et e e e e e e aeaaaaeaaens 230
16.3.1.3 OS_TimMiNg_GeEUS() treiuriniiiiiiii i st erar e an e anneaneans 231
16.3.1.4 OS_TimiNg_GetCyCIES() . uuiiieiiiiiiiiii it rar s raa e e e rnans 232
16.4 XAl e e 233

17 SYStem VariabIES..........eeiiiiiiie e 235
17.1 130 Y 11T Y 236
17.2 BN TSI Z= 1 1= 51 1 237
17.2.1 1T I 0 237
17.2.2 L0 1 T I L =1 =G 237
17.3 OS internal variables and data-structurescooeiiiiiiiiiiiiiiie i e 238

18 SYSIEIM TICK. ..t e e e e e e e e 239
18.1)0 T 11T oY 240
18.2 I LG 2 7= .1 1 L= 241
18.2.1 N o I 181 T 0 1= 241
18.2.1.1 OS_TICK _HaNAIE() tiureiieiiiiii it ettt e e vt e e rae e e e e e neeaneeneen 242
18.2.1.2 OS_TICK _HaNAIEEX() «evuerriiiiii ittt ettt e e vt e e e e e e e e e e e naeeneenaens 243
18.2.1.3 OS_TICK _CONFIG() +erutruetrutrate ittt ate et ate et et e et raeeaneeaneaneraaerneeneenneaneens 244
18.3 Hooking into the system tickocoiiiiiiii i e 245
18.3.1 Y o I 11 T 0 o 1= 245
18.3.1.1 OS_TICK _AdAHOOK() «etuttiuiiite ittt it ettt e e e et e e e e e reeanerneenaeaneens 246
18.3.1.2 OS_TICK _REMOVEHOOK() tuttiittiiiitiiii it e e i e e e naes 247

19 Configuration of target SyStem (BSP)cccoeiiiiiiiiiiiiiiiiee et 249
19.1)0 T 1T oY 250
19.2 Hardware-SpecCifiC FOULINES ... it i e e e 251
19.3 Configuration defiNEsS ...oiiiiii i e 252
19.4 HOW 0 Change Settings ..oivviiiiii i e 253
19.4.1 Setting the system frequency OS_FSYS .. e 253
19.4.2 Using a different timer to generate the tick-interrupts for embOS................. 253
19.4.3 Using a different UART or baudrate for embOSView......cccovviiiiiiiiiiiiiiieniinnnn, 253
19.4.4 Changing the tick freqQUENCY ..o e 253
19.5 STOP / HALT / IDLE MOGAES tiutviiitiiiiiiiiiiiieiiissiinessinessssssssisnsssansssnnnssnns 255

20 embOSView: Profiling and analyzZingccooiieiieececeeeeeiiieee e 257
20.1 L L 2= o 258
20.2 L= 13 S 13 oAV T T [1 259
20.3 System variables WindOW.....c.oiiiiiiiii e 260
20.4 Sharing the SIO for terminal I/O..cciiiii i e 261
20.5 N o I 181 T 0 o 1= 262
20.5.1 (@I o o 1 g [Vo T () 1P 263
20.5.2 OS_SetRXCallbBaCK () cv it e 264

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

14

20.6 USING the AP traCe. et e e aeans 265
20.7 Trace filter setup FUNCEIONS ...oiviii e 267
20.8 AP fUNCHIONS ¢ttt e e 268
20.8.1 OS_TraceEnable() oo e 269
20.8.2 OS_TraceDisable() ..oouiii i e 270
20.8.3 OS_TraceEnablEAll() ... e 271
20.8.4 OS_TraceDisableAll() cuuu i e 272
20.8.5 OS_TraceEnableld() .o.vieeiiiiiii i 273
20.8.6 OS_TraceDisableld() .uverieiiiiiii i e 274
20.8.7 OS_TraceEnableFilterId() «.uvoeiieiiiiiii i e s 275
20.8.8 OS_TraceDisableFilterId() .oooviiiiiiii i e 276
20.9 Trace record fUNCHIONS ...viiii i e e e e 277
20.10 AP fUNCHIONS ¢ttt e 278
20.10.1 (@ T I =Tl =Y o] [1 () P 279
A0 I N A O 1S I =[] o ol () PR PRI 280
A0 B O NC R O ST I = o] B - | = () . 281
20.10.4 OS_TraceDataPtr() ooe i e 282
P I N O T O S N =Tl =1 U 1C 17 = () I PP 283
20.11 Application-controlled trace example......ccociiiiiiiiii 284
20.12 User-defined fUNCLIONS ..ot e e e eeas 285
1220 R I = o T8 o o 1T USRS 287
21.1 L L Lo g LT o = 288
21.2 [T o] A=Y o o] i oo Yo [T PP 289
22 Performance and reSOUICE USAGE.........ccceiuuuuuriiiiiiierieeeteeeaeaaeeaaa e e e s e s s aaineeeeenreeeeeees 293
22.1 |l o Yo 18 T o o T PP 294
22.2 NIt oY VA =T 1 11 =] 0 g T=T o] = 295
22.3 =T Vo 0 1 = Lo =P 296
22.4 BeNCHMArKING vt e 296
22.4.1 Measurement with port pins and 0SCilloSCOPEvvvviiiiiiiiiii e 297
22.4.1.1 OscCilloSCOPE @NalySis vttt e e 298
22.4.1.2 Example measurements AT91SAM7S, ARM code in RAMcooiviiiiiiiiennne, 299
22.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASHc.oceeiel. 300
22.4.1.4 Measurement with high-resolution timer.......cc.cooiiiiiiiiii 301
23 Supported developmeENnt tOOISouuuuiuiiiiiiiee e 303
23.1 L@ Y= YT L P 304
P 101 = 11 0] o OO PUPPPPPRTRR 305
25 Source code of kernel and lIDraryo 307
25.1 INErOdUCEION e s 308
25.2 Building embOS [IDrari@s ...couiiiii i e aeaas 309
25.3 Major compile time SWItCheS ..o e 310
25.3.1 OS_RR_SUPPORTED ...eitiiiititiiie ettt e et e et e e e s e e e aeneaes 310
25.3.2 OS_SUPPORT_CLEANUP_ON_TERMINATE ... ettt e e 310
26 FAQ (frequently asked qQUESHIONS)uuuueeiiiiiiiieee e e e e e e e e e e e e e e e 311
27 GlOSSAIY ...ttt ettt e e e e e e e e e e e e e e e e aaaaeeaeeea i —————— 313

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

15

Chapter 1

Introduction to embOS

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Introduction to embQOS

1.1 What is embOS

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum memory
consumption in both RAM and ROM, as well as high speed and versatility.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

17

1.2 Features

Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the realtime operat-
ing system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of the industry. Fully source-compatible RTOS are avail-
able for a variety of microcontrollers, making it well worth the time and effort to
learn how to structure real-time programs with real-time operating systems.

embOS is highly modular. This means that only those functions that are needed are
linked, keeping the ROM size very small. The minimum memory consumption is little
more than 1 Kbyte of ROM and about 30 bytes of RAM (plus memory for stacks). A
couple of files are supplied in source code to make sure that you do not loose any
flexibility by using embOS and that you can customize the system to fully fit your
needs.

The tasks you create can easily and safely communicate with each other using a
complete palette of communication mechanisms such as semaphores, mailboxes, and
events.

Some features of embOS include:

e Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inversion applies.
Round-robin scheduling for tasks with identical priorities.
Preemptions can be disabled for entire tasks or for sections of a program.
Up to 255 priorities.
Every task can have an individual priority => the response of tasks can be pre-
cisely defined according to the requirements of the application.
e Unlimited number of tasks
(limited only by the amount of available memory).
e Unlimited number of semaphores
(limited only by the amount of available memory).
2 types of semaphores: resource and counting.
Unlimited number of mailboxes
(limited only by the amount of available memory).

e Size and number of messages can be freely defined when initializing mailboxes.
e Unlimited number of software timers
(limited only by the amount of available memory).
e 8-bit events for every task.
e Time resolution can be freely selected (default is 1ms).
e Easily accessible time variable.
e Power management.
e Unused calculation time can automatically be spent in halt mode.

power-consumption is minimized.
e Full interrupt support:
Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication instances (mailboxes, semaphores, events).
Very short interrupt disable-time => short interrupt latency time.
Nested interrupts are permitted.
embOS has its own interrupt stack (usage optional).
Frame application for an easy start.
Debug version performs runtime checks, simplifying development.
Profiling and stack check may be implemented by choosing specified libraries.
Monitoring during runtime via UART available (embOSView).
Very fast and efficient, yet small code.
Minimum RAM usage.
Core written in assembly language.
API can be called from Assembly, C or C++ code.
Initialization of microcontroller hardware as sources (BSP).

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Introduction to embQOS

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 2

Basic concepts

This chapter explains some basic concepts behind embOS. It should be relativly easy
to read and is recommended before moving to other chapters.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Basic concepts

2.1 Tasks

In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely
“owned” the entire CPU. The tasks are scheduled, meaning that the RTOS can
activate and deactivate every task.

2.1.1 Threads

Threads are tasks which share the same memory layout. Two threads can access the
same memory locations. If virtual memory is used, the same virtual to physical
translation and access rights are used.

The embOS tasks are threads; they all have the same memory access rights and
translation (in systems with virtual memory).

2.1.2 Processes

Processs are task which their own memory layout. Two processes can not normally
access the same memory locations. Different processes typically have different
access rights and (in case of MMUs) different translation tables.

Processes are not supported by the present version of embOS.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

21

2.2 Single-task systems (superloop)

The classical way of designing embedded systems is without an RTOS. This is also
called "superloop design". Typically, no real time kernel is used, so interrupt service
routines (ISRs) must be used for real-time parts of the software or critical operations
(interrupt level). This type of system is typically used in small, uncomplex systems or
if real-time behavior is not critical.

Task level Interrupt level

Superloop

Time

ISR (nhested)

Typically, because no real-time kernel and only one stack is used, both program
(ROM) and RAM size are smaller for small applications. Of course, there are no inter-
task synchronization problems with a superloop application. However, superloops can
become difficult to maintain if the program becomes too large. Because one software
component cannot be interrupted by another component (only by ISRs), the reaction
time of one component depends on the execution time of all other components in the
system. Real-time behavior is therefore poor.

2.2.1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low Stack usage (only one stack required)

Disadvantages

No "Delay" function

No sleep mode (higher power consumption)

Difficult to maintain as program grows

Timing of all software components depends on all other software componts:
Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

22

CHAPTER 2 Basic concepts

2.2.2 Using embOS in super-loop applications

In a true superloop application, no tasks are used, so the biggest advantage of using
an RTOS can not be used unless the application is converted to use multitasking.
However, even with just a single task, using embOS has the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

2.2.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been design
as single task, super-loop type application. At a certain point, the disadvantages of
this approach lead to a decision to use an RTOS. The typically question then is: How
do I do this?

The easiest way is to take the start application that comes with the embOS and put
your exisiting "superloop code" into one task. You should at this point also make sure
that the stack size of this task is sufficient. At a later point in time, addional function-
ality which is added to the software can be put in one or more additional tasks; the
functionality of the super loop can also be distributed in mutlple tasks.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

23

2.3 Multitasking systems

In a multitasking system, there are different ways of distributing the CPU time
amongst different tasks. This process is called scheduling.

Idle task

i Priority . >
| |
| |
I - - - I
, Low prio task High prio task | ISR
| |
OS_Start() 1 - 1
1 7] 1
1 P OS_EVENT_Wait() !
1 < 1
1 Interrupt 1 >
I < " g S|
| |
| |
| |
| |
1 Interrupt (Rx) | .
Time 1 OS_EVENT_Set()
: P 0S_EVENT_Wait() :
1 1
1) !
| |
1 Interrupt (Tick) 1 >
| [~ |
| |
| |
1 1
0S_Delay() :
1 1
1 1
1 1
| |
| |
| |

Application level tasks Interrupt service

2.3.1 Task switches

There are basically 2 types of task switches, also called context switches: Coopera-
tive and preemptive task switches.
2.3.2 Cooperative task switch

A cooperative task switch is performed by the task itself. It requires the cooperation
of the task, hence the name. What happens is that the task blocks itself by calling a
blocking RTOS function such as 0S_Delay () Oor 0OS_WaitEvent ().

2.3.3 Preemtive task switch

A preemptive task switch is a task switch caused by an interrupt. Typically an other,
high priority task becomes ready for execution and as a result, the current task is
suspended.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 Basic concepts

2.3.4 Preemptive multitasking

Real-time systems like embOS operate with preemptive multitasking only. A real-
time operating system needs a regular timer-interrupt to interrupt tasks at defined
times and to perform task-switches if necessary. The highest-priority task in the
READY state is therefore always executed, whether it is an interrupted task or not. If
an ISR makes a higher priority task ready, a task switch will occur and the task will
be executed before the interrupted task is returned to.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state;
Time task switch occurs

High priority task

Higher priority task
Is executed

Interrupted task
is completed

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

25

2.3.5 Cooperative multitasking

Cooperative multitasking expects cooperation of all tasks. A task switch can only take
place if the running task blocks itself by calling a blocking function such as
0S_Delay () or 0S_wait... (). If they do not, the system “hangs”, which means that
other tasks have no chance of being executed by the CPU while the first task is being
carried out. This is illustrated in the diagram below. Even if an ISR makes a higher-
priority task ready to run, the interrupted task will be returned to and finished before
the task switch is made.

Low priority task

Executing task is interrupted

ISR

ISR puts high priority
task in READY state

Interrupted task
is completed

Time

High priority task

Higher priority task
Is executed

A pure cooperative multi-tasking system has the disadvantage of longer reaction
times when high priority tasks become ready for execution. This makes their usage in
embedded systems uncommon.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 2 Basic concepts

2.4 Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and the other tasks that are
suspended for any reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the program of this task). The task which is currently executing
is referred to as the running task. The main difference between schedulers is in how
they distribute the computation time between the tasks in READY state.

2.4.1 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the running task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time. Round-robin scheduling can be illustrated as
follows:

All tasks are on the same level; the possession of the CPU changes periodically after
a predefined execution time. This time is called timeslice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For exam-
ple, in an application that controls a motor, a keyboard, and a display, the motor usu-
ally requires faster reaction time than the keyboard and display. While the display is
being updated, the motor needs to be controlled. This makes preemptive multitask-
ing a must. Round-robin might work, but because it cannot guarantee a specific reac-
tion time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. The order of exe-
cution depends on this priority. The rule is very simple:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with higher priority than the running task gets
ready, it immediately becomes the running task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known as
critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not have to think about whether one task is more important
than another. Tasks with identical priority cannot block each other for longer than
their timeslices. But round-robin scheduling also costs time if two or more tasks of
identical priority are ready and no task of higher priority is ready, because it will con-
stantly switch between the identical-priority tasks. It is more efficient to assign a dif-
ferent priority to each task, which will avoid unnecessary task switches.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

27

2.4.3 Priority inversion

The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority-task becomes running again and releases the resource.

The other rule is: No rule without exception.

To avoid this kind of situation, the low-priority task that is blocking the highest-prior-
ity task gets assigned the highest priority until it releases the resource, unblocking
the task which originally had highest priority. This is known as priority inversion.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 2 Basic concepts

2.5 Communication between tasks

In a multitasking (multithreaded) program, multiple tasks and ISRs work completely
separately. Because they all work in the same application, it will sometimes be nec-
essary for them to exchange information with each other.

2.5.1 Periodical polling

The easiest way to do this is by using global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time this
method has various disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation time
and power, and the reaction time depends on how often you poll.

2.5.2 Event driven communication mechanisms

When multiple tasks work with one another, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues

A mailbox is basically a data buffer managed by the RTOS and is used for sending a
message to a task. It works without conflicts even if multiple tasks and interrupts try
to access it simultaneously. embOS also automatically activates any task that is wait-
ing for a message in a mailbox the moment it receives new data and, if necessary,
automatically switches to this task.

A queue works in a similar manner, but handle larger messages than mailboxes, and
every message may have a individual size.

For more information, see the Chapter Mailboxes on page 115 and Chapter Queues
on page 133.

2.5.4 Semaphores

Two types of semaphores are used for synchronizing tasks and to manage resources.
The most common are resource semaphores, although counting semaphores are also
used. For details and samples, refer to the Chapter Resource semaphores on page 89
and Chapter Counting Semaphores on page 101. Samples can also be found on our
website at www.segger.com.

2.5.5 Events

A task can wait for a particular event without using any calculation time. The idea is
as simple as it is convincing; there is no sense in polling if we can simply activate a
task the moment the event that it is waiting for occurs. This saves a great deal of
calculation power and ensures that the task can respond to the event without delay.
Typical applications for events are those where a task waits for data, a pressed key, a
received command or character, or the pulse of an external real-time clock.

For further details, refer to the Chapter Task events on page 145 and Chapter Event
objects on page 155.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

29

2.6 How task-switching works

A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

e The program code, which usually resides in ROM (though it does not have to)
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate calculation results and register values. Each task can have a different
stack size. More information can be found in chapter Stacks on page 187.

The task control block (TCB) is a data structure assigned to a task when it is created.
It contains status information of the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management
data. Knowledge of the stack pointer allows access to the other registers, which are
typically stored (pushed onto) the stack when the tasked is created and every time it
is suspended. This information allows an interrupted task to continue execution
exactly where it left off. TCBs are only accessed by the RTOS.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

30

CHAPTER 2 Basic concepts

2.6.1 Switching stacks

The following diagram demonstrates the process of switching from one stack to
another.

Task 0 Task n
Task Control Stack Task Control Stack
block block
variables variables
temp. storage temp. storage
ret. addresses ret. addresses
CPU CPU
registers registers
SP > SP >
Free Stack Free Stack
area area
\ /
\ /
\ /
\ /
\ /

CPU

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's
stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:
1. Save (push) the processor registers on the task's stack.

2. Save the stack pointer in the Task Control Block (TCB).

Activating a task

It then activates the higher-priority task (Task n) by performing the opposite
sequence in reverse order:

1. Load (pop) the stack pointer (SP) from the TCB.
2. Load the processor registers from the values stored on Task n's stack..

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

31

2.7 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY task with
higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task
remains in the READY state.

The running task may be delayed for or until a specified time; in this case it is put
into the DELAY state (TS_DELAY) and the next highest priority task in the READY
state is activated.

The running task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state and
the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not been
created yet or it has been terminated.

The following illustration shows all possible task states and transitions between
them.

Not existing

OS_CreateTask()

OS_CreateTaskEx() OS_Terminate()

Ready Running
API class such as API class such as
OS_Delay() OS_Signal...() or
OS_Wait_...() delay expiration
Waiting

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 2 Basic concepts

2.8 How the OS gains control

When the CPU is reset, the special-function registers are set to their respective val-
ues. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU). This
start address is usually in a startup module shipped with the C compiler, and is some-
times part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs
the end of the defined stack segment(s)

e Initializes all data segments to their respective values

e Calls the main () routine.

The main () routine is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without
any modification. If there are any changes required, they are documented in the CPU
& Compiler Specifics manual of embOS documentation.

With embOS, the main () routine is still part of your application program. Basically,
main() creates one or more tasks and then starts multitasking by calling
0S_Start (). From then on, the scheduler controls which task is executed.

Startup code
main ()

—OS_IncDI()

—OS_InitKern ()

—OS_InitHW()

—Additional initialization code;
creating at least one task.

~0S_Start()

The main () routine will not be interrupted by any of the created tasks, because those
tasks are executed only after the call to os_start (). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. A good practice is to write software in the form
of modules which are (up to a point) reusable. These modules usually have an initial-
ization routine, which creates the required task(s) and/or control structures.

A typical main () looks similar to the following example:

Example

/**********k*****k*k**********k*k*k*k*k*k****************k*k***********************
*

* main

*

LR R R I I I I S I I I I I I I I I I I I I I R I I R I 2 I I I S I I I

*/

void main(void) {
0S_InitKern() ; /* Initialize 0OS (should be first !) */
OS_InitHW() ; /* Initialize Hardware for 0OS (in RtosInit.c) */
/* Call Init routines of all program modules which in turn will create
the tasks they need ... (Order of creation may be important) */

MODULE1l_Init () ;

MODULE2_Init () ;

MODULE3_Init () ;
0)
0)

’

MODULE4_Init

MODULE5_Init ;

0S_Start () ; /* Start multitasking */
}

With the call to os_start (), the scheduler starts the highest-priority task that has
been created in main().

Note that os_start () is called only once during the startup process and does not
return.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

33

2.9 Different builds of embOS

embOS comes in different builds, or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release version into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug version of the embOS libraries and make the code a bit
bigger (about 50%) and also slightly slower than the release or stack check version
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack check versions of the libraries), and a safer
(though bigger and slower) version for development which will catch most of the
common application programming errors. Of course, you may also use the release
version of embOS during development, but it will not catch these errors.

2.9.1 Profiling

embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they induce certain overhead such as bigger task control blocks,
additional ROM (approximately 200 bytes) and additional runtime overhead. This
overhead is usually acceptable, but for best performance you may want to use non-
profiling builds of embOS if you do not use this feature.

2.9.2 List of libraries

In your application program, you need to let the compiler know which build of embOS
you are using. This is done by defining a single identifier prior to including RTOS.h.

Build Define Description
XR: Extreme Smallest fastest build. Does not support
OS_LIBMODE_XR . .
Release round robin scheduling and task names.
R: Release 05 LIBMODE R Sma_II, fast buH_d, n_ormally used for release
version of application.
S: Stack check |0S_LIBMODE_S Same as release, plus stack checking.
SP: Stack chggk 0OS_LIBMODE_SP Same as stack check, plus profiling.
plus profiling
D: Debug OS_LIBMODE_D Maximum runtime checking.
DP: Debug
plus profiling 0S_LIBMODE_DP Maximum runtime checking, plus profiling.
DT: Debug
including 0% LIBMODE_DT Maximum run_tl_me checking, plus tracing API
trace, calls and profiling.
profiling

Table 2.1: List of libraries

2.9.3 embOS functions context

Not all embOS functions can be called from every place in your application. We have
to differ between Main (before the call of OS_Start()), Task, ISR and Software timer.

Please check the embOS API tables to be sure that an embOS function is allowed to
be called from your e.g, ISR. The embOS debug build helps you to check automati-
cally that you do not break these rules.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 2 Basic concepts

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

35

Chapter 3

Tasks

This chapter explains some basic about tasks and embOS task API functions. It
should be relativly easy to read and is recommended before moving to other chap-
ters.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

36

3.1 Introduction

CHAPTER 3

Tasks

A task that should run under embOS needs a task control block (TCB), a stack, and a
normal routine written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which
case 0S_CreateTask () is used to create it or take one void pointer as parameter,
in which case 0s_CreateTaskEx () is used to create it.

e The task routine must not return.

e The task routine should be implemented as an endless loop, or it must terminate

itself (see examples below).

3.1.1 Example of a task routine as an endless loop

/* Example of a task routine as an endless loop */

void Taskl (void) {
while (1) {
DoSomething ()
0S_Delay (1) ; /*
}
}

/* Do something */
Give other tasks a chance */

3.1.2 Example of a task routine that terminates itself

/* Example of a task routine that terminates

void Task2 (void) {
char DoSomeMore;
do {

DoSomeMore = DoSomethingElse()

0S_Delay (1) ;
} while (DoSomeMore) ;
OS_Terminate (0) ;

}

/* Terminate yourself

*/

/* Do something */
Give other tasks a chance */

*/

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is fully sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a routine is available allowing “fine-tuning” of all param-
eters. For most applications, at least initially, using the macro as in the sample start

project works fine.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

37

3.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemp-
tive task switches are required to guarantee responsiveness of high priority, time
critical tasks. However, it may be desireable to disable preemptive task switches for
certain tasks under certain circumstances. The default behavior of embOS is to
always allow preemptive task switches.

3.2.1 Disabling preemptive task switches for tasks at same
priorities

In some situations, preemptive task switches between tasks running at identical pri-
orities is not desireable. To achieve this, the time slice of the tasks running at identi-
cal priority levels needs to be set to 0 as in the example below:

#include "RTOS.h"
#define PRIO_COOP 0

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
/*********‘k*****‘k**********‘k*****‘k********‘k*‘k***‘k**********‘k*‘k*‘k*‘k***/
static void TaskEx(void * pData) {

while (1) {

0S_Delay ((OS_TIME) pData) ;

}

}

/**************************~k*~k************~k*~k*************************
*

* maln

*
***************************~k*~k************~k*~k************************/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
OS_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for 0OS */

/* You need to create at least one task before calling OS_Start() */
OS_CREATETASK_EX (&TCBHP, "HP Task", TaskEx, PRIO_COOP, StackHP, (void*) 50);
OS_CREATETASK_EX (&TCBLP, "LP Task", TaskEx, PRIO_COOP, StackLP, (void*) 200);
0S_Start () ; /* Start multitasking */

return 0;

}

3.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be 0S_EnterRegion() as shown in the
following sample:

void MyTask (void *pContext) {
OS_EnterRegion () ; // Disable preemptive context switches
while (1) {
// Do something. In the code, make sure that you call a blocking funtion
// periodically to give other tasks a chance to run
}
}

Note: This will entirely disallow preemptive context switches from that particular
task and will therefor affect the timing of higher priority task. You should do this only
if you know what you are doing.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 3 Tasks

3.3 API functions

o 3 o= 2
Routine Description 5233
5 = P o
OS_CREATETASK () Creates a task. X | X
0S_CreateTask () Creates a task. X | X
Creates a task with parameter.
OS_CREATETASK_EX () X| X
0S_CreateTaskEx () Creates a task with parameter. x| x
0S._Delay () Sus_pends the calling task for a specified period x| x
of time.
08 DelayUntil () S_uspends the calling task until a specified x| x
time.
Make global variables or processor registers
0S_ExtendTaskContext () | task specific. X | X
0S._GetpCurrentTask () Returns a pointer to the task c_ontrol block X% x| x
structure of the currently running task.
0S_GetPriority () Returns the priority of a specified task X|X|X]|X
0S_GetSuspendCnt () Returns the suspension count. XXX X
0S_GetTaskID() Returns the ID of the currently running task. | X|X|X|X
0S. TsTask () Determines whether_a task control block actu- x| % x
ally belongs to a valid task.
Decrements the suspend count of specified
0S_Resume () task and resumes the task, if the suspend X | X
count reaches zero.
0S_SetPriority () Assigns a specified priority to a specified task. | X | X
0S_SetTaskName () Allows modification of a task name at runtime.| X | X
0S_SetTimeslice () ASS|gns a specified timeslice value to a speci-
fied task.
05 Suspend () Suspends the specified task and increments a x| x
counter.
OS_Terminate () Ends (terminates) a task. X | X
0S_WakeTask () Ends delay of a task immediately. X| X| X
0S_vield() Calls the scheduler to force a task switch. X

Table 3.1: Task routine API list

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

39

3.3.1 OS_CREATETASK()

Description

Creates a task.

Prototype
void OS_CREATETASK (OS_TASK * pTask,
char * pName,
void * pRoutine,
unsigned char Priority,
void * pStack) ;
Parameter Description
Pointer to a data structure of type os_task which will be used as
pTask task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.

Table 3.2: OS_CREATETASK() parameter list

Additional Information

OS_CREATETASK () is a macro calling an OS library function. It creates a task and
makes it ready for execution by putting it in the READY state. The newly created task
will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed right before it. This macro is normally used for creating a task
instead of the function call 0s_createTask (), because it has fewer parameters and is
therefore easier to use.

OS_CREATETASK () can be called at any time, either from main () during initialization
or from any other task. The recommended strategy is to create all tasks during ini-
tialization in main () to keep the structure of your tasks easy to understand.

The absolute value of priority is of no importance, only the value in comparison to
the priorities of other tasks.

OS_CREATETASK () determines the size of the stack automatically, using sizeof ().
This is possible only if the memory area has been defined at compile time.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.Most CPUs require
alignment of stack in multiples of bytes. This is automatically done, when the task
stack is defined as an array of integers.

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask (void) {
while (1) {
Delay (100);
}
}

void InitTask (void) {

OS_CREATETASK (&UserTCB, "UserTask", UserTask, 100, UserStack);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

40

CHAPTER 3 Tasks

3.3.2 OS_CreateTask()

Description
Creates a task.
Prototype
void OS_CreateTask (OS_TASK * pTask,
char * pName,
unsigned char Priority,
voidRoutine * pRoutine,
void * pStack,
unsigned StackSize,
unsigned char TimeSlice);
Parameter Description
Pointer to a data structure of type os_Task which will be used as
pTask the task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
pRoutine Pointer to a routine that should run as task
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the stack in bytes.
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
Timeslice the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embQOS for efficiency
reasons.

Table 3.3: OS_CreateTask() parameter list

Additional Information

This function works the same way as 0S_CREATETASK (), except that all parameters of
the task can be specified.

The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.

Most CPUs require alignment of stack in multiples of bytes. This is automatically
done, when the task stack is defined as an array of integers.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

41

Example

/* Demo-program to illustrate the use of 0S_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain, TaskClock;
OS_SEMA Semal.CD;

void Clock (void) {
while(1l) {
/* Code to update the clock */
}

}

void Main (void) {
while (1) {
/* Your code */
}

}

void InitTask (void) {
0S_CreateTask (&TaskMain, NULL, 50, Main, StackMain, sizeof (StackMain), 2);
0S_CreateTask (&TaskClock, NULL, 100, Clock, StackClock,sizeof (StackClock),2);

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

42

CHAPTER 3 Tasks

3.3.3 OS_CREATETASK_EX()

Description
Creates a task and passes a parameter to the task.
Prototype
void OS_CREATETASK_EX (OS_TASK * pTask,
char * pName,
void * pRoutine,
unsigned char Priority,
void * pStack,
void * pContext) ;
Parameter Description
Task Pointer to a data structure of type os_task which will be used as
P task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task.
Priority of the task. Must be within the following range:
Priority 1l <= Priority <=255
Higher values indicate higher priorities.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
pContext Parameter passed to the created task function.

Table 3.4: OS_CREATETASK_EX() parameter list

Additional Information

OS_CREATETASK_EX () is a macro calling an embOS library function. It works like
OS_CREATETASK (), but allows passing a parameter to the task.

Using a void pointer as additional parameter gives the flexibility to pass any kind of
data to the task function.

Example

The following example is delivered in the samples folder of embOS.

/* __
File : Main_TaskEx.c
Purpose : Sample program for embOS using OC_CREATETASK_EX

————————— END-OF-HEADER ——-=——==— === —————mm e e %/

#include "RTOS.h"
OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
/**/
static void TaskEx(void* pDbata) {

while (1) {

0S_Delay ((OS_TIME) pData) ;
}

/***
*

* main

*
***/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0OS_InitKern() ; /* initialize OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task before calling 0OS_Start() */

OS_CREATETASK_EX (&§TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
OS_CREATETASK_EX (&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
0S_SendString ("Start project will start multitasking !\n");

0S_Start () ; /* Start multitasking */
return 0;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

43

3.3.4 OS_CreateTaskEx()

Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CreateTaskEx (OS_TASK * pTask,
char * pName,
unsigned char Priority,
voidRoutine * pRoutine,
void * pStack,
unsigned StackSize,
unsigned char TimeSlice,
void * pContext) ;
Parameter Description
Pointer to a data structure of type os_Task which will be used as
pTask the task control block (and reference) for this task.
pName Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
Priority 1 <= Priority <=255
Higher values indicate higher priorities.
pRoutine Pointer to a routine that should run as task.
Pointer to an area of memory in RAM that will serve as stack area
pStack for the task. The size of this block of memory determines the size
of the stack area.
StackSize Size of the stack in bytes.
Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
Timeslice the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embQOS for efficiency
reasons.
pContext Parameter passed to the created task.

Table 3.5: OS_Create_TaskEx() parameter list

Additional Information

This function works the same way as 0S_CreateTask (), except that a parameter is
passed to the task function.
An example of parameter passing to tasks is shown under 0S_CREATETASK_EX ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

44

CHAPTER 3 Tasks

3.3.5 OS_Delay()

Description
Suspends the calling task for a specified period of time.

Prototype
void 0OS_Delay (int ms);

Parameter Description
Time interval to delay. Must be within the following range:
ms 1 <=ms <= 2%5-1 = Ox7FFF = 32767 for 8/16-bit CPUs
1 <=ms <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

Table 3.6: OS_Delay() parameter list

Additional Information

The calling task will be put into the TS_DELAY state for the period of time specified.
The task will stay in the delayed state until the specified time has expired. The
parameter ms specifies the precise interval during which the task has to be sus-
pended given in basic time intervals (usually 1/1000 seconds). The actual delay (in
basic time intervals) will be in the following range: ms - 1 <= delay <= ms, depending
on when the interrupt for the scheduler will occur.

After the expiration of a delay, the task is made ready again and activated according
to the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling 0s_wakeTask ().

Example

void Hello () {
printf ("Hello");
printf ("The next output will occur in 5 seconds");
0S_Delay (5000);
printf ("Delay is over");

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

45

3.3.6 OS_DelayUntil()

Description
Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (int t);

Parameter Description

Time to delay until. Must be within the following range:
1 <= (t - 0S_Time) <= 215-1 = Ox7FFF = 32767 for 8/16-bit
CPUs

1 <= (t - 0Ss_Time) <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 3.7: OS_DelayUntil() parameter list

Additional Information

The calling task will be put into the TS_DELAY state until the time specified.

The 0s_bDelayUntil () function delays until the value of the time-variable 0s_Time
has reached a certain value. It is very useful if you have to avoid accumulating
delays.

Example

int sec,min;

void TaskShowTime () {
int tO0;
t0 = 0S_GetTime() ;
while (1) {
ShowTime () ; /* Routine to display time */
t0 += 1000;
0S_DelayUntil (tO0);
if (sec < 59) {
sec++;
} else {
sec=0;
min++;
}
}
}

In the example above, the use of 0s_belay () could lead to accumulating delays and
would cause the simple “clock” to be slow.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

46

CHAPTER 3 Tasks

3.3.7 OS_ExtendTaskContext()

Description

The function may be used for a variety of purposes. Typical applications include, but
are not limited to:

e global variables such as “errno” in the C-library, making the C-lib functions
thread-safe.

e additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.

e Co-processor registers such as registers of a VFP (floating point coprocessor).

e Data registers of an add. hardware unit such as a CRC calculation unit

This allows the user to extend the task context as required by his system. A major
advantage is that the task extension is task specific. This means that the additional
information (such as floating point registers) needs to be saved only by tasks that
actually use these registers. The advantage is that the task switching time of the
other tasks is not affected. The same thing is true for the required stack space: Add.
stack space is required only for the tasks which actually save the add. registers.

Prototype
void 0OS_ExtendTaskContext (const OS_EXTEND_TASK_CONTEXT * pExtendContext) ;

Parameter Description

Pointer to the 0S_EXTEND_TASK_CONTEXT structure which contains
pExtendContext |the addresses of the specific save and restore functions which
save and restore the extended task context during task switches.
Table 3.8: OS_ExtendTaskContext() parameter list

Additional Information

The 0S_EXTEND_TASK_CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
void (*pfSave) (void * pStack);
void (*pfRestore) (const void * pStack);
} OS_EXTEND_TASK_CONTEXT;

The save and restore functions have to be declared according the function type used
in the structure. The sample below shows, how the task stack has to be addressed to
save and restore the extended task context.

0S_ExtendTaskContext () is not available in the XR libraries.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

User & reference guide for embOS

Example

The following example is delivered in the samples folder of embOS.

/* __
File : ExtendTaskContext.c
Purpose : Sample program for embOS demonstrating how to dynamically

extend the task context.

This example adds a global variable to the task context of

certain tasks.

———————— END-OF-HEADER === == === = = = = = e e e e e e e e e

*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

int GlobalVar;

/***

*

* _Restore

* _Save

*

* Function description

* This function pair saves and restores an extended task context.

¥* In this case, the extended task context consists of just a single
* member, which is a global variable.

*/

typedef struct {
int GlobalVar;
} CONTEXT_EXTENSION;

static void _Save(void * pStack) {
CONTEXT_EXTENSION * p;

p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM) ; // Create pointer
//

// Save all members of the structure

//

p->GlobalVar = GlobalVar;

}

static void _Restore(const void * pStack) {
CONTEXT_EXTENSION * p;

p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM); // Create pointer
//

// Restore all members of the structure

//

GlobalvVar = p->GlobalVar;

}

/***
*

* Global variable which holds the function pointers
* to save and restore the task context.
*/
const OS_EXTEND_TASK_CONTEXT _SaveRestore = {
_Save,
_Restore
}i

/**/

R S S S S R R I R R R R R R R e e S R I S R R R I SRR e R I

Function description
During the execution of this function, the thread-specific
* global variable has always the same value of 1.
*/
static void HPTask (void) {
OS_ExtendTaskContext (&_SaveRestore) ;
GlobalvVar = 1;
while (1) {
0OS_Delay (10);

/
*
* HPTask
*
*
*

}
}

47

© 2009 SEGGER Microcontroller GmbH & Co. KG

48

CHAPTER 3 Tasks

/‘k*‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*******‘k*‘k*‘k*‘k**‘k***‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k****

*

* LPTask

*

* Function description

* During the execution of this function, the thread-specific
* global variable has always the same value of 2.

*/

static void LPTask(void)

{

0S_ExtendTaskContext (&_SaveRestore) ;

GlobalvVar = 2;
while (1) {
0S_Delay (50);
}
}

/***

*

* main

*/

int main(void) {
0S_IncDI(); /* Initially disable interrupts */
0S_InitKern(); /* initialize OS */
OS_InitHW() ; /* initialize Hardware for OS */
/* You need to create at least one task here ! */
OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);
0S_Start () ; /* Start multitasking */
return O;

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

49

3.3.8 0OS_GetpCurrentTask()
Description
Returns a pointer to the task control block structure of the currently running task.
Prototype

OS_TASK* 0OS_GetpCurrentTask (void);

Return value
0S_TASK*: A pointer to the task control block structure.
Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

50

CHAPTER 3 Tasks

3.3.9 OS_GetPriority()

Description
Returns the priority of a specified task.
Prototype
unsigned char OS_GetPriority (OS_TASK* pTask);
Parameter Description
pTask Pointer to a data structure of type 0s_TasK.

Table 3.9: OS_GetPriority() parameter list

Return value
Priority of the specified task as an “unsigned character” (range 1 to 255).
Additional Information

If pTask is the NULL pointer, the function returns the priority of the currently running
task. If prask does not specify a valid task, the debug version of embOS calls
OS_Error (). The release version of embOS cannot check the validity of pTask and
may therefore return invalid values if pTask does not specify a valid task.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

51

3.3.10 OS_GetSuspendCnt()

Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used for examining whether a task is suspended by previ-
ous calls of 0S_Suspend ().

Prototype
unsigned char 0S_GetSuspendCnt (OS_TASK* pTask) ;

Parameter Description

pTask Pointer to a data structure of type 0s_TaASK.
Table 3.10: OS_GetSuspendCnt() parameter list

Return value

Suspension count of the specified task as unsigned character value.
0: Task is not suspended.
>0: Task is suspended by at least one call of 0S_Suspend ().

Additional Information

If pTask does not specify a valid task, the debug version of embOS calls 0S_Error ().
The release version of embOS can not check the validity of prask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, 0s_IsTask() may be <called prior calling
0S_GetSuspendCnt () to examine whether the task is valid. The returned value can
be used for resuming a suspended task by calling 0s_RrResume () as often as indicated
by the returned value.

Example

/* Demo-function to illustrate the use of 0S_GetSuspendCnt () */

void ResumeTask (OS_TASK* pTask) {
unsigned char SuspendCnt;
SuspendCnt = 0S_GetSuspendCnt (pTask) ;
while (SuspendCnt > 0) {
OS_Resume (pTask); /* May cause a task switch */
SuspendCnt--;
}
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

52

CHAPTER 3 Tasks

3.3.11 OS_GetTaskID()

Description

Returns a pointer to the task control block structure of the currently running task.
This pointer is unique for the task and is used as task Id.

Prototype
OS_TASK * 0S_GetTaskID (void);

Return value

A pointer to the task control block. A value of 0 (NULL) indicates that no task is exe-
cuting.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

53

3.3.12 OS_lIsTask()

Description
Determines whether a task control block actually belongs to a valid task.

Prototype
char 0S_IsTask (OS_TASK* pTask) ;

Parameter Description

Pointer to a data structure of type 0os_Task which is used as task
control block (and reference) for this task.
Table 3.11: OS_IsTask() parameter list

pTask

Return value

Character value:
0: TCB is not used by any task
1: TCB is used by a task

Additional Information

This function checks if the specified task is still in the internal task list. If the task
was terminated, it is removed from the internal task list. This function may be useful
to determine whether the task control block and stack for the task may be reused for
another task in applications that create and terminate tasks dynamically.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

54

CHAPTER 3 Tasks

3.3.13 OS_Resume()

Description

Decrements the suspend count of the specified task and resumes it, if the suspend
count reaches zero.

Prototype
void OS_Resume (OS_TASK* pTask) ;
Parameter Description
Pointer to a data structure of type os_Task which is used as task
pTask control block (and reference) for the task that should be sus-
pended.

Table 3.12: OS_Resume() parameter list

Additional Information

The specified task's suspend count is decremented. If the resulting value is 0, the
execution of the specified task is resumed.

If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the scheduler.
In debug versions of embOS, the 0s_rResume () function checks the suspend count of
the specified task. If the suspend count is 0 when 0S_Resume() is called, the
specified task is not currently suspended and o0S_Error() is called with error
OS_ERR_RESUME_BEFORE_SUSPEND.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

55

3.3.14 OS_SetPriority()

Description
Assigns a specified priority to a specified task.

Prototype

void OS_SetPriority (OS_TASK* pTask,
unsigned char Priority) ;

Parameter Description

pTask Pointer to a data structure of type 0s_TaASK.

Priority of the task. Must be within the following range:

1 <= priority <= 255 Higher values indicate higher priorities.
Table 3.13: OS_SetPriority() parameter list

Priority

Additional Information

Can be called at any time from any task or software timer. Calling this function might
lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 3 Tasks

3.3.15 OS_SetTaskName()

Description

Allows modification of a task name at runtime.

Prototype

void OS_SetTaskNamePriority (OS_TASK* pTask,
const char* s);

Parameter Description
pTask Pointer to a data structure of type 0s_TasK.
s Pointer to a zero terminated string which is used as task name.

Table 3.14: OS_SetTaskName() parameter list

Additional Information

Can be called at any time from any task or software timer.
When pTask is the NULL pointer, the name of the currently running task is modified.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

57

3.3.16 OS_SetTimeSlice()

Description

Assigns a specified timeslice value to a specified task.

Prototype
unsigned char 0S_SetTimeSlice (OS_TASK* pTask,
unsigned char TimeSlice);
Parameter Description
pTask Pointer to a data structure of type 0s_TaASK.
New timeslice value for the task. Must be within the following
TimeSlice range:
1 <= TimeSlice <= 255.

Table 3.15: OS_SetTimeSlice() parameter list

Return value
Previous timeslice value of the task as unsigned char.
Additional Information

Can be called at any time from any task or software timer. Setting the timeslice value
only affects the tasks running in round-robin mode. This means another task with the
same priority must exist.

The new timeslice value is interpreted as reload value. It is used after the next acti-
vation of the task. It does not affect the remaining timeslice of a running task.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

58

CHAPTER 3 Tasks

3.3.17 OS_Suspend()

Description
Suspends the specified task.

Prototype
void OS_Suspend (OS_TASK* pTask) ;

Parameter Description
Pointer to a data structure of type os_Task which is used as task
pTask control block (and reference) for the task that should be sus-
pended.

Table 3.16: OS_Suspend() parameter list

Additional Information

If pTask is the NULL pointer, the current task suspends.

If the function succeeds, execution of the specified task is suspended and the task's
suspend count is incremented. The specified task will be suspended immediately. It
can only be restarted by a call of 0S_Resume ().

Every task has a suspend count with a maximum value of 0S_MAX_SUSPEND_CNT. If
the suspend count is greater than zero, the task is suspended.

In debug versions of embOS, calling 0S_Suspend() more often than
0OS_MAX_SUSPEND_CNT times without calling 0s_Resume (), the task's internal suspend
count is not incremented and OS_Error () is called with error

OS_ERR_SUSPEND_TOO_OFTEN.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

3.3.18 OS Termi

Description

59

nate()

Ends (terminates) a task.

Prototype
void OS_Terminate (OS_TASK* pTask);
Parameter Description
rask Pointer to a data structure of type 0os_Task which is used as task
pras control block (and reference) for this task.

Table 3.17: OS_Terminate() parameter list

Additional Information

If pTask is the NULL pointer, the current task terminates. The specified task will ter-
minate immediately. The memory used for stack and task control block can be reas-

signed.

Since version 3.26 of embOS, all resources which are held by the terminated task are

released. Any task

may be terminated regardless of its state. This functionality is

default for any 16-bit or 32-bit CPU and may be changed by recompiling embOS
sources. On 8-bit CPUs, terminating tasks that hold any resources is prohibited. To
enable safe termination, the embOS sources have to be recompiled with the compile
time switch 0s_SUPPORT_CLEANUP_ON_TERMINATE activated.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 3 Tasks

3.3.19 OS_WakeTask()

Description
Ends delay of a task immediately.

Prototype
void 0OS_WakeTask (OS_TASK* pTask);

Parameter Description

Pointer to a data structure of type os_Task which is used as task
control block (and reference) for this task.
Table 3.18: OS_WakeTask() parameter list

pTask

Additional Information

Puts the specified task, which is already suspended for a certain amount of time with
OS_Delay () or 0S_DelayUntil () back to the state TS_READY (ready for execution).
The specified task will be activated immediately if it has a higher priority than the
priority of the task that had the highest priority before. If the specified task is not in
the state TS_DELAY (because it has already been activated, or the delay has already
expired, or for some other reason), this command is ignored.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

61

3.3.20 OS_Yield()

Description

Calls the scheduler to force a task switch.
Prototype

void 0OS_Yield (void);

Additional Information

If the task is running on round-robin, it will be suspended if there is an other task
with the same priority ready for execution.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 3 Tasks

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

63

Chapter 4

Software timers

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 4 Software timers

4.1 Introduction

A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the macro
OS_CREATETIMER ().

Timers can be stopped, started and retriggered much like hardware timers. When
defining a timer, you specify any routine that is to be called after the expiration of
the delay. Timer routines are similar to interrupt routines; they have a priority higher
than the priority of all tasks. For that reason they should be kept short just like inter-
rupt routines.

Software timers are called by embOS with interrupts enabled, so they can be inter-
rupted by any hardware interrupt. Generally, timers run in single-shot mode, which
means they expire only once and call their callback routine only once. By calling
0S_RetriggerTimer () from within the callback routine, the timer is restarted with its
initial delay time and therefore works just as a free-running timer.

The state of timers can be checked by the functions 0S_GetTimerStatus(),
0S_GetTimervValue (), and OS_GetTimerPeriod().

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-
bit value on 32-bit CPUs. The comparisons are done as signed comparisons, (because
expired time-outs are permitted). This means that only 15-bits can be used on 8/16
bit CPUs, 31-bits on 32-bit CPUs. Another factor to take into account is the maximum
time spent in critical regions. During critical regions timers may expire, but because
the timer routine can not be called from a critical region (timers are “put on hold”),
the maximum time that the system spends at once in a critical region needs to be
deducted. In most systems, this is no more than a single tick. However, to be safe,
we have assumed that your system spends no more than up to 255 ticks in a row in
a critical region and defined a macro which defines the maximum timeout value. It is
normally 0x7r00 for 8/16-bit systems or 0x7FFFFF00 for 32-bit Systems and defined
in RTOS.h as 0S_TIMER_MAX_TIME. If your system spends more than 255 ticks without
break in a critical section (effectively disabling the scheduler during this time. Not
recommended!), you have to make sure your application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This
allows usage of one callback function for different software timers.

Since version 3.32m of embQOS, the extended timer structure and related extended
timer functions were implemented to allow parameter passing to the callback func-
tion.

Except the different callback function with parameter passing, extended timers
behave exactly the same as normal embOS software timers and may be used in par-
allel with normal software timers.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

4.2 API functions

65

3 o= 3
Routine Description D p @3

5 |x |® o
0S._ CREATETIMER () zl:“%rro that creates and starts a software- x| x
0S_CreateTimer () Creates a software timer without starting it.| X | X| X | X
0S_StartTimer () Starts a software timer. X[X| XX
0OS_StopTimer () Stops a software timer. XX
0S_RetriggerTimer () tRi?rmséa\I/F;sluae software timer with its initial x| %% x

. , Sets a new timer reload value for a software
0OS_SetTimerPeriod() timer X | X
0S_DeleteTimer () Stops and deletes a software timer.
0S_GetTimerPeriod () \I}Vztrl.ér?ii‘]tel'mre current reload value of a soft- X
0S_GetTimervalue () \Ijvztrtér?ismt:re remaining timer value of a soft- x| %% x
0S_GetTimerStatus () \Ijxvztrlér?i;tehre current timer status of a soft- x| x!x x
. Returns a pointer to the data structure of
OS_GetpCurrentTimer () the timer that just expired. X| X} X| X
Macro that creates and starts an extended
OS_CREATETIMER_EX () software-timer XX
0S. CreateTimerEx () gtraerat’icﬁgsJ ?tn extended software timer without x| x
0S_StartTimerEx () Starts an extended timer. XX
0S_StopTimerEx () Stops an extended timer. X | X
0S_RetriggerTimerEx () E;séa\:;sl,uaen extended timer with its initial x| x| x| x
0S_SetTimerPeriodEx () i)ic:nadenjv:irf‘:?rer reload value for an X
0S_DeleteTimerEx () Stops and deletes an extended timer.
. . Returns the current reload value of an

0S_GetTimerPeriodEx () extended timer
05_GetTimervaluemx() | Returns the remaining timer value of an 1y |y x
05_GetTimerstatussx() | Reldrns the current timer status of an |y |y |y |x
0S_GetpCurrentTimerEx () Returns a pointer to the data structure of x| x| x| x

the extended timer that just expired.

Table 4.1: Software timers API

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

66

CHAPTER 4 Software timers

4.21 OS_CREATETIMER()

Description
Macro that creates and starts a software timer.
Prototype
void OS_CREATETIMER (OS_TIMER* pTimer,
OS_TIMERROUTINE* Callback,
OS_TIME Timeout) ;)
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.
Pointer to the callback routine to be called from the RTOS after
e e expiration of the delay. The callback function has to be a void

function which does not take any parameter and does not return
any value.

Initial timeout in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 4.2: OS_CREATETIMER() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This macro uses the functions 0S_CreateTimer () and 0S_StartTimer (). It is sup-
plied for backward compatibility; in newer applications these routines should be
called directly instead.

OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Source of the macro (in RT0S.h):

#define OS_CREATETIMER (pTimer,c,d) \
0S_CreateTimer (pTimer,c,d); \
0S_StartTimer (pTimer) ;

Example

OS_TIMER TIMER100;

void Timerl00 (void) {
LED = LED ? 0 : 1; /* Toggle LED */
OS_RetriggerTimer (&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
/* Create and start Timerl00 */
OS_CREATETIMER (&TIMER100, Timerl100, 100);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

67

4.2.2 OS_CreateTimer()

Description

Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer (OS_TIMER* pTimer,
OS_TIMERROUTINE* Callback,
OS_TIME Timeout) ;)
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.
Pointer to the callback routine to be called from the RTOS after
Callback

expiration of the delay.

Initial timeout in basic embQOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 4.3: OS_CreateTimer() parameter list

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled). The timer is not automatically started. This has to
be done explicitly by a call of 0s_StartTimer () Oor OS_RetriggerTimer ().
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE (void) ;

Example

OS_TIMER TIMER100;
void Timerl1l00 (void) {
LED = LED ?2 0 : 1

OS_RetriggerTimer
}

; /* Toggle LED */
(&TIMER100) ; /* Make timer periodical */

void InitTask (void) {
/* Create Timerl1l00, start it elsewhere */
0S_CreateTimer (&TIMER100, Timerl100, 100);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 Software timers

4.2.3 OS_StartTimer()

Description
Starts a software timer.
Prototype
void OS_StartTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.4: OS_StartTimer() parameter list

Additional Information

0S_startTimer () is used for the following reasons:

e Start a timer which was created by 0S_CreateTimer (). The timer will start with
its initial timer value.

e Restart a timer which was stopped by calling 0s_stopTimer (). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use 0S_RetriggerTimer () to restart those timers.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

69

4.2.4 0OS_StopTimer()

Description

Stops a software timer.

Prototype
void OS_StopTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.5: OS_StopTimer() parameter list

Additional Information

The actual value of the timer (the time until expiration) is kept until
0S_startTimer () lets the timer continue.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

70

CHAPTER 4 Software timers

4.2.5 OS_RetriggerTimer()

Description
Restarts a software timer with its initial time value.
Prototype
void OS_RetriggerTimer (OS_TIMER* pTimer) ;

Parameter Description

. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .

the timer.

Table 4.6: OS_RetriggerTimer() parameter list

Additional Information

OS_RetriggerTimer () restarts the timer using the initial time value programmed at
creation of the timer or with the function 0s_SetTimerPeriod().

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

volid TimerCursor (void) {
if (CursorOn) ToggleCursor() ; /* Invert character at cursor-position */
0S_RetriggerTimer (&TIMERCursor); /* Make timer periodical */

}

void InitTask(void) {
/* Create and start TimerCursor */
OS_CREATETIMER (&TIMERCursor, TimerCursor, 500);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

71

4.2.6 OS_SetTimerPeriod()

Description
Sets a new timer reload value for a software timer.

Prototype

void OS_SetTimerPeriod (OS_TIMER* pTimer,
OS_TIME Period) ;

Parameter Description

Pointer to the 0os_TIMER data structure which contains the data of
the timer.

Timer period in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
et el values are

1 <= Timeout <= 215-1
1 <= Timeout <= 231-1
Table 4.7: OS_SetTimerPeriod() parameter list

pTimer

OX7FFF = 32767 for 8/16-bit CPUs
Ox7FFFFFFF for 32-bit CPUs

Additional Information

0S_SetTimerPeriod() sets the initial time value of the specified timer. Period is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS_RetriggerTimer ().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
if TogglePulseOutput () ; /* Toggle output */
0OS_RetriggerTimer (&TIMERCursor); /* Make timer periodical */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse = 500ms */
OS_CREATETIMER (&TIMERPulse, TimerPulse, 500);
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriod (&TIMERPulse, 200);

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 4 Software timers

4.2.7 OS_DeleteTimer()

Description
Stops and deletes a software timer.
Prototype
void OS_DeleteTimer (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.8: OS_DeleteTimer() parameter list

Additional Information

The timer is stopped and therefore removed out of the linked list of running timers.
In debug builds of embQOS, the timer is also marked as invalid.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

73

4.2.8 OS_GetTimerPeriod()

Description
Returns the current reload value of a software timer.
Prototype
OS_TIME OS_GetTimerPeriod (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.9: OS_GetTimerPeriod() parameter list

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer

values.

Additional Information

The period returned is the reload value of the timer set as initial value when the
timer is retriggered by 0S_RetriggerTimer ().

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

74

CHAPTER 4 Software timers

429 OS_GetTimerValue()

Description
Returns the remaining timer value of a software timer.
Prototype
OS_TIME OS_GetTimerValue (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the os_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.10: OS_GetTimerValue() parameter list

Return value

Type 0s_TIME, which is defined as an integer between

1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

The returned time value is the remaining timer time in embQOS tick units until expira-
tion of the timer.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

4.2.10 OS_GetTimerStatus()

Description

75

Returns the current timer status of a software timer.

Prototype
unsigned char 0S_GetTimerStatus (OS_TIMER* pTimer) ;
Parameter Description
. Pointer to the 0s_TIMER data structure which contains the data of
pTimer .
the timer.

Table 4.11: OS_GetTimerStatus parameter list

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 4 Software timers

4.2.11 OS_GetpCurrentTimer()

Description
Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER* OS_GetpCurrentTimer (void);

Return value
OS_TIMER*: A pointer to the control structure of a timer.
Additional Information

The return value of 0S_GetpCurrentTimer () is valid during execution of a timer call-
back function; otherwise it is undetermined. If only one callback function should be
used for multiple timers, this function can be used for examining the timer that
expired.

The example below shows one usage of 0S_GetpCurrentTimer (). Since version
3.32m of embOS, the extended timer structure and functions which come with
embOS may be used to generate and use software timer with individual parameter
for the callback function.

Example

#include "RTOS.H"

/**‘k******************‘k***************************‘k******

*

* Types

*/

typedef struct { /* Timer object with its own user data */
OS_TIMER Timer;
void* pUser;

} TIMER_EX;

/***************************~k~k***************************
*

* Variables

*/

TIMER_EX Timer_ User;
int a;

/***************************~k~k***************************
*

* Local Functions

*/

void CreateTimer (TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
void* pUser) {
timer->pUser = pUser;
0S_CreateTimer ((OS_TIMER*) timer, Callback, Timeout) ;
}

void cb(void) { /* Timer callback function for multiple timers */

TIMER_EX* p = (TIMER_EX*)O0S_GetpCurrentTimer () ;
void* pUser = p->pUser; /* Examine user data */
OS_RetriggerTimer (&p->Timer) ; /* Retrigger timer */

}

/**‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k*******************‘k*‘k*‘k*‘k******
*

* main
*/
int main(void) {
0OS_InitKern() ; /* Initialize 0S */
OS_InitHW() ; /* Initialize Hardware for 0S */
CreateTimer (&Timer_User, cb, 100, &a);
0S_Start () ; /* Start multitasking */
return O;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

77

4.2.12 OS_CREATETIMER_EX()

Description

Macro that creates and starts an extended software timer.

Prototype
void OS_CREATETIMER_EX (OS_TIMER_EX* pTimerEx,
OS_TIMER_EX_ROUTINE* Callback,
OS_TIME Timeout
void* pData)
Parameter Description
iy - Pointer to the os_TIMER_EX data structure which contains the
primersx data of the extended software timer.
Pointer to the callback routine to be called from the RTOS after
e expiration of the delay. The callback function has to be of type

OS_TIMER_EX_ROUTINE which takes a void pointer as parameter
and does not return any value.

Initial timeout in basic embQOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

A void pointer which is used as parameter for the extended timer

callback function.
Table 4.12: OS_CREATETIMER_EX() parameter list

pData

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

This macro uses the functions 0S_CreateTimerEx() and 0S_StartTimerEx().
OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE (void *);

Source of the macro (in RT0S.h):

#define OS_CREATETIMER_EX (pTimerEx, cb, Timeout,pData) \
0S_CreateTimerEx (pTimerEx, cb, Timeout,pData); \
0S_StartTimerEx (pTimerEx)

Example

OS_TIMER TIMER100;

OS_TASK TCB_HP;

void Timerl100 (void* pTask) {

LED = LED ? 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK*)pTask);
}
OS_RetriggerTimerEx (&TIMER100) ; /* Make timer periodical */

}

void InitTask (void) {

/* Create and start Timerl1l00 */

OS_CREATETIMER_EX (&TIMER100, Timerl1l00, 100, (void*) &TCB_HP) ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 4 Software timers

4.2.13 OS_CreateTimerEx()

Description

Creates an extended software timer (but does not start it).

Prototype

void OS_CreateTimerEx (OS_TIMER_EX* pTimerEx,
OS_TIMER_EX_ROUTINE* Callback,
OS_TIME Timeout,
void* pData)

Parameter Description
TimerEx Pointer to the 0s_TIMER_EX data structure which contains the
P data of the extended software timer.
e e Pointer to the callback routine of type 0S_TIMER_EX_ROUTINE to

be called from the RTOS after expiration of the timer.

Initial timeout in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Timeout values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs

A void pointer which is used as parameter for the extended timer

callback function.
Table 4.13: OS_CreateTimerEx() parameter list

pData

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout has expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).

The extended software timer is not automatically started. This has to be done explic-
itly by a call of 0s_sStartTimerEx() Or OS_RetriggerTimerEx().

OS_TIMER_EX_ ROUTINE is defined in RTOS.h as follows:
typedef void OS_TIMER_EX ROUTINE (void*) ;

Example

OS_TIMER TIMER1O00;
OS_TASK TCB_HP;

void Timerl00 (void* pTask) {
LED = LED 2 0 : 1; /* Toggle LED */
if (pTask != NULL) {
0S_SignalEvent (0x01, (OS_TASK*) pTask) ;
}
0S_RetriggerTimerEx (&TIMER100); /* Make timer periodical */
}

void InitTask (void) {
/* Create Timerl1l00, start it elsewhere later on*/
0S_CreateTimerEx (&TIMER100, Timerl100, 100, (void*) & TCB_HP);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

79

4.2.14 OS_StartTimerEx()

Description

Starts an extended software timer.

Prototype
void OS_StartTimerEx (OS_TIMER_EX* pTimerEx) ;
Parameter Description
iy - Pointer to the os_TIMER_EX data structure which contains the
primersx data of the extended software timer.

Table 4.14: OS_StartTimereEx() parameter list

Additional Information

0S_StartTimerEx () is used for the following reasons:

e Start an extended software timer which was created by 0S_CreateTimerEx().
The timer will start with its initial timer value.

e Restart a timer which was stopped by calling 0s_stopTimerEx (). In this case,
the timer will continue with the remaining time value which was preserved by
stopping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use 0S_RetriggerTimerEx () to restart those timers.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 4 Software timers

4.2.15 OS_StopTimerEx()

Description

Stops an extended software timer.

Prototype
void OS_StopTimerEx (OS_TIMER_EX* pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_ EX data structure which contains the
data of the extended software timer.
Table 4.15: OS_StopTimerEx() parameter list

pTimerEx

Additional Information

The actual time value of the extended software timer (the time until expiration) is
kept until os_startTimerEx () lets the timer continue.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

81

4.2.16 OS_RetriggerTimerEx()

Description
Restarts an extended software timer with its initial time value.

Prototype

void OS_RetriggerTimerEx (OS_TIMER_EX* pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure which contains the
data of the extended software timer.
Table 4.16: OS_RetriggerTimerEx() parameter list

pTimerEx

Additional Information

OS_RetriggerTimerEx () restarts the extended software timer using the initial time
value which was programmed at creation of the timer or which was set using the
function 0S_SetTimerPeriodEx ().

Example

OS_TIMER TIMERCursor;
OS_TASK TCB_HP;
BOOL CursorOn;

void TimerCursor (void* pTask) {
if (CursorOn != 0) ToggleCursor(); /* Invert character at cursor-position */
0S_SignalEvent (0x01, (OS_TASK*) pTask);
0OS_RetriggerTimerEx (&TIMERCursor); /* Make timer periodical */

}

void InitTask(void) {

/* Create and start TimerCursor */

OS_CREATETIMER_EX (&TIMERCursor, TimerCursor, 500, (void*)&TCB_HP);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 4 Software timers

4.2.17 OS_SetTimerPeriodEx()

Description
Sets a new timer reload value for an extended software timer.
Prototype
void 0OS_SetTimerPeriodEx (OS_TIMER_EX* pTimerEx,
OS_TIME Period) ;
Parameter Description
. Pointer to the os_TIMER_ EX data structure which contains the
pTimerEx

data of the extended software timer.

Timer period in basic embOS time units (nominal ms):

The data type 0s_TIME is defined as an integer, therefore valid
Seriod values are

1 <= Timeout <= 21°-1
1 <= Timeout <= 231-1
Table 4.17: OS_SetTimerPeriodEx() parameter list

OX7FFF = 32767 for 8/16-bit CPUs
OX7FFFFFFF for 32-bit CPUs

Additional Information

0S_SetTimerPeriodEx () sets the initial time value of the specified extended soft-
ware timer. Pperiod is the reload value of the timer to be used as initial value when
the timer is retriggered the next time by 0S_RetriggerTimerEx().

A call of 0s_setTimerPeriodEx() does not affect the remaining time period of an
extended software timer.

Example

OS_TIMER_EX TIMERPulse;
OS_TASK TCB_HP;

void TimerPulse(void* pTask) {

0S_SignalEvent (0x01, (OS_TASK*) pTask);

OS_RetriggerTimerExX (&TIMERPulse); /* Make timer periodical */
}

void InitTask (void) {
/* Create and start Pulse Timer with first pulse == 500ms */
OS_CREATETIMER_EX (&TIMERPulse, TimerPulse, 500, (void*)&TCB_HP) ;
/* Set timer period to 200 ms for further pulses */
0S_SetTimerPeriodEx (&TIMERPulse, 200);

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

4.2.18 OS_DeleteTimerEx()

83

Description
Stops and deletes an extended software timer.
Prototype
void OS_DeleteTimerEx (OS_TIMER_EX* pTimerEx) ;

Parameter Description

. Pointer to the 0s_TIMER_EX data structure which contains the
pTimerEx .

data of the timer.

Table 4.18: OS_DeleteTimerEx() parameter list

Additional Information

The extended software timer is stopped and therefore removed out of the linked list
of running timers. In debug builds of embOS, the timer is also marked as invalid.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

84

CHAPTER 4 Software timers

4.2.19 OS_GetTimerPeriodEx()

Description
Returns the current reload value of an extended software timer.

Prototype

OS_TIME OS_GetTimerPeriodEx (OS_TIMER_EX* pTimerEX) ;

Parameter Description

Pointer to the os_TIMER_ EX data structure which contains the

pTimerkx data of the extended timer.

Table 4.19: OS_GetTimerPeriodEx() parameter list

Return value

Type 0s_TIME, which is defined as an integer between
1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a «call of
0S_SetTimerPeriodEx (). This reload value will be used as time period when the
timer is retriggered by 0S_RetriggerTimerEx ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

85

4.2.20 OS_GetTimerValueEx()

Description

Returns the remaining timer value of an extended software timer.

Prototype
OS_TIME OS_GetTimerValueEx (0OS_TIMER_EX* pTimerEx) ;

Parameter Description

Pointer to the os_TIMER_EX data structure which contains the
data of the timer.
Table 4.20: OS_GetTimerValueEx() parameter list

pTimerEx

Return value

Type 0s_TIME, which is defined as an integer between

1 and 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs and as an integer between

1 and <= 231-1 = Ox7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

The returned time value is the remaining timer time in embOS tick units until expira-
tion of the extended software timer.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 4 Software timers

4.2.21 OS_GetTimerStatusEx()

Description

Returns the current timer status of an extended software timer.

Prototype

unsigned char 0S_GetTimerStatusEx (OS_TIMER_EX* pTimerEX) ;

Parameter Description

Pointer to the os_TIMER_ EX data structure which contains the
data of the extended timer.
Table 4.21: OS_GetTimerStatusEx parameter list

pTimerEx

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
I = 0: timer is running.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

87

4.2.22 0OS_GetpCurrentTimerEx()

Description

Returns a pointer to the data structure of the extended timer that just expired.

Prototype
OS_TIMER_EX* 0OS_GetpCurrentTimerEx (void) ;

Return value

OS_TIMER_EX*: A pointer to the control structure of an extended software timer.
Additional Information

The return value of 0S_GetpCurrentTimerEx () is valid during execution of a timer
callback function; otherwise it is undetermined. If one callback function should be
used for multiple extended timers, this function can be used for examining the timer
that expired.

Example

#include "RTOS.H"

OS_TIMER_EX MyTimerEx;

/**
*
* Local Functions

*/

void cbTimerEx (void* pData) { /* Timer callback function for multiple timers */
OS_TIMER_EX* pTimerEx;
pTimerEx = OS_GetpCurrentTimerEx() ;
0S_SignalEvent (0x01, (OS_TASK*) pData);
OS_RetriggerTimer (pTimerEx); /* Retrigger timer */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 4 Software timers

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

89

Chapter 5

Resource semaphores

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

90

5.1

CHAPTER 5 Resource semaphores

Introduction

Resource semaphores are used for managing resources by avoiding conflicts caused
by simultaneous use of a resource. The resource managed can be of any kind: a part
of the program that is not reentrant, a piece of hardware like the display, a flash
prom that can only be written to by a single task at a time, a motor in a CNC control
that can only be controlled by one task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the 0S_Use() or 0S_Request ()
routines of embOS. If the resource is available, the program execution of the task
continues, but the resource is blocked for other tasks. If a second task now tries to
use the same resource while it is in use by the first task, this second task is sus-
pended until the first task releases the resource. However, if the first task that uses
the resource calls 0s_use () again for that resource, it is not suspended because the
resource is blocked only for other tasks.

The following diagram illustrates the process of using a resource:

OS_Use()

v

Access resource

v

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times the
resource has been claimed by calling 0S_Request () or 0S_Use () by a particular task.
It is released when that counter reaches 0, which means the 0s_unuse () routine has
to be called exactly the same number of times as 0S_Use () or 0S_Request (). If it is
not, the resource remains blocked for other tasks.

On the other hand, a task cannot release a resource that it does not own by calling
0S_Unuse (). In the debug version of embOS, a call of 0s_unuse () for a semaphore
that is not owned by this task will result in a call to the error handler 0S_Error ().

Example of using resource semaphores

Here, two tasks access an LC display completely independently from each other. The
LCD is a resource that needs to be protected with a resource semaphore. One task
may not interrupt another task which is writing to the LCD, because otherwise the
following might occur:

e Task A positions the cursor
e Task B interrupts Task A and repositions the cursor
e Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every the LCD must be accessed by a task, it is first
claimed by a call to 0s_use() (and is automatically waited for if the resource is
blocked). After the LCD has been written to, it is released by a call to 0S_Unuse ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

91

/*

* demo program to illustrate the use of resource semaphores
*/

OS_STACKPTR int StackMain[100], StackClock[50];

OS_TASK TaskMain, TaskClock;

OS_SEMA SemalCD;

void TaskClock (void) {

char t=-1;

char s[] = "00:00";

while (1) {
while (TimeSec==t) Delay (10);
t= TimeSec;
s[4] = TimeSec%10+'0"';
s[3] TimeSec/10+'0"';
s[1] TimeMin%10+'0"';
s[0] TimeMin/10+'0"';
0S_Use (&SemaLCD) ; /* Make sure nobody else uses LCD */
LCD _Write(10,0,s);
0OS_Unuse (&SemalCD) ; /* Release LCD */

}
}

void TaskMain (void) {
signed char pos ;
LCD_Write (0,0, "Software tools by Segger ! ")
0S_Delay (2000) ;
while (1) {

for (pos=14 ; pos >=0 ; pos--) {
0S_Use (&Semal.CD) ; /* Make sure nobody else uses LCD */
LCD_Write(pos,1l, "train "); /* Draw train */
0OS_Unuse (&SemalLCD) ; /* Release LCD */

0S_Delay (500) ;
}

0S_Use (&SemaLCD) ; /* Make sure nobody else uses LCD */
LCD_Write(0,1," ")
0S_Unuse (&Semal.CD) ; /* Release LCD */

}
}

void InitTask (void) {
OS_CREATERSEMA (&Semal.CD) ; /* Creates resource semaphore */
OS_CREATETASK (&TaskMain, 0, Main, 50, StackMain) ;
OS_CREATETASK (&TaskClock, 0, Clock, 100, StackClock) ;

}

In most applications, the routines that access a resource should automatically call
0S_Use () and 0S_unuse () so that when using the resource you do not have to worry
about it and can use it just as you would in a single-task system. The following is an
example of how to implement a resource into the routines that actually access the

display:

/*

* Simple example when accessing single line dot matrix LCD

*

Oé_RSEMA RDisp; /* Define resource semaphore */

void UseDisp() { /* Simple routine to be called before using display */

0S_Use (&RDisp) ;
}

void UnuseDisp() { /* Simple routine to be called after using display */
0S_Unuse (&RDisp) ;
}

void DispCharAt (char ¢, char x, char y) {
UseDisp() ;
LCDGoto (x, V) ;
LCDWritel (ASCII2LCD(c)) ;
UnuseDisp () ;

}
void DISPInit (void) {

OS_CREATERSEMA (&RDisp) ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 5 Resource semaphores

5.2 API functions

3 -4
Routine Description ®n |23
5 = P o
OS_CREATERSEMA () Macro that creates a resource semaphore. XX
0S_Use () Claims a resource and blocks it for other tasks.| X | X
oS Unuse () Releases a semaphore currently in use by a x| x
task.
Requests a specified semaphore, blocks it for
0S_Request () other tasks if it is available. Continues execu- | X | X
tion in any case.
0S. GetSemavalue () Retu_rr_ms the value of the usage counter of a x| x
specified resource semaphore.
Returns a pointer to the task that is currently
0S_GetResourceOwner () . .
using (blocking) a resource.
0S_DeleteRSema () Deletes a specified resource semaphore.

Table 5.1: Resource semaphore API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

93

52.1 OS_CREATERSEMA()

Description

Macro that creates a resource semaphore.

Prototype
void OS_CREATERSEMA (OS_RSEMA* pRSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.2: OS_CREATESEMA() parameter list

Additional Information

After creation, the resource is not blocked; the value of the counter is 0.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 5 Resource semaphores

5.2.2 0S_Use()

Description
Claims a resource and blocks it for other tasks.

Prototype
int OS_Use (OS_RSEMA* pRSema) ;

Parameter Description

PRSema Pointer to the data structure for a resource semaphore.
Table 5.3: OS_Use() parameter list

Return value

The counter value of the semaphore.

A value larger than 1 means the resource was already locked by the calling task.
Additional Information

The following situations are possible:

e Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is 0, the resource will be blocked for other tasks by incrementing the counter and
writing a unique code for the task that uses it into the semaphore.

e (Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program continues
without a break.

e (Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher pri-
ority than the task blocking the semaphore, the blocking task is assigned the pri-
ority of the task requesting the resource semaphore. This is called priority
inversion. Priority inversion can only temporarily increase the priority of a task,
never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource, the task with the
highest priority will get access to the resource and can continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

95

The following diagram illustrates how the 0s_use () routine works:

Yes, by this task

h 4

OS_Use(...)

Resource
in use?

Yes, by Wait for resource
other task to be released

Mark current task
as owner

v

Increase Usage
counter

Usage counter = 1

return

User & reference guide for embOS

return

© 2009 SEGGER Microcontroller GmbH & Co. KG

96

CHAPTER 5 Resource semaphores

5.2.3 0OS_Unuse()

Description
Releases a semaphore currently in use by a task.
Prototype
void OS_Unuse (OS_RSEMA* pRSema)
Parameter Description
pPRSema Pointer to the data structure for a resource semaphore.

Table 5.4: OS_Unuse() parameter list

Additional Information

0S_Unuse () may be used on a resource semaphore only after that semaphore has
been used by calling 0S_Use () or 0S_Request (). 0S_Unuse () decrements the usage
counter of the semaphore which must never become negative. If this counter
becomes negative, the debug version will call the embOS error handler 0s_Error ()
with error code 0S_ERR_UNUSE_BEFORE_USE. In the debug version 0S_Error () will
also be called, if 0s_unuse () is called from a task which does not own the resource.
The error code in this case is 0S_ERR_RESOURCE_OWNER.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

97

5.2.4 0OS_Request()

Description

Requests a specified semaphore and blocks it for other tasks if it is available. Contin-
ues execution in any case.

Prototype
char OS_Request (OS_RSEMA* pRSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.5: O0S-Request() parameter list

Return value

1: Resource was available, now in use by calling task
0: Resource was not available.

Additional Information

The following diagram illustrates how 0s_Request () works:

OS_Request (RSEMA*ps)

Resource in use by other task ?

No

In use by this task ? Mark current task

as owner
Yes
Inc Usage counter Usage counter = 1

Example
if (!OS_Request (&RSEMA_LCD)) {
LED_LCDBUSY = 1; /* Indicate that task is waiting for */
/* resource */
0S_Use (&RSEMA_LCD) ; /* Wait for resource */
LED_LCDBUSY = 0; /* Indicate task is no longer waiting */
}
DispTime () ; /* Access the resource LCD */
0S_Unuse (&RSEMA_LCD) ; /* Resource LCD is no longer needed */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 5 Resource semaphores

5.2.5 0OS_GetSemaValue()

Description

Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (OS_SEMA* pSema) ;
Parameter Description
pPRSema Pointer to the data structure for a resource semaphore.

Table 5.6: OS_GetSemaValue() parameter list

Return value

The counter of the semaphore.
A value of 0 means the resource is available.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

99

5.2.6 0OS_GetResourceOwner()

Description

Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* 0OS_GetResourceOwner (OS_RSEMA* pSema) ;
Parameter Description
PRSema Pointer to the data structure for a resource semaphore.

Table 5.7: OS_GetResourceOwner() parameter list

Return value

Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

100

CHAPTER 5 Resource semaphores

5.2.7 OS_DeleteRSema()

Description

Deletes a specified resource semaphore. The memory of that semaphore may be
reused for other purposes or may be used for creating another resources semaphore
using the same memory.

Prototype
void OS_DeleteRSema (OS_RSEMA* pRSema) ;

Parameter Description
pPRSema Pointer to a data structure of type 0S_RSEMA.

Table 5.8: OS_DeleteRSema parameter list

Additional Information

Before deleting a resource semaphore, make sure that no task is claiming the
resources semaphore. The debug version of embOS will call os_Error(), if a
resources semaphore is deleted when it is already used. In systems with dynamic
creation of resource semaphores, it is required to delete a resource semaphore,
before re-creating it. Otherwise the semaphore handling will not work correctly.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

101

Chapter 6

Counting Semaphores

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

102

6.1 Introduction

CHAPTER 6

Counting Semaphores

Counting semaphores are counters that are managed by embOS. They are not as
widely used as resource semaphores, events or mailboxes, but they can be very
useful sometimes. They are used in situations where a task needs to wait for
something that can be signaled one or more times. The semaphores can be accessed

User & reference guide for embOS

from any point, any task, or any interrupt in any way.

Example of using counting semaphores

OS_STACKPTR int Stack0[96], Stackl[64]; /* Task stacks */
OS_TASK TCBO, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void TaskO (void) {
while(1l) {
Disp("Task0 will wait for task 1 to signal");
0OS_WaitCSema (&SEMALCD) ;
Disp("Taskl has signaled !!");
0S_Delay (100) ;
}
}

void Taskl (void) {
while (1) {
0S_Delay (5000) ;
0S_SignalCSema (&SEMALCD) ;
}
}

void InitTask (void) {
OS_CREATECSEMA (&SEMALCD) ;
OS_CREATETASK (&TCBO, NULL, TaskO, 100, StackO);
OS_CREATETASK (&TCB1, NULL, Taskl, 50, Stackl);
}

/* Create Semaphore */
/* Create TaskO0 */
/* Create Taskl */

© 2009 SEGGER Microcontroller GmbH & Co. KG

6.2 API functions

103

phore.

- _— 3 o= 2
Routine Description D p @3
5x P
o
0. CREATECSEMA () Ma<_:r<_3 _that creates a counting semaphore with x| x
an initial count value of zero.
0S_CreatecSema () _Cr_e_ates a counting semaphore with a specified x| x
initial count value.
0S_SignalCSema () Increments the counter of a semaphore. X| X
Incremen h nter of maphor
0S._SignalCSemaMax creme tst e cou ter of a semaphore up to x| x
a specified maximum value.
0S_WaitCSema () Decrements the counter of a semaphore. X| X
Decrements the counter of a semaphore, if
0S_CSemaRequest () . X | X
available.
Decremen maphor nter if th ma-
0S_WaitCSemaTimed () ecreme ts a semaphore cou t_e_ t. € sema- iy x
phore is available within a specified time.
0S. GetCSemavalue () Returns the counter value of a specified sema- x| x

0S_SetCSemaValue ()

Sets the counter value of a specified sema-
phore.

O0S_DeleteCSema ()

Deletes a specified semaphore.

Table 6.1: Counting semaphores API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

104

CHAPTER 6 Counting Semaphores

6.2.1 OS_CREATECSEMA()

Description
Macro that creates a counting semaphore with an initial count value of zero.
Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.2: OS_CREATECSEMA() parameter list

Additional Information

To create a counting semaphore, a data structure of the type 0s_CSEMA needs to be
defined in memory and initialized using 0S_CREATECSEMA (). The value of a sema-
phore created using this macro is zero. If, for any reason, you have to create a sema-
phore with an initial counting value above zero, use the function 0s_CreateCSema ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

105

6.2.2 OS_CreateCSema()

Description
Creates a counting semaphore with a specified initial count value.
Prototype
void OS_CreateCSema (0OS_CSEMA* pCSema,
OS_UINT Initvalue) ;
Parameter Description

pCSema Pointer to a data structure of type 0s_CSEMA.

Initial count value of the semaphore:
InitvValue 0 <= Initvalue <= 216 = OxFFFF for 8/16-bit CPUs

0 <= Initvalue <= 232 = OxFFFFFFFF for 32-bit CPUs

Table 6.3: OS_CreateCSema() parameter list

Additional Information

To create a counting semaphore, a data structure of the type 0s_cSEMA needs to be
defined in memory and initialized using 0S_CreateCSema (). If the value of the cre-
ated semaphore should be zero, the macro 0s_CREATECSEMA () should be used.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 6 Counting Semaphores

6.2.3 OS_SignalCSema()

Description
Increments the counter of a semaphore.
Prototype
void OS_SignalCSema (OS_CSEMA * pCSema) ;
Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.4: OS_SignalCSema() parameter list

Additional Information

0S_SignalCSema () signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the task
that has the highest priority will become the running task. The counter can have a
maximum value of OxFFFF for 8/16-bit CPUs / OxFFFFFFFF for 32-bit CPUs. It is the
responsibility of the application to make sure that this limit will not be exceeded. The
debug version of embOS detects an counter overflow and calls 0s_Error () with error
code OS_ERR_CSEMA_OVERFLOW, if an overflow occurs.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

107

6.2.4 OS_SignalCSemaMax()

Description
Increments the counter of a semaphore up to a specified maximum value.
Prototype
void OS_SignalCSemaMax (OS_CSEMA* pCSema,
OS_UINT MaxValue) ;
Parameter Description

pCSema Pointer to a data structure of type 0s_CSEMA.

Limit of semaphore count value.
MaxValue 1 <= Maxvalue <= 216 = OXFFFF for 8/16-bit CPUs

1 <= Maxvalue <= 232 = OxFFFFFFFF for 32-bit CPUs

Table 6.5: OS_SignalCSemaMax() parameter list

Additional Information

As long as current value of the semaphore counter is below the specified maximum
value, 0S_SignalCSemaMax () Sighals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this sema-
phore, the tasks are put into ready state and the task that has the highest priority
will become the running task. Calling 0S_SignalCSemaMax() with a Maxvalue of 1
handles a counting semaphore as a binary semaphore.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 6 Counting Semaphores

6.2.5 OS_WaitCSema()

Description
Decrements the counter of a semaphore.

Prototype
void OS_WaitCSema (OS_CSEMA* pCSema) ;

Parameter Description

pCSema Pointer to a data structure of type 0S_CSEMA.
Table 6.6: OS_WaitCSema() parameter list

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.

If the counter is 0, waitCSema () waits until the counter is incremented by another
task, a timer or an interrupt handler via a call to 0s_signalCSema (). The counter is
then decremented and program execution continues.

An unlimited number of tasks can wait for a semaphore. According to the rules of the
scheduler, of all the tasks waiting for the semaphore, the task with the highest prior-
ity will continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

109

6.2.6 OS_WaitCSemaTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified
time.
Prototype

int OS_WaitCSemaTimed (OS_CSEMA* pCSema,
OS_TIME TimeOut) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.
TimeOut Maximum time until semaphore should be available

Table 6.7: OS_WaitCSemaTimed parameter list

Return value

Integer value:
0: Failed, semaphore not available before timeout.
1: OK, semaphore was available and counter decremented.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues. If the counter is 0, WaitCSemaTimed () waits until the sema-
phore is signaled by another task, a timer, or an interrupt handler via a call to
0S_SignalCSema (). The counter is then decremented and program execution contin-
ues. If the semaphore was not signaled within the specified time, the program execu-
tion continues but returns a value of 0. An unlimited number of tasks can wait for a
semaphore. According to the rules of the scheduler, of all the tasks waiting for the
semaphore, the task with the highest priority will continue program execution.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 6 Counting Semaphores

6.2.7 0OS_CSemaRequest()

Description
Decrements the counter of a semaphore, if it is signaled.
Prototype
char 0S_CSemaRequest (OS_CSEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.8: OS_CSemaRequest() parameter list

Return value

Integer value:
0: Failed, semaphore was not signaled.
1: OK, semaphore was available and counter was decremented once.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.

If the counter is 0, 0S_CSemaRequest () does not wait and does not modify the sema-
phore counter. The function returns with error state.

Because this function never blocks a calling task, this function may be called from an
interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

111

6.2.8 0OS_GetCSemaValue()

Description

Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (OS_SEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0S_CSEMA.

Table 6.9: OS_GetCSemaValue() parameter list

Return value

The counter value of the semaphore.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 6 Counting Semaphores

6.2.9 OS_SetCSemaValue()

Description
Sets the counter value of a specified semaphore.
Prototype
0S_U8 0OS_SetCSemaValue (OS_SEMA* pCSema,
OS_UINT Value) ;
Parameter Description

pCSema Pointer to a data structure of type 0S_CSEMA.

Count value of the semaphore:
value 0 <= Initvalue <= 216 = OXFFFF for 8/16-bit CPUs

0 <= Initvalue <= 232 = OXFFFFFFFF for 32-bit CPUs

Table 6.10: OS_SetCSemaValue() parameter list

Return value

0: If the value could be set.
I= 0: In case of error.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

113

6.2.10 OS_DeleteCSema()

Description

Deletes a specified semaphore.

Prototype
void OS_DeleteCSema (OS_CSEMA* pCSema) ;

Parameter Description
pCSema Pointer to a data structure of type 0s_CSEMA.

Table 6.11: OS_DeleteCSema() parameter list

Additional Information

Before deleting a semaphore, make sure that no task is waiting for it and that no
task will signal that semaphore at a later point.
The debug version of embOS will reflect an error if a deleted semaphore is signaled.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 6 Counting Semaphores

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

115

Chapter 7

Mailboxes

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

116

7.1

CHAPTER 7 Mailboxes

Introduction

In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to another.
If we need to transfer data between tasks via a buffer for example, we could use a
resource semaphore every time we accessed the buffer. But doing so would make the
program less efficient. Another major disadvantage would be that we could not
access the buffer from an interrupt handler, because the interrupt handler is not
allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would have to
disable interrupts every time and in every place that we accessed these variables.
This is possible, but it is a path full of pitfalls. It is also not easy for a task to wait for
a character to be placed in a buffer without polling the global variable that contains
the number of characters in the buffer. Again, there is a way out - the task could be
notified by an event signaled to the task every time a character is placed in the
buffer. That is why there is an easier way to do this with a real-time OS:

The use of mailboxes.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

117

7.2 Basics

A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can put something (called a message) in and
retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a message that
is put in first will usually be retrieved first. "Message” might sound abstract, but very
simply just means “item of data”. It will become clearer in the typical applications
explained in the following section.

The number of mailboxes is limited only by the amount of available memory.
Message size: 1 <= x <= 127 bytes.

Number of messages: 1 <= x <= 32767.

These limitations have been placed on mailboxes to guarantee efficient coding and
also to ensure efficient management. The limitations are normally not a problem.
For handling messages larger than 127 bytes, you may use queues. For more infor-
mation, refer to the Chapter Queues on page 133.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 7 Mailboxes

7.3 Typical applications
A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt handler to
check the keyboard. When detected that a key has been pressed, that key is put into
a mailbox that is used as a keyboard buffer. The message is then retrieved by the
task that handles the keyboard input. The message in this case is typically a single
byte that holds the key code; the message size is therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you do not
have to worry about it, because it is reliable, proven code and you have a type-ahead
buffer at no extra cost. On top of that, a task can easily wait for a key to be pressed
without having to poll the buffer. It simply calls the 0s_GetMail () routine for that
particular mailbox. The number of keys that can be stored in the type-ahead buffer
depends only on the size of the mailbox buffer, which you define when creating the
mailbox.

A buffer for serial I/O

In most cases, serial I/0 is done with the help of interrupt handlers. The communica-
tion to these interrupt handlers is very easy with mailboxes. Both your task programs
and your interrupt handlers store or retrieve data to/from the same mailboxes. As
with a keyboard buffer, the message size is 1 character.

For interrupt-driven sending, the task places the character(s) in the mailbox using
OS_PutMail () Or 0S_PutMailCond(); the interrupt handler that is activated when a
new character can be sent retrieves this character with 0s_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using 0s_putMailCond(); the task
receives it using 0S_GetMail () Or OS_GetMailCond().

A buffer for commands sent to a task

Assume you have one task controlling a motor, as you might have in applications that
control a machine. A simple way to give commands to this task would be to define a
structure for commands. The message size would then be the size of this structure.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

119

7.4 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer
single-byte messages. This is the case, for example, with a mailbox that takes the
character received or sent via serial interface, or normally with a mailbox used as
keyboard buffer. In some of these cases, time is very critical, especially if a lot of
data is transferred in short periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions 0S_PutMail (), OS_PutMailCond (), 0S_GetMail (), and 0S_GetMailCond () can
transfer messages of sizes between 1 and 127 bytes each. Their single-byte equiva-
lents 0S_PutMaill(), OS_PutMailCondl (), OS_GetMaill (), and 0S_GetMailCondl ()
work the same way with the exception that they execute much faster because man-
agement is simpler. It is recommended to use the single-byte versions if you transfer
a lot of single byte-data via mailboxes.

The routines 0S_PutMaill(), 0S_PutMailCondl (), 0S_GetMaill(), and
0S_GetMailCondl () work exactly the same way as their more universal equivalents
and are therefore not described separately. The only difference is that they can only
be used for single-byte mailboxes.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 7 Mailboxes

7.5 API functions

= e B
Routine Explanation o B3
5 = P o
OS_CREATEMB () Macro that creates a new mailbox. X | X
0S. PutMail () Sto_res a new message of a predefined size in a x| x
mailbox.
0S. PutMaill () Sto_res a new message of a predefined size in a x| x
mailbox.
Stores a new message of a predefined size in a
0S_PutMailCond() mailbox, if the mailbox is able to accept one X| X[X]| X

more message.

Stores a new message of a predefined size in a
0OS_PutMailCondl () mailbox, if the mailbox is able to accept one XX | X]|X
more message.

Stores a new message of a predefined size into
OS_PutMailFront () a mailbox in front of all other messages. This | X| X
new message will be retrieved first.

Stores a new message of a predefined size into
0S_PutMailFrontl () a mailbox in front of all other messages. This | X | X
new message will be retrieved first.

Stores a new message of a predefined size into
0S_PutMailFrontCond() |a mailbox in front of all other messages, if the | X| X | X| X
mailbox is able to accept one more message.

Stores a new message of a predefined size into
0S_PutMailFrontCondl () |a mailbox in front of all other messages, if the | X| X | X| X
mailbox is able to accept one more message.
Retrieves a new message of a predefined size

0S_GetMail () ! X| X
from a mailbox.

05 GetMaill () E’itnr':eavenfa?lt?c?rl message of a predefined size x| x

0S._GetMailcCond () Retrieves a new message of a_prede;fmed size |yl ylx| x
from a mailbox, if a message is available.

05 GetMailCondl () Retrieves a new message of a predefined size xIx % x

from a mailbox, if a message is available.
Retrieves a new message of a predefined size
0S_GetMailTimed () from a mailbox, if a message is available X | X
within a given time.

Waits until a mail is available, but does not
retrieve the message from the mailbox.
0S_ClearMB () Clears all messages in a specified mailbox.
Returns number of messages currently in a
specified mailbox.

0S_DeleteMB () Deletes a specified mailbox.
Table 7.1: Mailboxes API functions

OS_WaitMail ()

0S_GetMessageCnt ()

x| X |[X]| X
x| X |[X] X

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

121

7.51 OS_CREATEMB()

Description
Macro that creates a new mailbox.

Prototype

void OS_CREATEMB (OS_MAILBOX* PMB,
unsigned char sizeofMsg,
unsigned int maxnofMsg,

void* pMsg) ;)
Parameter Description
MEB Pointer to a data structure of type 0s_MAILBOX reserved for man-

p aging the mailbox.

sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 127)

maxnoMsg Maximum number of messages. (1 <= MaxnofMsg <= 32767)
Pointer to a memory area used as buffer. The buffer has to be big

pMsg enough to hold the given number of messages of the specified
Size: sizeofMsg * maxnoMsg bytes.

Table 7.2: OS_CREATEMB() parameter list

Example

Mailbox used as keyboard buffer:

OS_MATILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan (void) {
/* Create mailbox, functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used for transferring complex commands from one task to another:

/*
* Example of mailbox used for transfering commands to a task
* that controls 2 motors
*/
typedef struct {
char Cmd;
int Speed[2];
int Position[2];
} MOTORCMD ;

OS_MAILBOX MBMotor;
#define MOTORCMD_SIZE 4
char BufferMotor[sizeof (MOTORCMD) *MOTORCMD_SIZE];
void MOTOR_Init (void) {
/* Create mailbox that holds commands messages */

OS_CREATEMB (&MBMotor, sizeof (MOTORCMD), MOTORCMD_SIZE, &BufferMotor);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

122

CHAPTER 7 Mailboxes

7.5.2 OS_PutMail() / OS_PutMail1()

Description

Stores a new message of a predefined size in a mailbox.
Prototype

void OS_PutMail (OS_MAILBOX* pMB,

void* pMail) ;
void OS_PutMaill (OS_MAILBOX* pMB,
const char* pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.3: OS_PutMail() / OS_PutMaill() parameter list

Additional Information

If the mailbox is full, the calling task is suspended.

Because this routine might require a suspension, it must not be called from an inter-
rupt routine. Use 0S_PutMailCond()/0S_PutMailCondl () instead if you have to
store data in a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.
Example

Single-byte mailbox as keyboard buffer:

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey (char k) {
0S_PutMaill (&MBKey, &k); /* Store key, wait if no space in buffer */
}

void KEYMAN_ Init (void) {
/* Create mailbox functioning as type ahead buffer */
OS_CREATEMB (&MBKey, 1, sizeof (MBKeyBuffer), &MBKeyBuffer);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

123

7.5.3 OS_PutMailCond() / OS_PutMailCond1()

Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able to
accept one more message.

Prototype

char OS_PutMailCond (OS_MAILBOX* pMB,
void* pMail) ;

char OS_PutMailCondl (OS_MAILBOX* pMB,
const char* pMail) ;)

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.4: OS_PutMailCond() / OS_PutMailCond1() overview

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from an
interrupt routine.

Example

OS_MATLBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
return OS_PutMailCondl (&MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mail-
box as keyboard buffer.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 7 Mailboxes

7.5.4 OS_PutMailFront() / OS_PutMailFront1()

Description

Stores a new message of a predefined size at the beginning of a mailbox in front of
all other messages. This new message will be retrieved first.

Prototype

void OS_PutMailFront (OS_MAILBOX* pMB,
void* pMail) ;

void OS_PutMailFrontl (OS_MAILBOX* pMB,
const char* pMail) ;

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.5: OS_PutMailFront() / OS_PutMailFront1() parameter list

Additional Information

If the mailbox is full, the calling task is suspended. Because this routine might
require a suspension, it must not be called from an interrupt routine. Use
0S_PutMailFrontCond()/0S_PutMailFrontCondl () instead if you have to store data
in @ mailbox from within an ISR.

This function is useful to store “emergency” messages into a mailbox which have to
be handled quick.

It may also be used in general instead of 0s_pPutMail () to change the FIFO structure
of a mailbox into a LIFO structure.

Important

This function may not be called from within an interrupt handler.
Example

Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

OS_MAILBOX MBCmd;
char MBCmdBuffer[6];

void KEYMAN_ StoreCommand (char k) {
0S_PutMailFrontl (&MBCmd, &k); /* Store command, wait if no space in buffer*/
}

void KEYMAN_ Init (void) {

/* Create mailbox for command buffer */

OS_CREATEMB (&MBCmd, 1, sizeof (MBCmdBuffer), &MBCmdBuffer);
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

125

7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()

Description

Stores a new message of a predefined size into a mailbox in front of all other mes-
sages, if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype

char OS_PutMailFrontCond (OS_MAILBOX* pMB,
void* pMail) ;

char OS_PutMailFrontCondl (OS_MAILBOX* pMB,
const char* pMail) ;)

Parameter Description

PMB Pointer to the mailbox.

pMail Pointer to the message to store.
Table 7.6: OS_PutMailFrontCond() / OS_PutMailFrontCond1() parameter list

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored. This function never suspends the
calling task. It may therefore be called from an interrupt routine. This function is
useful to store “emergency” messages into a mailbox which have to be handled
quick. It may also be used in general instead of 0s_pPutMailCond() to change the
FIFO structure of a mailbox into a LIFO structure.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

126

CHAPTER 7 Mailboxes

7.5.6 0OS_GetMail() / OS_GetMail1()

Description

Retrieves a new message of a predefined size from a mailbox.
Prototype

void OS_GetMail (OS_MAILBOX* pMB,

void* pDest) ;
void 0S_GetMaill (OS_MAILBOX* pMB,
char* pDest) ;

Parameter Description

PMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.7: OS_GetMail() / OS_GetMaill() parameter list

pDest

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it may not be called from an
interrupt routine. Use 0S_GetMailCond/OS_GetMailCondl instead if you have to
retrieve data from a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

OS_MATILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey (void) {
char c;
0S_GetMaill (&MBKey, &c);
return c;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

127

7.5.7 0OS_GetMailCond() / OS_GetMailCond1()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype

char 0S_GetMailCond (OS_MAILBOX * pMB,
void* pDest) ;

char 0S_GetMailCondl (OS_MAILBOX * pMB,
char* pDhest) ;

Parameter Description
PMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 7.8: OS_GetMailCond() / OS_GetMailCond1() parameter list

pDest

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, but the program execution contin-
ues. This function never suspends the calling task. It may therefore also be called
from an interrupt routine.

Example

OS_MATILBOX MBKey;

/*
* Tf a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise, 0 is returned.
*/
char GetKey (void) {
char ¢ = 0;
0S_GetMailCondl (&MBKey, &cC)
return c;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

128

CHAPTER 7 Mailboxes

7.5.8 OS_GetMailTimed()

Description

Retrieves a new message of a predefined size from a mailbox, if a message is avail-
able within a given time.

Prototype

char 0S_GetMailTimed (OS_MAILBOX* pMB,
void* pDest,
OS_TIME Timeout) ;

Parameter Description

pMB Pointer to the mailbox.

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) has been defined upon creation of the mailbox.

Maximum time in timer ticks until the requested mail has to be
available. The data type 0s_TIME is defined as an integer, there-
Timeout fore valid values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 7.9: OS_GetMailTimed() parameter list

pDest

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a mail is available within the given timeout, or after the timeout value has
expired.

Important
This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;

/*
* If a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise, 0 1s returned.
*/
char GetKey(void) {
char ¢ =0;
0S_GetMailTimed (&MBKey, &c, 10) /* Wait for 10 timer ticks */
return c;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

129

7.5.9 OS_WaitMail()

Description
Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
void OS_WaitMail (OS_MAILBOX* pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 7.10: OS_WaitMail() parameter list

Additional Information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the
task continues. The task continues execution, according to the rules of the scheduler,
as soon as a mail is available, but the mail is not retrieved from the mailbox.

Important

This function may not be called from within an interrupt handler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

130

CHAPTER 7

7.5.10 OS_ClearMB()

Description

Clears all messages in a specified mailbox.

Prototype

void 0OS_ClearMB

(OS_MAILBOX* pMB) ;

Mailboxes

Parameter

Description

pPMB

Pointer to the mailbox.

Table 7.11: OS_ClearMB() parameter list

Example

OS_MAILBOX MBKey;

/*

* Clear keyboard type ahead buffer

*/

void ClearKeyBuffer (void) {
0S_ClearMB (&MBKey) ;

}

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

7.5.11 OS_GetMessageCnt()

Description

Returns the number of messages currently available in a specified mailbox.

131

Prototype

unsigned int OS_GetMessageCnt (OS_MAILBOX* pMB) ;
Parameter Description

PMB Pointer to the mailbox.

Table 7.12: OS_GetMessageCnt() parameter list

Return value

The number of messages in the mailbox.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 7 Mailboxes

7.5.12 OS_DeleteMB()

Description
Deletes a specified mailbox.

Prototype
void OS_DeleteMB (OS_MAILBOX* pMB) ;

Parameter Description

PMB Pointer to the mailbox.
Table 7.13: OS_DeleteMB() parameter list

Additional Information

To keep the system fully dynamic, it is essential that mailboxes can be created
dynamically. This also means there has to be a way to delete a mailbox when it is no
longer needed. The memory that has been used by the mailbox for the control struc-
ture and the buffer can then be reused or reallocated.

It is the programmer's responsibility to:

e make sure that the program no longer uses the mailbox to be deleted
e make sure that the mailbox to be deleted actually exists (i.e. has been created
first).

Example

OS_MAILBOX MBSerIn;

void Cleanup (void) {
0OS_DeleteMB (MBSerIn) ;

return 0;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

133

Chapter 8

Queues

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 8 Queues

8.1 Introduction

In the preceding chapter, intertask communication using mailboxes was described.
Mailboxes can handle small messages with fixed data size only.

Queues enable intertask communication with larger messages or with messages of
various sizes.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

135

8.2 Basics

A queue consists of a data buffer and a control structure that is managed by the real-
time operating system. The queue behaves like a normal buffer; you can put
something (called a message) in and retrieve it later. Queues work as FIFO: first in,
first out. So a message that is put in first will be retrieved first.

There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a
pointer to the message and its size. This enhances performance because the data
is copied only once, when the message is written into the queue.

3. The retrieving function has to delete every message after processing it.

Both the number and size of queues is limited only by the amount of available
memory. Any data structure can be written into a queue. The message size is not
fixed.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 8 Queues

8.3 API functions

3 o= 3
Routine Description ®n |23
5 = P o
0S_Q_Create() Creates and initializes a message queue. X | X|X| X
0S. 0. Put () Stores a new message of given size in a x| % x
queue.
0S_Q_GetPtr () Retrieves a message from a queue. X| X
Retrieves a message from a queue, if one
0S_Q_GetPtrCond() message is available or returns without sus- XX | X]|X
pension.
0S. 0. GetPtrTimed () Retrl_e_ves a message from a queue w_|th|n a x| x
specified time, if one message is available.
0S_Q_Purge () Deletes the last retrieved message in a queue. | X| X | X| X
0S_Q_Clear () Deletes all message in a queue. X|X|X|X
0S.0_GetMessagecnt () (I?Sgilrens the number of messages currently in a x| x

Table 8.1: Queues API

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

137

8.3.1 0OS_Q_Create()

Description

Creates and initializes a message queue.

Prototype
void 0S_Q_Create (0S_Q* pQ,
void*pData,
OS_UINT Size);
Parameter Description
0 Pointer to a data structure of type 0s_qQ reserved for the manage-
p ment of the message queue.
pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Table 8.2: OS_Q_Create() parameter list

Example

#define MEMORY_QSIZE 10000;
static 0S_Q _MemoryQ;
static char _acMemQBuffer [MEMORY_QSIZE];

void MEMORY_Init (void) {

0S_Q_Create (&_MemoryQ, &_acMemQBuffer, sizeof (_acMemQBuffer));
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 8 Queues

8.3.2 0S_Q_Put()

Description
Stores a new message of given size in a queue.

Prototype

int O0S_Q_Put (0S_Q* pQ,
const void* pSrc,
OS_UINT Size);

Parameter Description
Pointer to a data structure of type 0s_qQ reserved for the manage-
po ment of the message queue.
pSrc Pointer to the message to store
Size Size of the message to store

Table 8.3: OS_Q_Put() parameter list

Return value

0: Success; message stored.
1: Message could not be stored (queue is full).

Additional Information

If the queue is full, the function returns a value unequal to 0.
This routine never suspends the calling task. It may therefore also be called from an
interrupt routine.

Example

char MEMORY Write (char* pData, int Len) {
return 0OS_Q_ Put (& MemoryQ, pData, Len));
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

139

8.3.3 0S_Q_GetPtr()

Description
Retrieves a message from a queue.

Prototype

int OS_Q_ GetPtr (0S_Q* pQ,
void** ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 8.4: 0S_Q_GetPtr() parameter list

Return value

The size of the retrieved message.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty, the calling task is suspended until the queue receives a new
message. Because this routine might require a suspension, it must not be called from
an interrupt routine. Use 0S_GetPtrCond() instead. The retrieved message is not
removed from the queue. This has to be done by a call of 0s_@Q_Purge() after the
message was processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;

while (1) {

Len = 0S_Q_GetPtr (&_MemoryQ, &pData); /* Get message */
Memory_WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 8 Queues

8.3.4 0S_Q_GetPtrCond()

Description
Retrieves a message from a queue, if one message is available.

Prototype

int OS_Q_GetPtrCond (0S_Q* pQ,
void** ppData) ;

Parameter Description

pQ Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Table 8.5: 0S_Q_GetPtrCond() parameter list

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty, the function returns 0. The value of ppbata is undefined. This
function never suspends the calling task. It may therefore also be called from an
interrupt routine. If a message could be retrieved, it is not removed from the queue.
This has to be done by a call of 0s_Q_pPurge () after the message was processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;
while (1) {

Len = 0S_Q_GetPtrCond (& MemoryQ, &pData) ; /* Check message */
if (Len > 0) {

Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */

0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else {

DoSomethingElse() ;

}
}
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

141

8.3.5 0OS_Q_GetPtrTimed()

Description
Retrieves a message from a queue within a specified time if a message is available.

Prototype

int 0OS_Q_GetPtrTimed (0OS_Q* pQ,
void** ppData,
OS_TIME Timeout) ;

Parameter Description

PO Pointer to the queue.

ppData Address of pointer to the message to be retrieved from queue.
Maximum time in timer ticks until the requested message has to
be available. The data type os_TIME is defined as an integer,
Timeout therefore valid values are

1 <= Timeout <= 21%-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 8.6: 0OS_Q_GetPtrTimed() parameter list

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.
Sets the pointer pppata to the message that should be retrieved.

Additional Information

If the queue is empty, no message is retrieved, the task is suspended for the given
timeout. The value of ppbData is undefined. The task continues execution, according
to the rules of the scheduler, as soon as a message is available within the given tim-
eout, or after the timeout value has expired.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pData;
while (1) {

Len = 0S_Q_GetPtrTimed (& MemoryQ, &pData, 10); /* Check message */
if (Len > 0) {
Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */
} else { /* Timeout */
DoSomethingElse () ;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 8 Queues

8.3.6 0OS_Q_Purge()

Description
Deletes the last retrieved message in a queue.

Prototype
void 0S_Q_Purge (0S_Q* pQ);

Parameter Description

pQ Pointer to the queue.
Table 8.7: OS_Q_Purge() parameter list

Additional Information

This routine should be called by the task that retrieved the last message from the
queue, after the message is processed.

Example

static void MemoryTask (void) {
char MemoryEvent;
int Len;
char* pDhata;

while (1) {

Len = 0S_Q_GetPtr (& MemoryQ, &pData) ; /* Get message */
Memory_ WritePacket (* (U32*)pData, pData+4, Len); /* Process message */
0S_Q_Purge (&_MemoryQ) ; /* Delete message */

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

8.3.7 0S_Q_Clear()

Description

Deletes all message in a queue.

Prototype

void 0OS_Q_Clear

(0S_Q* pQ) ;

143

Parameter

Description

PO

Pointer to the queue.

Table 8.8: 0S_Q_Clear() parameter list

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 8 Queues

8.3.8 0OS_Q_GetMessageCnt()

Description

Returns the number of messages currently in a queue.

Prototype
int OS_Q_GetMessageCnt (0S_Q* pQ);

Parameter Description
pQ Pointer to the queue.

Table 8.9: 0OS_Q_GetMessageCnt() parameter list

Return value

The number of messages in the queue.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

145

Chapter 9

Task events

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 9 Task events

9.1 Introduction

Task events are another way of communication between tasks. In contrast to sema-
phores and mailboxes, task events are messages to a single, specified recipient. In
other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is sig-
naled by another task, a S/W timer or an interrupt handler. The event can consist of
anything that the software has been made aware of in any way. For example, the
change of an input signal, the expiration of a timer, a key press, the reception of a
character, or a complete command.

Every task has a 1-byte (8-bit) mask, which means that 8 different events can be
signaled to and distinguished by every task. By calling 0s_waitEvent (), a task waits
for one of the events specified as a bitmask. As soon as one of the events occurs, this
task must be signaled by calling 0s_signalEvent (). The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the
scheduler as soon as it becomes the task with the highest priority of all the tasks in
the READY state.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

9.2 API functions

147

then clears the events of a specified task.

3 4|4
Routine Description D p @3
5 = P o
Waits for one of the events specified in
0S_WaitEvent () the bitmask and clears the event memory | X | X
after an event occurs.
Waits for one of the events specified as
0S_WaitSingleEvent () bitmask and clears only that event after | X|X
it occurs.
Waits for the specified events for a given
0S_WaitEventTimed () time, and clears the event memory after | X| X
an event occurs.
Waits for the specified events for a given
0S_WaitSingleEventTimed () time; after an event occurs, only that X | X
event is cleared.
0S_SignalEvent () Signals event(s) to a specified task. X| X
0S_GetEventsoccurred () Returns a list of eve_:r_wts that have x| x
- occurred for a specified task.
0S. ClearEvents () Returns the actual state of events and x| x| x| x

Table 9.1: Events API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

148

CHAPTER 9 Task events

9.2.1 OS_WaitEvent()

Description

Waits for one of the events specified in the bitmask and clears the event memory
after an event occurs.

Prototype
char O0S_WaitEvent (char EventMask) ;

Parameter Description
EventMask The events that the task will be waiting for.

Table 9.2: OS_WaitEvent() parameter list

Return value
All events that have actually occurred.
Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event.

Example
0S_WaitEvent (3) ; /* Wait for event 1 or 2 to be signaled */

For a further example, see 0S_SignalEvent ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

149

9.2.2 O0OS_WaitSingleEvent()

Description

Waits for one of the events specified by the bitmask and clears only that event after

it occurs.
Prototype
char O0S_WaitSingleEvent (char EventMask) ;
Parameter Description
EventMask The events that the task will be waiting for.

Table 9.3: OS_WaitSingleEvent() parameter list

Return value
All masked events that have actually occurred.
Additional Information

If none of the specified events are signhaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer, or an interrupt handler. Any bit in the 8-bit event mask may enable the corre-
sponding event. All unmasked events remain unchanged.

Example

OS_WaitSingleEvent (3) ; /* Wait for event 1 or 2 to be signaled */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER 9 Task events

9.2.3 OS_WaitEventTimed()

Description

Waits for the specified events for a given time, and clears the event memory after an
event occurs.

Prototype

char 0S_WaitEventTimed (char EventMask,
OS_TIME TimeOut) ;

Parameter Description
EventMask The events that the task will be waiting for.
Maximum time in timer ticks until the events have to be signaled.
The data type os_TIME is defined as an integer, therefore valid
T mEeuiE values are
1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 9.4: OS_WaitEventTimed() parameter list

Return value

The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer, or an interrupt handler within the specified TimeoOut time.

If no event is signaled, the task is activated after the specified timeout and all actual
events are returned and then cleared. Any bit in the 8-bit event mask may enable the
corresponding event.

Example

OS_WaitEventTimed (3, 10); /* Wait for event 1 or 2 to be signaled within 10 ms */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

151

9.2.4 OS_WaitSingleEventTimed()

Description

Waits for the specified events for a given time; after an event occurs, only that event
is cleared.

Prototype

char O0S_WaitSingleEventTimed (char EventMask,
OS_TIME TimeOut) ;

Parameter Description

EventMask The events that the task will be waiting for.

Maximum time in timer ticks until the events have to be signaled.
The data type 0os_TIME is defined as an integer, therefore valid
" values are

1 <= Timeout <= 21°-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 9.5: OS_WaitSingleEventTimed() parameter list

Return value

The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer or an interrupt handler within the specified Timeout time.
If no event is signaled, the task is activated after the specified timeout and the
function returns zero. Any bit in the 8-bit event mask may enable the corresponding
event. All unmasked events remain unchanged.

Example

0S_WaitSingleEventTimed (3, 10); /* Wait for event 1 or 2 to be
signaled within 10 ms */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 9 Task events

9.2.5 OS_SignalEvent()

Description
Signals event(s) to a specified task.

Prototype

void 0OS_SignalEvent (char Event,
OS_TASK* pTask) ;

Parameter Description

The event(s) to signal:
1 means event 1

2 means event 2

4 means event 3
Event
128 means event 8.

Multiple events can be signaled as the sum of the single events
(for example, 6 will signal events 2 & 3).

pTask Task that the events are sent to.

Table 9.6: OS_SignalEvent() parameter list

Additional Information

If the specified task is waiting for one of these events, it will be put in the READY
state and activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be
received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* Just a small demo for events
*/

#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

OS_STACKPTR int Stack0[96]; // Task stacks
OS_TASK TCBO; // Data area for tasks (task control blocks)

void TaskO (void) {
0S_U8 MyEvent;
while (1)
MyEvent = 0OS_WaitEvent (EVENT_KEYPRESSED | EVENT_SERIN)
if (MyEvent & EVENT_ KEYPRESSED) {
/* handle key press */
}
if (MyEvent & EVENT_SERIN) {
/* Handle serial reception */
}
}
}

void TimerKey (void) {

/* More code to find out if key has been pressed */

0S_SignalEvent (EVENT_SERIN, &TCBO0); /* Notify Task that key was pressed */
}

void InitTask (void) {
OS_CREATETASK (&TCBO, 0, TaskO, 100, StackO0); /* Create Task0 */
}

If the task was only waiting for a key to be pressed, 0S_GetMail () could simply be
called. The task would then be deactivated until a key is pressed. If the task has to
handle multiple mailboxes, as in this case, events are a good option.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

153

9.2.6 OS_GetEventsOccurred()

Description
Returns a list of events that have occurred for a specified task.

Prototype
char 0S_GetEventsOccurred (0OS_TASK* pTask) ;

Parameter Description

The task who's event mask is to be returned,
NULL means current task.
Table 9.7: OS_GetEventsOccured() parameter list

pTask

Return value
The event mask of the events that have actually occurred.
Additional Information

By calling this function, the actual events remain signaled. The event memory is not
cleared. This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are signaled.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

154

CHAPTER 9

9.2.7 OS_ClearEvents()

Task events

Description
Returns the actual state of events and then clears the events of a specified task.
Prototype
char 0S_ClearEvents (0OS_TASK* pTask) ;
Parameter Description
The task who's event mask is to be returned,
pTask
NULL means current task.

Table 9.8: OS_ClearEvents() parameter list

Return value

The events that were actually signaled before clearing.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

155

Chapter 10

Event objects

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 10 Event objects

10.1 Introduction

Event objects are another type of communication and synchronization objects. In
contrast to task-events, event objects are standalone objects which are not owned by
any task.

The purpose of an event object is to enable one or multiple tasks to wait for a partic-
ular event to occur. The tasks can be kept suspended until the event is set by another
task, a S/W timer, or an interrupt handler. The event can be anything that the soft-
ware is made aware of in any way. Examples include the change of an input signal,
the expiration of a timer, a key press, the reception of a character, or a complete
command.

Compared to a task event, the signalling function does not need to know which task
is waiting for the event to occur.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

10.2 API functions

157

3 o= 3
Routine Description D p @3
5 = P o
Creates an event object. Has to be called
OS_EVENT_Create () before the event object can be used. XX X)X
. Waits for an event and resets the event after it
OS_EVENT _Wait () XX
occurs.
e Waits for an event with timeout and resets the
OS_EVENT_WaitTimed () . X| X
event after it occurs.
OS_EVENT_Set () Sets the events, or resumes waiting tasks. X[X|X|X
OS_EVENT_Reset () Resets the event to unsignaled state. X|X|X|X
0S_EVENT Pulse () Sets the event, resumes waiting tasks, if any, x| x
- —ruLse and then resets the event.
OS_EVENT_Get () Returns the state of an event object. XX
OS_EVENT_Delete () Deletes the specified event object. X| X

Table 10.1: Event object API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 10 Event objects

10.2.1 OS_EVENT Create()

Description
Creates an event object and resets the event.
Prototype
void OS_EVENT_Create (OS_EVENT* pEvent)
Parameter Description
pEvent Pointer to an event object data structure.

Table 10.2: OS_EVENT_Create() parameter list

Additional Information

Before the event object can be used, it has to be created once by a call of
OS_EVENT_Create (). On creation, the event is set in non-signaled state, and the list
of waiting tasks is deleted. Therefore, 0S_EVENT_Create() must not be called for an
event object which was already created before. The debug version of embOS checks
whether the specified event object was already created and calls 0s_Error() with
error code OS_ERR_2USE_EVENTOBJ, if the event object was already created before the
call of OS_EVENT_Create().

Example

OS_EVENT _HW_Event;
OS_EVENT_Create (&HW_Event) ; /* Create and initialize event object */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

159

10.2.2 OS_EVENT_Wait()

Description
Waits for an event and suspends the calling task as long as the event is not signaled.

Prototype
void OS_EVENT Wait (OS_EVENT* pEvent)

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Table 10.3: OS_EVENT_Wait() parameter list

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled. pEvent has to address an existing event
object, which has to be created before the call of 0S_EVENT_wait (). The debug ver-
sion of embOS will check whether pEvent addresses a valid event object and will call
0OS_Error () with error code 0S_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.
Example

OS_EVENT_Wait (& _HW_Event) ; /* Wait for event object */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 10 Event objects

10.2.3 OS_EVENT_WaitTimed()

Description

Waits for an event and suspends the calling task for a specified time as long as the
event is not signaled.

Prototype

char OS_EVENT_WaitTimed (OS_EVENT* pEvent, OS_TIME Timeout)

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Maximum time in timer ticks until the event have to be signaled.
The data type os_TIME is defined as an integer, therefore valid
T mEeuiE values are

1 <= Timeout <= 215-1 = Ox7FFF = 32767 for 8/16-bit CPUs

1 <= Timeout <= 231-1 = Ox7FFFFFFF for 32-bit CPUs
Table 10.4: OS_EVENT_WaitTimed() parameter list

Return value

0 success, the event was signhaled within the specified time.
1 if the event was not signaled and a timeout occurred.

Additional Information

If the specified event object is already set, the calling task resets the event and con-
tinues operation. If the specified event object is not set, the calling task is suspended
until the event object becomes signaled or the timeout time has expired.

pEvent has to address an existing event object, which has to be created before the
call of 0OS_EVENT_WaitTimed (). The debug version of embOS will check whether
pEvent addresses a valid event object and will call os_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

Important

This function may not be called from within an interrupt handler or software timer.
Example

if (OS_EVENT_WaitTimed (&_HW_Event, 10) == 0) {

/* event was signaled within timeout time, handle event */
} else {
/* event was not signaled within timeout time, handle timeout */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

161

10.2.4 OS_EVENT Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the
event object.

Prototype
void OS_EVENT_Set (OS_EVENT* pEvent)
Parameter Description
pEvent Pointer to the event object which should be set to signaled state.

Table 10.5: OS_EVENT_Set() parameter list

Additional Information

If no tasks are waiting at the event object, the event object is set to signaled state.
If at least one task is already waiting at the event object, all waiting tasks are
resumed and the event object is not set to the signaled state. peEvent has to address
an existing event object, which has to be created before by a call of
OS_EVENT_Create(). The debug version of embOS will check whether pEevent
addresses a valid event object and will call o0s_grror() with error code
OS_ERR_EVENT_INVALID in case of an error.

Example

The following printout shows an example using event objects to synchronize tasks to
a hardware initialization function. This sample application can be found in
MAIN_Event.c, which is delivered in the samples subdirectory of the embOS start
folder.

/*********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k***

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
LR SRR S S EE SRR EEE S

File : Main_EVENT.c
Purpose : Sample program for embOS using EVENT object
————————— END-OF-HEADER ——— === === mm e %/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/*********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k***/

/****** Interface to HW module ***********************‘k*‘k*‘k********‘k*/

void HW_Wait (void) ;
void HW_Free(void) ;
void HW_Init(void) ;

/~k****************‘k****************‘k*********************************/

/*k*k*k*k*k*k HW module *k*k*k*k*k****************k*k*****************************/

OS_STACKPTR int _StackHW[128]; /* Task stack */
OS_TASK _TCBHW; /* Task-control-block */

/****** lOCal data ****************‘k*****‘k********‘k******************/

static OS_EVENT _HW_Event;

/****** local ful’lCthl’lS ***‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k***/

static void _HWTask (void) {
/* Initialize HW functionallity */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

162 CHAPTER 10 Event objects

0S_Delay (100) ;
/* Init done, send broadcast to waiting tasks */
HW_Free() ;
while (1) {
OS_Delay (40);

/****** global functions **/

void HW_Wait (void) {
OS_EVENT Wait (& HW_Event) ;

void HW_Free(void) {
OS_EVENT_Set (& _HW_Event) ;

void HW_Init (void) {
OS_CREATETASK (&_TCBHW, "HWTask", _HWTask, 25, _StackHW);
OS_EVENT_Create (& _HW_Event) ;

/**/

/***‘k*‘k**********************/

static void HPTask(void) {
HW_Wait () ; /* Wait until HW module is set up */
while (1) {
0S_Delay (50);

static void LPTask(void) {
HW_Wait () ; /* Wait until HW module is set up */
while (1) {
0S_Delay (200);

/***

*

* maln
**/

int main(void) {

0S_IncDI(); /* Initially disable interrupts */
0S_InitKern(); /* Initialize OS */
OS_InitHW() ; /* Initialize Hardware for OS */
HW_Init(); /* Initialize HW module */
/* You need to create at least one task before calling OS_Start() */

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 50, StackLP);
0S_SendString("Start project will start multitasking !\n");

OS_Start () ; /* Start multitasking */
return 0;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

163

10.2.5 OS_EVENT Reset()

Description
Resets the specified event object to non-signaled state.
Prototype
void OS_EVENT Reset (OS_EVENT* pEvent)
Parameter Description
pEvent Eg?:.er to the event object which should be reset to non-signaled

Table 10.6: OS_EVENT_Reset() parameter list

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

Example

OS_EVENT_Reset (& _HW_Event); /* Reset event object to non-signaled state */

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 10 Event objects

10.2.6 OS_EVENT Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to
non-signaled state.

Prototype
void OS_EVENT_Pulse (OS_EVENT* pEvent) ;
Parameter Description
pEvent Pointer to the event object which should be pulsed.

Table 10.7: OS_EVENT_Pulse() parameter list

Additional Information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains unsignaled. The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

165

10.2.7 OS_EVENT_Get()

Description
Returns the state of an event object.

Prototype
unsigned char OS_EVENT_Get (OS_EVENT* pEvent) ;

Parameter Description

pEvent Pointer to an event object who's state should be examined.
Table 10.8: OS_EVENT_Get() parameter list

Return value

0: Event object is not set to signaled state
1: Event object is set to signaled state.

Additional Information

By calling this function, the actual state of the event object remains unchanged.
pEvent has to address an existing event object, which has been created before by a
call of 0S_EVENT_cCreate(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call o0s_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER 10 Event objects

10.2.8 OS_EVENT Delete()

Description
Deletes an event object.

Prototype
void OS_EVENT_Delete (OS_EVENT* pEvent) ;

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 10.9: OS_EVENT_Delete() parameter list

Additional Information

To keep the system fully dynamic, it is essential that event objects can be created
dynamically. This also means there has to be a way to delete an event object when it
is no longer needed. The memory that has been used by the event object’s control
structure can then be reused or reallocated.

It is your responsibility to make sure that:

e the program no longer uses the event object to be deleted
e the event object to be deleted actually exists (has been created first)
e no tasks are waiting at the event object when it is deleted.

pEvent has to address an existing event object, which has been created before by a
call of 0S_EVENT_cCreate(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call os_Error() with error code
OS_ERR_EVENT_INVALID in case of an error. If any task is waiting at the event object
which is deleted, the debug version of embOS calls 0s_Error() with error code
OS_ERR_EVENT_DELETE. To avoid any problems, an event object should not be deleted
in @ normal application.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

167

Chapter 11

Heap type memory management

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 11 Heap type memory management

11.1 Introduction

ANSI C offers some basic dynamic memory management functions. These are mal-
loc, free, and realloc.

Unfortunately, these routines are not thread-safe, unless a special thread-safe imple-
mentation exists in the compiler specific runtime libraries; they can only be used
from one task or by multiple tasks if they are called sequentially. Therefore, embQOS
offer task-safe variants of these routines. These variants have the same names as
their ANSI counterparts, but are prefixed o0s_; they are called 0S_malloc(),
0S_free(), OS_realloc (). The thread-safe variants that embOS offers use the stan-
dard ANSI routines, but they guarantee that the calls are serialized using a resource
semaphore.

If heap memory management is not supported by the standard C-libraries for a spe-
cific CPU, embOS heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use any
resources if it is not referenced by the application (that is, if the application does not
use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory used
for the functions (known as heap) may fragment. This can lead to a situation where
the total amount of memory is sufficient, but there is not enough memory available
in a single block to satisfy an allocation request.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

169

11.2 API functions

3 o= 3

API routine Description D p @3

5 = P o
0S_malloc () Allocates a block of memory on the heap. XX
0S_free() Frees a block of memory previously allocated. XX
0S_realloc() Changes allocation size. XX

Table 11.1: Heap type memory manager API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 11 Heap type memory management

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

171

Chapter 12

Fixed block size memory pools

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER 12 Fixed block size memory pools

12.1 Introduction

Fixed block size memory pools contain a specific number of fixed-size blocks of mem-
ory. The location in memory of the pool, the size of each block, and the number of
blocks are set at runtime by the application via a call to the 0s_MEMF_CREATE () func-
tion. The advantage of fixed memory pools is that a block of memory can be allo-
cated from within any task in a very short, determined period of time.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

12.2 API functions

All API functions for fixed block size memory pools are prefixed 0S_MEMF_.

173

i i 3 | | |2
API routine Description ® 5 23
5 = |2 o
Create / Delete
OS_MEMF_Create Creates fixed block memory pool. X| X
OS_MEMF_Delete Deletes fixed block memory pool. XX
Allocation
Allocates memory block from a given mem-
OS_MEMF_Alloc ory pool. Wait indefinitely if no block is XX
available.
Allocates memory block from a given mem-
OS_MEMF_AllocTimed ory pool. Wait no longer than given time XX
limit if no block is available.
0S8 MEMF Request Alloca_tes block from a given memory pool, x| x!x!x
if available. Non-blocking.
Release
Releases memory block from a given mem-
OS_MEMF_Release
ory pool.
OS_MEMF_FreeBlock Releases memory block from any pool.
Info
0S. MEMF GetNumFreeBlocks Esgtljrns the number of available blocks in a x| %% x
OS_MEMF_TIsInPool Returns !'=0 if block is in memory pool. X[X| X[X
05_MEMF_GetMaxUsed Returns_the maximum number of _bIocks inalyivly x
pool which have been used at a time.
OS_MEMF_GetNumBlocks Returns the number of blocks in a pool. X[X|X|X
0S_MEMF_GetBlockSize Eg‘t;llrns the size of one block of a given x| x| x| x

Table 12.1: Memory pools API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 12 Fixed block size memory pools

12.2.1 OS_MEMF_Create()

Description
Creates and initializes a fixed block size memory pool.

Prototype

void OS_MEMF_Create (OS_MEMF* pMEMF,
void* pPool,
0S_Ul6 NumBlocks,
0S_Ul6 BlockSize);

Parameter Description

PMEMF Pointer to the control data structure of memory pool.
Pointer to memory to be used for the memory pool. Required size

Pool -)
B is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).
NumBlocks Number of blocks in the pool.
BlockSize Size in bytes of one block.

Table 12.2: OS_MEMF_Create() parameter list

Additional Information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for control and
debug purposes. It is guaranteed to be 0 in release or stack check builds. Before
using any memory pool, it has to be created. The debug version of libraries keeps
track of created and deleted memory pools. The release and stack check versions do
not.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

175

12.2.2 OS_MEMF_Delete()

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory
blocks inside this pool can no longer be used.

Prototype
void OS_MEMF_Delete (OS_MEMF* pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 12.3: OS_MEMF_Delete() parameter list

Additional Information

This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory pools.
For most applications it is preferred to have a static memory pool design; memory
pools are created at startup (before calling 0os_start ()) and will never be deleted.
The debug version of libraries mark the memory pool as deleted.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER 12 Fixed block size memory pools

12.2.3 0S_MEMF_Alloc()

Description
Requests allocation of a memory block. Waits until a block of memory is available.
Prototype
void* OS_MEMF_Alloc (OS_MEMF* pMEMF,
int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purpose only. Its
PUrbose value has no effect on program execution, but may be remem-
Bl bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.4: OS_MEMF_Alloc() parameter list

Return value
Pointer to the allocated block.
Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available. The retrieved pointer must be delivered to
OS_MEMF_Release () as a parameter to free the memory block. The pointer must not
be modified.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

177

12.2.4 OS_MEMF_AllocTimed)()

Description

Requests allocation of a memory block. Waits until a block of memory is available or
the timeout has expired.

Prototype

void* OS_MEMF_AllocTimed (OS_MEMF* pMEMF,
int Timeout,
int Purpose) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
. Time limit before timeout, given in ticks. 0 or negative values are
Timeout -
permitted.

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.5: OS_MEMF_AllocTimed()

Purpose

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired. The retrieved pointer
must be delivered to 0S_MEMF_Release() as parameter to free the memory block.
The pointer must not be modified.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER 12 Fixed block size memory pools

12.2.5 OS_MEMF_Request()

Description
Requests allocation of a memory block. Continues execution in any case.
Prototype
void* OS_MEMF_Request (OS_MEMF* pMEMF,
int Purpose) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.
This is a parameter which is used for debugging purpose only. Its
PUrbose value has no effect on program execution, but may be remem-
Bl bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 12.6: OS_MEMF_Request() parameter list

Return value

I=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

The calling task is never suspended by calling 0Ss_MEMF_Request (). The retrieved
pointer must be delivered to 0S_MEMF_Release () as parameter to free the memory
block. The pointer must not be modified.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

179

12.2.6 OS_MEMF_Release()

Description
Releases a memory block that was previously allocated.

Prototype

void OS_MEMF_Release (OS_MEMF* pMEMF,
void* pMemBlock) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Table 12.7: OS_MEMF_Release() parameter list

Additional Information

The pMemBlock pointer has to be the one that was delivered from any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER 12 Fixed block size memory pools

12.2.7 OS_MEMF_FreeBlock()

Description

Releases a memory block that was previously allocated. The memory pool does not
need to be denoted.

Prototype
void OS_MEMF_FreeBlock (void* pMemBlock) ;

Parameter Description
pMemBlock Pointer to the memory block to free.

Table 12.8: OS_MEMF_FreeBlock() parameter list

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. This function may be used instead of 0S_MEMF_Release (). It has the advan-
tage that only one parameter is needed. embOS itself will find the associated mem-
ory pool. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

181

12.2.8 0S_MEMF_GetNumBlocks()

Description

Information routine to examine the total number of available memory blocks in the
pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (0OS_MEMF* pMEMF) ;

Parameter Description

PMEMF Pointer to the control data structure of memory pool.
Table 12.9: 0S_MEMF_GetNumBlocks() parameter list

Return value

Returns the number of blocks in the specified memory pool. This is the value that
was given as parameter during creation of the memory pool.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 12 Fixed block size memory pools

12.2.9 0S_MEMF_GetBlockSize()

Description
Information routine to examine the size of one memory block in the pool.
Prototype
int OS_MEMF_GetBlockSize (OS_MEMF* pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 12.10: OS_MEMF_GetBlockSize() parameter list

Return value

Size in bytes of one memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

183

12.2.10 OS_MEMF_GetNumFreeBlocks()

Description
Information routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (0OS_MEMF* pMEMF) ;
Parameter Description
PMEMF Pointer to the control data structure of memory pool.

Table 12.11: OS_MEMF_GetNumFreeBlocks() parameter list

Return value

The number of free blocks actually available in the specified memory pool.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

184

CHAPTER 12 Fixed block size memory pools

12.2.11 OS_MEMF_GetMaxUsed()

Description

Information routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype

int OS_MEMF_GetMaxUsed (OS_MEMF* pMEMF) ;

Parameter

Description

PMEMF

Pointer to the control data structure of memory pool.

Table 12.12: OS_MEMF_GetMaxUsed() parameter list

Return value

Maximum number of blocks in the specified memory pool that were used concurrently
since the pool was created.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

185

12.2.12 0S_MEMF_IsInPool()

Description

Information routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype

char OS_MEMF_IsInPool (OS_MEMF* pMEMF,
void* pMemBlock) ;

Parameter Description
PMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block that should be checked

Table 12.13: OS_MEMF_IsInPool() parameter list

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 12 Fixed block size memory pools

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

187

Chapter 13
Stacks

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 13 Stacks

13.1 Introduction

The stack is the memory area used for storing the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt routines
also use the stack to save the return address and flag registers, except in cases
where the CPU has a separate stack for interrupt functions. Refer to the CPU &
Compiler Specifics manual of embOS documentation for details on your processor's
stack. A “normal” single-task program needs exactly one stack. In a multitasking
system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of
the memory that is not reserved for the stack will be overwritten, and a serious pro-
gram failure is most likely to occur. embOS monitors the stack size (and, if available,
also interrupt stack size in the debug version), and calls the failure routine
OS_Error () if it detects a stack overflow. However, embOS cannot reliably detect a
stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a waist
of memory. To detect a stack overflow, the debug and stack check builds of embQOS
fill the stack with control characters when it is created and check these characters
every time the task is deactivated. If an overflow is detected, 0s_Error () is called.

13.1.1 System stack

Before embOS takes over control (before the call to 0s_start()), a program does
use the so-called system stack. This is the same stack that a non-embQOS program for
this CPU would use. After transferring control to the embOS scheduler by calling
0s_start (), the system stack is used only when no task is executed for the follow-
ing:

e embOS scheduler

e embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.

13.1.2 Task stack

Each embOS task has a separate stack. The location and size of this stack is defined
when creating the task. The minimum size of a task stack pretty much depends on
the CPU and the compiler. For details, see the CPU & Compiler Specifics manual of
embOS documentation.

13.1.3 Interrupt stack

To reduce stack size in a multitasking environment, some processors use a specific
stack area for interrupt service routines (called a hardware interrupt stack). If there
is no interrupt stack, you will have to add stack requirements of your interrupt ser-
vice routines to each task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may support a
separate stack for interrupts by calling the function 0S_EnterIntStack() at begin-
ning of an interrupt service routine and 0s_LeaveIntStack () at its very end. In case
the CPU already supports hardware interrupt stacks or if a separate interrupt stack is
not supported at all, these function calls are implemented as empty macros.

We recommend using 0S_EnterIntStack() and 0S_LeaveIntStack() even if there is
currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embOS with support for
an interrupt stack for your CPU. For details about interrupt stacks, see the CPU &
Compiler Specifics manual of embOS documentation.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

189

13.2 API functions

3 o= 3

Routine Description o & 3

5 = 0 o

0S_GetStackBase () Returns the base address of a task stack. X[X|X|X
0S_GetStackSize () Returns the size of a task stack. X|X|X]|X
0S_GetStackSpace () Returns the unused portion of a task stack. X[X|X|X
0S_GetStackUsed () Returns the used portion of a task stack. X | X|X| X

Table 13.1: Stacks API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

190

CHAPTER 13

13.2.1 OS_GetStackBase()

Stacks

Description
Returns a pointer to the base of a task stack.
Prototype
OS_STACKPTR* 0OS_GetStackBase (0OS_TASK* pTask) ;
Parameter Description
The task who's stack base has to be returned.
pTask
NULL means current task.

Table 13.2: OS_GetStackBase() parameter list

Return value

The pointer to the base address of the task stack.

Additional Information

This function is only available in the debug and stack check builds of embQOS, because
only these builds initialize the stack space used for the tasks.

Example

void CheckSpace (void) {
printf ("Addr Stack[0] $x", 0OS_GetStackBase (&TCB[0]) ;

0S_Delay (1000) ;

printf ("Addr Stack[1] $x", 0OS_GetStackBase (&TCB[1]);

0S_Delay (1000) ;
}

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

13.2.2 OS_GetStackSize()

Description

Returns the size of a task stack.

191

Prototype
int OS_GetStackSize (0OS_TASK* pTask) ;
Parameter Description
The task who's stack size should be checked.
pTask
NULL means current task.

Table 13.3: OS_GetStackSize() parameter list

Return value
The size of the task stack in bytes.

Additional Information

This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Example

void CheckSpace (void) {

printf("Size Stack[0] %d", 0S_GetStackSize (&TCB[O0]) ;

0S_Delay (1000) ;

printf("Size Stack[1l] %d", 0S_GetStackSize(&TCBI[1l]);

0S_Delay (1000) ;

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 13 Stacks

13.2.3 OS_GetStackSpace()

Description
Returns the unused portion of a task stack.

Prototype
int OS_GetStackSpace (0OS_TASK* pTask) ;

Parameter Description

The task who's stack space has to be checked.
NULL means current task.
Table 13.4: OS_GetStackSpace() parameter list

pTask

Return value
The unused portion of the task stack in bytes.
Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.

However, the required stack size can be calculated using the function
0S_GetStackSpace (), which returns the number of unused bytes on the stack. If
there is a lot of space left, you can reduce the size of this stack and vice versa.

This function is only available in the debug and stack check builds of embQOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSpace (void) {
printf ("Unused Stack[0] %d", 0OS_GetStackSpace (&TCB[0]) ;
0S_Delay (1000) ;
printf ("Unused Stack[1] %d", 0OS_GetStackSpace (&TCB[1]);
0S_Delay (1000) ;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

193

13.2.4 OS_GetStackUsed()

Description
Returns the used portion of a task stack.

Prototype
int OS_GetStackUsed (OS_TASK* pTask) ;

Parameter Description

The task who's stack usage has to be checked.
NULL means current task.
Table 13.5: OS_GetStackUsed() parameter list

pTask

Return value
The used portion of the task stack in bytes.
Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.

However, the required stack size can be calculated using the function
0S_GetStackUsed (), which returns the number of used bytes on the stack. If there is
a lot of space left, you can reduce the size of this stack and vice versa.

This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSpace (void) {
printf ("Used Stack[0] %$d", 0S_GetStackUsed (&TCB[0]) ;
0S_Delay (1000) ;
printf ("Used Stack[1] %$d", 0S_GetStackUsed (&TCB[1]) ;
0S_Delay (1000) ;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 13 Stacks

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

195

Chapter 14

Interrupts

This chapter explains how to use interrupt service routines (ISRs) in cooperation with
embOS. Specific details for your CPU and compiler can be found in the CPU & Com-
piler Specifics manual of the embOS documentation.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 14 Interrupts

14.1 What are interrupts?

Interrupts are interruptions of a program caused by hardware. When an interrupt
occurs, the CPU saves its registers and executes a subroutine called an interrupt ser-
vice routine, or ISR. After the ISR is completed, the program returns to the high-
est-priority task in the READY state. Normal interrupts are maskable; they can occur
at any time unless they are disabled with the CPU's “disable interrupt” instruction.
ISRs are also nestable - they can be recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very
quickly to external events such as the status change on an input, the expiration of a
hardware timer, reception or completion of transmission of a character via serial
interface, or other types of events. Interrupts effectively allow events to be pro-
cessed as they occur.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

197

14.2 Interrupt latency

Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the interrupt service routine.

Every computer system has an interrupt latency. The latency depends on various fac-
tors and differs even on the same computer system. The value that one is typically
interested in is the worst case interrupt latency.

The interrupt latency is the sum of a lot of different smaller delays explained below.

14.2.1 Causes of interrupt latencies

The first delay is typically in the hardware: The interrupt request signal needs to
be synchronized to the CPU clock. Depending on the synchronization logic, typi-
cally up to 3 CPU cycles can be lost before the interrupt request has reached the
CPU core.

The CPU will typically complete the current instruction. This instruction can take
a lot of cycles; on most systems, divide, push-multiple, or memory-copy instruc-
tions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for mem-
ory access. In an ARM7 system, the instruction sTMDB SP!, {R0O-R11,LR}; (Push
parameters and perm. register) is typically the worst case instruction. It stores
13 32-bit registers on the stack. The CPU requires 15 clock cycles.

The memory system may require additional cycles for wait states.

After the current instruction is completed, the CPU performs a mode switch or
pushes registers (typically, PC and flag registers) on the stack. In general, mod-
ern CPUs (such as ARM) perform a mode switch, which requires less CPU cycles
than saving registers.

Pipeline fill

Most modern CPUs are pipelined. Execution of an instruction happens in various
stages of the pipeline. An instruction is executed when it has reached its final
stage of the pipeline. Because the mode switch has flushed the pipeline, a few
extra cycles are required to refill the pipeline.

14.2.2 Additional causes for interrupt latencies

There can be additional causes for interrupt latencies.
These depend on the type of system used, but we list a few of them.

Latencies caused by cache line fill.

If the memory system has one or multiple caches, these may not contain the
required data. In this case, not only the required data is loaded from memory,
but in a lot of cases a complete line fill needs to be performed, reading multiple
words from memory.

Latencies caused by cache write back.

A cache miss may cause a line to be replaced. If this line is marked as dirty, it
needs to be written back to main memory, causing an additional delay.

Latencies caused by MMU translation table walks.

Translation table walks can take a considerable amount of time, especially as
they involve potentially slow main memory accesses. In real-time interrupt han-
dlers, translation table walks caused by the TLB not containing translations for
the handler and/or the data it accesses can increase interrupt latency signifi-
cantly.

Application program.

Of course, the application program can cause additional latencies by disabling
interrupts. This can make sense in some situations, but of course causes add.
latencies.

Interrupt routines.

On most systems, one interrupt disables further interrupts. Even if the interrupts
are re-enabled in the ISR, this takes a few instructions, causing add. latency.
RTOS (Real-time Operating system).

An RTOS also needs to temporarily disable the interrupts which can call API-func-
tions of the RTOS. Some RTOSes disable all interrupts, effectively increasing

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER 14 Interrupts

interrupt latencies for all interrupts, some (like embOS) disable only low-priority
interrupts and do thereby not affect the latency of high priority interrupts.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

199

14.3 Zero interrupt latency

Zero interrupt latency in the strict sense is not possible as explained above. What we
mean when we say “Zero interrupt latency” is that the latency of high-priority inter-
rupts is not affected by the RTOS; a system using embOS will have the same worst-
case interrupt latency for high priority interrupts as a system running without
embOS.

Why is Zero latency important?

In some systems, a maximum interrupt response time or latency can be clearly
defined. This max. latency can arise from requirements such as maximum reaction
time for a protocol or a software UART implementation that requires very precise tim-
ing.

One customer implemented a UART receiving at up to 800KHz in software using FIQ
(fast interrupt) on a 48 MHz ARM7. This would be impossible to do if fast interrupts
were disabled even for short periods of time.

In a lot of embedded systems, the quality of the product depends on the reaction
time and therefor latency. Typical examples would be systems which periodically read
a value from an A/D converter at high speed, where the accuracy depends on accurat
timing. Less jitter means a better product.

Why can high prio ISR not use the OS API ?

embOS disables low prio interrupts when embQOS data structures are modified. Dur-
ing this time high prio ISR are enabled, if they would call an embQOS function, which
also modifies embOS data, the embOS data structures would be corrupt.

How can High Prio ISR communicate with a task ?

The most common way is to use global variables, e.g. a perioically read from an ADC
and the result is stored in a global variable

Another way is to set in your high prio ISR an Interrupt request for low prio ISR,
which can then communicate or wake up one or more tasks. This might be helpfull if
you want receive serveral data in your high prio ISR and you low prio ISR will then
store the data bytes in a Message queue.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 14 Interrupts

14.4 High / low priority interrupts

Most CPUs support interrupts with different priorities. Different priorities have two
effects:

e If different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and its ISR is executed first.

e Interrupts can never be interrupted by other interrupts of the same or lower level
of priority.

How many different levels of interrupts there are depend on the CPU and the inter-
rupt controller. Details are explained in the CPU/MCU/SOC manuals and the CPU &
Compiler Specifics manual of embOS. embOS distinguishes two different levels of
interrupts: High / Low priority interrupts. The embOS port specific documentation
explains where “the line is drawn”, which interrupts are considered high and which
interrupts are considered low priority. In general, the differences are:

Low priority interrupts

e May call embOS API functions

e Latencies caused by embOS

High priority interrupts

e May not call embOS API functions

e No Latencies caused by embOS (Zero latency)
Example of different interrupt priority levels

Let's assume we have a CPU which support 8 interrupt priority levels. With embOS, the 3
highest priority levels are treated as “High priority interrupts”. ARM CPUs support
normal interrupts (IRQ) and fast interrupt (FIQ). Using embQOS, the FIQ is treated as
“High priority interrupt”. With most implementations, the high-priority threshold is
adjustable. For details, refer to the processor specific embOS manual.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

201

14.5 Rules for interrupt handlers

14.5.1 General rules

There are some general rules for interrupt service routines (ISRs). These rules apply
to both single-task programming as well as to multitask programming using embOS.

e ISR preserve all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make sure
that all registers modified during interrupt execution are saved at the beginning
and restored at the end of the interrupt routine

e Interrupt handlers have to be finished quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt han-
dler should only be used for storing a received value or to trigger an operation in
the regular program (task). It should not wait in any form or perform a polling
operation.

14.5.2 Additional rules for preemptive multitasking

A preemptive multitasking system like embOS needs to know if the program that is
executing is part of the current task or an interrupt handler. This is because embQOS
cannot perform a task switch during the execution of an ISR; it can only do so at the
end of an ISR.

If a task switch were to occur during the execution of an ISR, the ISR would continue
as soon as the interrupted task became the current task again. This is not a problem
for interrupt handlers that do not allow further interruptions (which do not enable
interrupts) and that do not call any embOS functions.

This leads us to the following rule:

e ISR that re-enable interrupts or use any embOS function need to call
0S_EnterInterrupt () at the beginning, before executing any other command,
and before they return, call 0s_LeaveInterrupt () as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in the
routine 0s_LeaveInterrupt (). The end of the ISR is executed at a later point, when
the interrupted task is made ready again. If you debug an interrupt routine, do not
be confused. This has proven to be the most efficient way of initiating a task switch
from within an interrupt service routine.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 14 Interrupts

14.6 API functions

Before calling any embOS function from within an ISR, embOS has to be informed
that an interrupt service routine is running.

3 o= 3
Routine Description A
5 = |® o
0S_DI() Disables interrupts. Does not change the
. . X X
interrupt disable counter.
OS_EI() Unconditionally enables Interrupt. X
0S_IncDI () Increments the interrupt disable counter
. . X| X
(os_bpi1cnt) and disables interrupts.
OS_RestoreI () Restores the status of the interrupt flag, x| % x
based on the interrupt disable counter.
0S_DecRI () Decrements the counter and enables
. . X| X| XX
interrupts if the counter reaches 0.
OS_EnterInterrupt () Informs embOS that interrupt code is X
executing.
0S_LeaveInterrupt () Informs embOS that the end of the inter-
rupt routine has been reached; executes X
task switching within ISR.
OS_EnterNestableInterrupt () | Informs embOS that interrupt code is
executing and reenables interrupts. X
0S_LeaveNestableInterrupt () | Informs embOS that the end of the inter-
rupt routine has been reached; executes X
task switching within ISR.
0S_CallISR() Interrupt entry function.
0S_CallNestableISR() Interrupt entry function supporting
nestable interrupts.

Table 14.1: Interrupt API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

203

14.6.1 0OS_cCallISR()

Description
Entry function for use in an embOS interrupt handler. Nestable interrupts disabled.

Prototype

void O0S_CallISR (void (*pRoutine) (void)) ;

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 14.2: OS_CallISR() parameter list

Additional Information

0S_CallISR() can be used as entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
0S_CallIsr() sets the interrupt priority of the CPU to the user definable ‘fast’ inter-
rupt priority level, thus locking any other embOS interrupt.

Fast interrupts are not disabled.

Note: For some specific CPUs 0s_callIsr() has to be used to call an interrupt
handler because 0S_EnterInterrupt() / 0OS_LeavelInterrupt() may not be avail-
able.

Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
0S_CallISR(_IsrTickHandler) ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 14 Interrupts

14.6.2 OS_CallNestablelSR()

Description
Entry function for use in an embOS interrupt handler. Nestable interrupts enabled.

Prototype
void 0S_CallNestableISR (void (*pRoutine) (void));

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 14.3: OS_CallNestableISR() parameter list

Additional Information

0S_CallNestableISR() can be used as entry function in an embOS interrupt handler,
when interruption by higher prioritized embOS interrupts should be allowed.
0S_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Note: For some specific CPUs 0s_cCallNestableISR() has to be used to call an
interrupt handler because 0S_EnterNestableInterrupt () /
0S_LeaveNestableInterrupt () may not be available.

Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
0S_CallNestableISR(_IsrTickHandler) ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

205

14.6.3 OS_Enterinterrupt()

Note: This function may not be available in all ports.
Description
Informs embOS that interrupt code is executing.

Prototype

void OS_EnterInterrupt (void);

Additional Information

If 0S_EnterInterrupt () is used, it should be the first function to be called in the
interrupt handler. It must be used with 0s_LeaveInterrupt() as the last function
called. The use of this function has the following effects, it:

e disables task switches
e keeps interrupts in internal routines disabled.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 14 Interrupts

14.6.4 OS_Leavelnterrupt()

Note: This function may not be available in all ports.
Description

Informs embOS that the end of the interrupt routine has been reached; executes
task switching within ISR.

Prototype

void 0OS_LeavelInterrupt (void);

Additional Information

If 0S_LeaveInterrupt () is used, it should be the last function to be called in the
interrupt handler. If the interrupt has caused a task switch, it will be executed
(unless the program which was interrupted was in a critical region).

14.6.5 Example using OS_Enterinterrupt()/OS_Leavelnterrupt()
Interrupt routine using 0S_EnterInterrupt()/0S_LeaveInterrupt ():

__interrupt void ISR_Timer (void) {
OS_EnterInterrupt() ;
0S_SignalEvent (1, &Task);/* Any functionality could be here */
0S_LeavelInterrupt () ;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

207

14.7 Enabling / disabling interrupts from C

During the execution of a task, maskable interrupts are normally enabled. In certain
sections of the program, however, it can be necessary to disable interrupts for short
periods of time to make a section of the program an atomic operation that cannot be
interrupted. An example would be the access to a global volatile variable of type long
on an 8/16-bit CPU. To make sure that the value does not change between the two or
more accesses that are needed, the interrupts have to be temporarily disabled:

Bad example:

volatile long lvar;

void routine (void) {
lvar ++;

}

The problem with disabling and re-enabling interrupts is that functions that disable/
enable the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended to use the functions that
embOS offers (to be precise, they only look like functions, but are macros in reality).
If you do not use these recommended embOS functions, you may run into a problem
if routines which require a portion of the code to run with disabled interrupts are
nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also,
you should not call routines when interrupts are disabled, because this could lead to
long interrupt latency times (the longer interrupts are disabled, the higher the inter-
rupt latency). As long as you only call embOS functions with interrupts enabled, you
may also safely use the compiler-provided intrinsics to disable interrupts.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

208 CHAPTER 14 Interrupts

14.7.1 OS_IncDI() / OS_DecRI()

The following functions are actually macros defined in RT0S.h, so they execute very
quickly and are very efficient. It is important that they are used as a pair: first
0S_IncDI(), then 0S_DecRI().

OS_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable
counter (0s_bpicnt) and disables interrupts.

0S_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and
enables interrupts if the counter reaches 0.

Example

volatile long lvar;

void routine (void) {
0S_IncDI();
lvar ++;
0OS_DecRI () ;

}

0S_IncDI () increments the interrupt disable counter which is used for the entire OS
and is therefore consistent with the rest of the program in that any routine can be
called and the interrupts will not be switched on before the matching 0s_becR1 () has
been executed.

If you need to disable interrupts for a short moment only where no routine is called,
as in the example above, you could also use the pair 0s_DI() and 0S_RestoreI().
These are a bit more efficient because the interrupt disable counter 0s_bpicnt is not
modified twice, but only checked once. They have the disadvantage that they do not
work with routines because the status of 0s_bicnt is not actually changed, and they
should therefore be used with great care. In case of doubt, use 0S_IncDI() and
OS_DecRI ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

209

14.7.2 OS_DI() / OS_EI() / OS_Restorel()
0S_DI()

Short for Disable Interrupts. Disables interrupts. Does not change the interrupt
disable counter.

OS_EK()

Short for Enable Interrupts. Refrain from using this function directly unless you are
sure that the interrupt enable count has the value zero, because it does not take the
interrupt disable counter into account.

OS_Restorel()

Short for Restore Interrupts. Restores the status of the interrupt flag, based on the
interrupt disable counter.

Example

volatile long lvar;

void routine (void) {
O0S_DI();
lvar++;
OS_RestoreI();

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER 14 Interrupts

14.8 Definitions of interrupt control macros (in RTOS.h)

#define 0S_IncDI () { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT _DICnt(); if (--0S_DICnt==0) OS_EI(); }
#define OS_RestorelI () { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); 1}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

211

14.9 Nesting interrupt routines

By default, interrupts are disabled in an ISR because the CPU disables interrupts with
the execution of the interrupt handler. Re-enabling interrupts in an interrupt handler
allows the execution of further interrupts with equal or higher priority than that of
the current interrupt. These are known as nested interrupts, illustrated in the dia-
gram below:

Task ISR1 ISR2 ISR3

< Interrupt 1

< Interrupt 2

Interrupt 3

Time

ID

For applications requiring short interrupt latency, you may re-enable interrupts inside
an ISR by using 0S_EnterNestableInterrupt () and 0S_LeaveNestableInterrupt ()
within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is not
really recommended to enable interrupts within an interrupt handler. As it is impor-
tant that embOS keeps track of the status of the interrupt enable/disable flag, the
enabling and disabling of interrupts from within an ISR has to be done using the
functions that embOS offers for this purpose.

The routine 0S_EnterNestableInterrupt() enables interrupts within an ISR and
prevents further task switches; 0S_LeaveNestableInterrupt () disables interrupts
right before ending the interrupt routine again, thus restores the default condition.
Re-enabling interrupts will make it possible for an embOS scheduler interrupt to
shortly interrupt this ISR. In this case, embOS needs to know that another ISR is still
running and that it may not perform a task switch.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 14 Interrupts

14.9.1 OS_EnterNestablelnterrupt()

Note: This function may not be available in all ports.
Description

Re-enables interrupts and increments the embOS internal critical region counter,
thus disabling further task switches.

Prototype
void OS_EnterNestableInterrupt (void) ;

Additional Information

This function should be the first call inside an interrupt handler when nested inter-
rupts are required. The function 0S_EnterNestableInterrupt () is implemented as a
macro and offers the same functionality as 0S_EnterInterrupt () in combination
with 0s_DecR1I (), but is more efficient, resulting in smaller and faster code.

Example

Refer to the example for 0S_LeaveNestableInterrupt ()

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

213

14.9.2 OS_LeaveNestablelnterrupt()

Note: This function may not be available in all ports.

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype

void OS_LeaveNestableInterrupt (void);

Additional Information

This function is the counterpart of 0S_EnterNestableInterrupt (), and has to be the
last function call inside an interrupt handler when nested interrupts have earlier been
enabled by 0S_EnterNestableInterrupt ().

The function 0S_LeaveNestableInterrupt () is implemented as a macro and offers
the same functionality as 0S_LeaveInterrupt() in combination with 0S_IncDI(),
but is more efficient, resulting in smaller and faster code.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER 14 Interrupts

14.10 Non-maskable interrupts (NMis)

embOS performs atomic operations by disabling interrupts. However, a non-maskable
interrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations.
Therefore, NMIs should be used with great care and may under no circumstances call
any embOS routines.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

215

Chapter 15

Critical Regions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

216 CHAPTER 15 Critical Regions

15.1 Introduction

Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed except
in situations where the running task has to wait. Effectively, preemptions are
switched off.

A typical example for a critical region would be the execution of a program section
that handles a time-critical hardware access (for example writing multiple bytes into
an EEPROM where the bytes have to be written in a certain amount of time), or a
section that writes data into global variables used by a different task and therefore
needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outermost
loop is left. Interrupts are still legal in a critical region. Software timers and inter-
rupts are executed as critical regions anyhow, so it does not hurt but does not do any
good either to declare them as such. If a task switch becomes due during the execu-
tion of a critical region, it will be performed right after the region is left.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

15.2 API functions

217

Routine

Description

urew
yselL
HSlI
FETTINE

OS_EnterRegion ()

Indicates to the OS the beginning of a critical

region.

0S_LeaveRegion ()

Indicates to the OS the end of a critical region.

x| X
x| X
x

x| X

Table 15.1: Critical regions API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER 15 Critical Regions

15.2.1 OS_EnterRegion()

Description
Indicates to the OS the beginning of a critical region.

Prototype

void OS_EnterRegion (void);

Additional Information

OS_EnterRegion () is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Using the macro indicates to embQOS
the beginning of a critical region. A critical region counter (0S_RegionCnt), which is 0
by default, is incremented so that the routine can be nested. The counter will be dec-
remented by a call to the routine 0s_LeaveRegion (). If this counter reaches 0 again,
the critical region ends. Interrupts are not disabled using 0S_EnterRegion(); how-
ever, disabling interrupts will disable preemptive task switches.

Example

void SubRoutine (void) {
OS_EnterRegion() ;
/* this code will not be interrupted by the 0S */
0S_LeaveRegion() ;

}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

219

15.2.2 OS_LeaveRegion()

Description
Indicates to the OS the end of a critical region.

Prototype

void OS_LeaveRegion (void) ;

Additional Information

0S_LeaveRegion () is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Usage of the macro indicates to
embOS the end of a critical region. A critical region counter (0S_RegionCnt), which is
0 by default, is decremented. If this counter reaches 0 again, the critical region ends.

Example

Refer to the example for 0S_EnterRegion () .

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

220 CHAPTER 15 Critical Regions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

221

Chapter 16

Time measurement

embOS supports 2 types of time measurement:

e Low resolution (using a time variable)
e High resolution (using a hardware timer)

Both are explained in this chapter.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

222 CHAPTER 16 Time measurement

16.1 Introduction

embOS supports two basic types of run-time measurement which may be used for
calculating the execution time of any section of user code. Low-resolution measure-
ments use a time base of ticks, while high-resolution measurements are based on a
time unit called a cycle. The length of a cycle depends on the timer clock frequency.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

223

16.2 Low-resolution measurement

The system time variable 0s_Time is measured in ticks, or ms. The low-resolution
functions 0S_GetTime () and 0S_GetTime32 () are used for returning the current con-
tents of this variable. The basic idea behind low-resolution measurement is quite
simple: The system time is returned once before the section of code to be timed and
once after, and the first value is subtracted from the second to obtain the time it took
for the code to execute.

The term low-resolution is used because the time values returned are measured in
completed ticks. Consider the following: with a normal tick of 1 ms, the variable
0S_Time is incremented with every tick-interrupt, or once every ms. This means that
the actual system time can potentially be more than what a low-resolution function
will return (for example, if an interrupt actually occurs at 1.4 ticks, the system will
still have measured only 1 tick as having elapsed). The problem becomes even
greater with runtime measurement, because the system time must be measured
twice. Each measurement can potentially be up to 1 tick less than the actual time, so
the difference between two measurements could theoretically be inaccurate by up to
two ticks.

The following diagram illustrates how low-resolution measurement works. We can see
that the section of code actually begins at 0.5 ms and ends at 5.2 ms, which means
that its actual execution time is (5.2 - 0.5) = 4.7 ms. However with a tick of 1 ms,
the first call to 0s_GetTime () returns 0, and the second call returns 5. The measured
execution time of the code would therefore result in (5 - 0) = 5 ms.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS_Tlme 0.5ms 5.2ms

0O ms 1 ms 2ms 3ms 4ms 5ms 6 ms

For many applications, low-resolution measurement may be fully sufficient for your
needs. In some cases, it may be more desirable than high-resolution measurement
due to its ease of use and faster computation time.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

224

16.2.1 API functions

CHAPTER 16 Time measurement

Routine

Description

0S_GetTime ()

Returns the current system time in ticks.

0S_GetTime32 ()

Returns the current system time in ticks as a

32-bit value.

< || urew
< | x| ASEelL
x |x| dSI
> || 49WiL

Table 16.1: Low-resolution measurement API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

225

16.2.1.1 OS_GetTime()
Description

Returns the current system time in ticks.

Prototype

int OS_GetTime (void);

Return value
The system variable 0s_Time as a 16- or 32-bit integer value.
Additional Information

This function returns the system time as a 16-bit value on 8/16-bit CPUs, and as a
32-bit value on 32-bit CPUs. The 0s_Time variable is a 32-bit value. Therefore, if the
return value is 32-bit, it is simply the entire contents of the 0os_Time variable. If the
return value is 16-bit, it is the lower 16 bits of the 0s_Time variable.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

226 CHAPTER 16 Time measurement

16.2.1.2 OS_GetTime32()

Description
Returns the current system time in ticks as a 32-bit value.

Prototype
U32 0S_GetTime32 (void);

Return value
The system variable 0s_Time as a 32-bit integer value.
Additional Information

This function always returns the system time as a 32-bit value. Because the 0s_Time
variable is also a 32-bit value, the return value is simply the entire contents of the
0S_Time variable.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

227

16.3 High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling
builds of embQOS, allowing for fine-tuning of time measurement. While system resolu-
tion depends on the CPU used, it is typically about 1 ps, making high-resolution mea-
surement about 1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the illustra-
tion below, which measures the execution time of the same code used in the low-res-
olution calculation. For this example, we assume that the CPU has a timer running at
10 MHz and is counting up. The number of cycles per tick is therefore (10 MHz / 1
kHz) = 10,000. This means that with each tick-interrupt, the timer restarts at 0 and
counts up to 10,000.

OS_GetTime() =>0 OS_GetTime() =>5

Code to be timed

OS—T"ne 0.5ms 5.2ms

0O ms 1ms 2ms 3ms 4ms 5 ms 6 ms

The call to os_Timing_Start () calculates the starting value at 5,000 cycles, while
the call to os_Timing_End() calculates the ending value at 52,000 cycles (both val-
ues are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 - 5,000) = 47,000 cycles, which corresponds to
4.7 ms.

Although the function 0s_Timing_GetCycles () may be used for returning the execu-
tion time in cycles as above, it is typically more common to use the function
0S_Timing_Getus (), which returns the value in microseconds (us). In the above
example, the return value would be 4,700 ps.

Data structure

All high-resolution routines take as parameter a pointer to a data structure of type
0S_TIMING, defined as follows:

#define OS_TIMING OS_U32

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER 16 Time measurement

16.3.1 API functions

Routine Description

urew
jsel
dsl
FETTINE

Marks the beginning of a code section to be

0S_TimingStart () timed. X | X X

0S_TimingEnd () Marks the end of a code section to be timed. XX X
Returns the execution time of the code

0S_Timing Getus () between 0s_Timing Start () and X| X | XX

0S_Timing_End() in microseconds.

Returns the execution time of the code
0S_Timing_GetCycles () between 0S_Timing_Start () and XX X[X
0S_Timing_End() in cycles.
Table 16.2: High-resolution measurement API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

229

16.3.1.1 OS_Timing_Start()

Description

Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start (OS_TIMING* pCycle);

Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 16.3: OS_TimingStart() parameter list

Additional Information

This function must be used with 0s_Timing_ End().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER 16 Time measurement

16.3.1.2 OS_Timing_End()

Description

Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End (OS_TIMING* pCycle);
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 16.4: OS_TimingEnd() parameter list

Additional Information

This function must be used with 0s_Timing_Start ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

231

16.3.1.3 OS_Timing_Getus()

Description

Returns the execution time of the code between 0S_Timing_ Start() and
0S_Timing_End() in microseconds.

Prototype
0S_U32 0OS_Timing_Getus (OS_TIMING* pCycle);

Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 16.5: OS_Timing_Getus() parameter list

Additional Information

The execution time in microseconds (Js) as a 32-bit integer value.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

232 CHAPTER 16 Time measurement

16.3.1.4 OS_Timing_GetCycles()

Description
Returns the execution time of the code between 0S_Timing_Start() and
0S_Timing_End() in cycles.
Prototype
0S_U32 0OS_Timing_GetCycles (OS_TIMING* pCycle) ;
Parameter Description
pCycle Pointer to a data structure of type 0S_TIMING.

Table 16.6: OS_Timing_GetCycles() parameter list

Return value

The execution time in cycles as a 32-bit integer.
Additional Information

Cycle length depends on the timer clock frequency.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

User & reference guide for embOS

16.4 Example

233

The following sample demonstrates the use of low-resolution and high-resolution

measurement to return the execution time of a section of code:

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*‘k*‘k*‘k********‘k*‘k***‘k*‘k

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
R R S I I S R I I R S R I R R I R S R S R

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
—————————————— END-OF -HEADER-——-—————————————— e _% /

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode (void) {

for (Dummy=0; Dummy < 11000; Dummy++) ; /* Burn some time */
}
/*k
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes (void) {
int t;
t = 0S_GetTime();
UserCode () ; /* Execute the user code to be benchmarked */
t = 0S_GetTime() - t;
return t;
}
/*
* Measure the execution time with hi resolution and return it in us
*/
0S_U32 BenchmarkHiRes (void) {
0S_U32 t;
OS_Timing_Start (&t) ;
UserCode () ; /* Execute the user code to be benchmarked */

OS_Timing_End(&t) ;
return 0OS_Timing_Getus (&t) ;
}

void Task(void) {
int tLo;
0S_U32 tHi;
char ac[80];
while (1) {
tLo = BenchmarkLoRes () ;
tHi = BenchmarkHiRes () ;
sprintf (ac, "LoRes: %d ms\n", tLo);
0S_SendString(ac) ;
sprintf (ac, "HiRes: %d us\n", tHi);
0S_SendString(ac) ;
}
}

/*~k~k~k~k~k~k***********~k~k~k~k~k~k**********************************
*

* main

*
~k~k~k~k~k~k~k~k***********~k~k~k~k~k~k*********************************/

void main(void) {

0OS_InitKern() ; /* Initialize OS */
0OS_InitHW() ; /* Initialize Hardware for 0S */
/* You need to create at least one task here ! */
OS_CREATETASK (&TCB, "HP Task", Task, 100, Stack);

0S_Start () ; /* Start multitasking */

© 2009 SEGGER Microcontroller GmbH & Co. KG

234 CHAPTER 16 Time measurement

The output of the sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

235

Chapter 17

System variables

The system variables are described here for a deeper understanding of how the OS
works and to make debugging easier.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

236 CHAPTER 17 System variables

17.1 Introduction

Note: Do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should only be
altered by functions of embOS. However, some of these variables can be very useful,
especially the time variables.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

237

17.2 Time variables
17.2.1 OS Time

Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Prototype

extern volatile 0OS_I32 OS_Time;

Additional Information

The time variable has a resolution of one time unit, which is normally 1/1000 sec
(1 ms) and is normally the time between two successive calls to the embQOS interrupt
handler. Instead of accessing this variable directly, use 0S_GetTime() or
0S_GetTime32 () as explained in the Chapter Time measurement on page 221.

17.2.2 OS _TimeDex

Basically, for internal use only. Contains the time at which the next task switch or
timer activation is due. If ((int) (0S_Time - 0S_TimeDex)) >= 0, the task list and
timer list will be checked for a task or timer to activate. After activation, 0s_TimeDex
will be assigned the time stamp of the next task or timer to be activated.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER 17 System variables

17.3 OS internal variables and data-structures

embOS internal variables are not explained here as they are in no way required to
use embOS. Your application should not rely on any of the internal variables, as only
the documented API functions are guaranteed to remain unchanged in future
versions of embOS.

Important

Do not alter any system variables.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

239

Chapter 18
System tick

This chapter explains the concept of the system tick, generated by a hardware timer
and all options available for it.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER 18 System tick

18.1 Introduction

Typically a hardware timer generates periodic interrupts used as a time base for the
0S. The interrupt service routine then calls one of the tick handlers of the OS.
embOS offers tick handlers with different functionality as well as a way to call a hook
function from within the system tick handler.

Generating timer interrupts

The hardware timer is normally initialized in the os_1nitHw () function which is deliv-
ered with the BSP. The BSP also includes the interrupt handler which is called by the
hardware timer interrupt. This interrupt handler has to call one of the embOS system
tick handler functions which are explained in this chapter.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

18.2 Tick handler

241

The interrupt service routine used as time base needs to call a tick handler. There are
different tick handlers available; one of these need to be called. The reason why
there are different tick handlers is simple: They differ in capabilities, code size and
execution speed. Most application use the standard tick handler 0s_TICK_Handle(),
which increments the tick count by one every time it is called. This tick handler is
small and efficient, but it can not handle situations where the interrupt rate is differ-
ent from the tick rate. 0S_TICK_HandleEx() is capable of handling even fractional
interrupt rates, such as 1.6 interrupts per tick.

18.2.1 API functions

3 o= 3
Routine Description o B @3
5 |x |® o
OS_TICK_Handle() Standard embOS tick handler. X
OS_TICK_HandleEx () Extended embOS tick handler. X
OS_TICK_Config() Configures the extended embOS tick handler. | X| X

Table 18.1: API functions

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

242 CHAPTER 18 System tick

18.2.1.1 OS_TICK_Handle()

Description

The default embOS timer tick handler which is typically called by the hardware timer
interrupt handler.

Prototype
void OS_TICK_Handle (void);

Additional Information

The embOS tick handler must not be called by the application, it has to be called
from an interrupt handler.

OS_EnterInterrupt (), Or OS_EnterNestableInterrupt () has to be called, before
calling the embOS tick handler

Example

/* Example of a timer interrupt handler */

/*~k*~k*~k*~k**********~k****************~k*~k*~k*~k***************************
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
OS_EnterNestableInterrupt () ;
OS_TICK_Handle() ;
0S_LeaveNestableInterrupt () ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

243

18.2.1.2 OS_TICK_HandleEXx()
Description

An alternate tick handler which may be used instead of the standard tick handler. It
can be used in situations where the basic timer-interrupt interval (tick) is a multiple
of 1 ms and the time values used as parameter for delays still should use 1 ms as the
time base.

Prototype
void OS_TICK_ HandleEx (void);

Additional Information

The embOS tick handler must not be called by the application, it has to be called
from an interrupt handler. 0S_EnterInterrupt (), Or OS_EnterNestableInterrupt ()
has to be called, before calling the embOS tick handler. Refer to OS_TICK_Config()
on page 244 about how to configure 0S_TICK_HandleEx().

Example

/* Example of a timer interrupt handler using 0S_HandleTickEx */

/~k**********~k*~k*~k************~k*~k*~k********~k***************************
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
OS_EnterNestableInterrupt () ;
OS_TICK_HandleEx() ;
0S_LeaveNestableInterrupt () ;
}

Assuming the hardware timer runs at a frequency of 500Hz, thus interrupting the
system every 2ms, the embOS tick handler configuration function 0S_TICK_Config()
should be called as demonstrated in the Example section of 0S_TICK_Config(). This
should be done during os_1InitHw (), before the embOS timer is started.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER 18 System tick

18.2.1.3 OS_TICK_Config()
Description

Configures the tick to interrupt ratio.

Prototype
void OS_TICK_Config (unsigned FractPerInt, unsigned FractPerTick);

Parameter Description

FractPerInt

FractPerTick
Table 18.2: OS_TICK_Config() parameter list

Additional Information

The “normal” tick handler 0s_TICK_Handle() assumes a 1l:1 ratio, meaning one
interrupt increments the tick count (0s_Time) by one. For other ratios,
OS_TICK_HandleEx() needs to be used; the ratio is defined by calling the
OS_TICK_Config().

Tick frequency is 1kHz, meaning one 1 equals 1ms and interrupt frequency is 500Hz,
meaning 1 interrupt every 2 ms. In this case parameters have the following values:

/**************‘k*‘k********‘k*‘k******‘k*******‘k‘k*************************
*
* _ConfigTickHandler
*/
static void _ConfigTickHandler () {
unsigned FractPerInt;
unsigned FractPerTick;

FractPerInt = 2;

FractPerTick = 1;

OS_TICK_ Config(FractPerInt, FractPerTick);
}

Note that fractional values are supported, such as tick is 1 ms, where an interrupt is
generated every 1.6ms. This means that FractPerInt and FractPerTick are:

FractPerInt = 16;
FractPerTick = 10;

or

FractPerInt = 8;
FractPerTick = 5;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

245

18.3 Hooking into the system tick
There are various situations in which it can be desirable to call a function from the
tick handler. Some examples are:

e Watchdog update
e Periodic status check
e Periodic I/O update

The same functionality can be achieved with a high-priority task or a software timer
with 1 tick period time.

Advantage of using a hook function

Using a hook function is much faster than performing a task switch or activating a
software timer, because the hook function is directly called from the embOS timer
interrupt handler and does not cause a context switch.

18.3.1 API functions

3 o= 3

Routine Description o B @3

5 =9 o
OS_TICK_AddHook () Adds a tick hook handler. X| X
0OS_TICK_RemoveHook () Removes a tick hook handler. X| X

Table 18.3: API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

246 CHAPTER 18 System tick

18.3.1.1 OS_TICK_AddHook()

Description
Adds a tick hook handler.

Prototype
void OS_TICK_AddHook (OS_TICK_HOOK * pHook,
OS_TICK_HOOK_ROUTINE * pfUser);
Parameter Description
pHook Pointer to a structure of 0S_TICK_HOOK.
pfUser Pointer to an 0S_TICK_HOOK_ROUTINE function.

Table 18.4: OS_TICK_AddHook() parameter list

Additional Information

The hook function is called directly from the interrupt handler.
The function therefore should execute as fast as possible.
The function called by the tick hook must not re-enable interrupts.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

247

18.3.1.2 OS_TICK_RemoveHook()

Description
Removes a tick hook handler.

Prototype
void OS_TICK_RemoveHook (OS_TICK_HOOK * pHook);

Parameter Description

pHook Pointer to a structure of 0S_TICK_HOOK.
Table 18.5: OS_TICK_RemoveHook() parameter list

Additional Information

The function may be called to dynamically remove a tick hook function which was
installed by a call of 0S_TICK_AddHook ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER 18 System tick

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

249

Chapter 19

Configuration of target system
(BSP)

This chapter explains the target system specific parts of embOS, also called BSP
(board support package).

If the system is up and running on your target system, there is no need to read this
chapter.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER 19 Configuration of target system (BSP)

19.1 Introduction

You do not have to configure anything to get started with embOS. The start project
supplied will execute on your system. Small changes in the configuration will be nec-
essary at a later point for system frequency or for the UART used for communication
with the optional embOSView.

The file RTOSInit.c is provided in source code and can be modified to match your
target hardware needs. It is compiled and linked with your application program.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

19.2 Hardware-specific routines

251

Routine

Description

urew

Jysel
dSlI

FEIINE

Required for embOS

OS_InitHW()

Initializes the hardware timer used for gener-
ating interrupts. embOS needs a timer-inter-

rupt to determine when to activate tasks that
wait for the expiration of a delay, when to call
a software timer, and to keep the time variable
up-to-date.

OS_TIdle()

The idle loop is always executed whenever no
other task (and no interrupt service routine) is
ready for execution.

OS_ISR_Tick()

The embOS timer-interrupt handler. When
using a different timer, always check the spec-
ified interrupt vector.

0S_ConvertCycles2us ()

Converts cycles into us (used with profiling
only).

0OS_GetTime_Cycles ()

Reads the timestamp in cycles. Cycle length
depends on the system. This function is used
for system information sent to embOSView.

Optional for run-time 0S-View

OS_COM_Init ()

Initializes communication for embOSView
(used with embOSView only).

OS_ISR_rx()

Rx Interrupt service handler for embOSView
(used with embOSView only).

OS_ISR_tx()

Tx Interrupt service handler for embOSView
(used with embOSView only).

0S_COM_Sendl ()

Send 1 byte via a UART (used with embOSView

only).
Do not call this function from your application.

Table 19.1: Hardware specific routines

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER 19 Configuration of target system (BSP)

19.3 Configuration defines

For most embedded systems, configuration is done by simply modifying the following
defines, located at the top of the rRTOSInit.c file:

Define Description
System frequency (in Hz).
Example: 20000000 for 20MHz.

Selection of UART to be used with embOSView
(-1 will disable communication),

OS_ BAUDRATE Selection of baudrate for communication with embOSView.
Table 19.2: Configuration defines overview

OS_FSYS

OS_UART

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

253

19.4 How to change settings

The only file which you may need to change is RTOSInit.c. This file contains all
hardware-specific routines. The one exception is that some ports of embOS require
an additional interrupt vector table file (details can be found in the CPU & Compiler
Specifics manual of embOS documentation).

19.4.1 Setting the system frequency OS_FSYS

Relevant defines

OS_FSYS

Relevant routines

0S_ConvertCycles2us () (used with profiling only)

For most systems it should be sufficient to change the 0s_rsys define at the top of
RTOSInit.c. When using profiling, certain values may require a change in
0S_ConvertCycles2us (). The RTOSInit.c file contains more information about in
which cases this is necessary and what needs to be done.

19.4.2 Using a different timer to generate the tick-interrupts for
embOS

Relevant routines
0S_InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or tick,
normally equal to 1 ms. This is done by a timer initialized in the routine
0S_InitHW (). If you have to use a different timer for your application, you must
modify 0s_InitHwW () to initialize the appropriate timer. For details about initialization,
read the comments in RTOSInit.c.

19.4.3 Using a different UART or baudrate for embOSView

Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_1Init ()
0OS_COM_Sendl ()
OS_TISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define os_uarT. Refer to the con-
tents of the RTOSInit.c file for more information about which UARTS that are sup-
ported for your CPU.

19.4.4 Changing the tick frequency

Relevant defines
OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. os_rsys defines the
clock frequency of your system in Hz (times per second). The value of 0S_FsYs is
used for calculating the desired reload counter value for the system timer for 1000
interrupts/sec. The interrupt frequency is therefore normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable 0s_Time will no longer
be equivalent to multiples of 1 ms. However, if you use a multiple of 1 ms as tick

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER 19 Configuration of target system (BSP)

time, the basic time unit can be made 1 ms by using the (optional) configuration
macro OS_CONFIG() (see upbelow). The basic time unit does not have to be 1 ms; it
might just as well be 100 ps or 10 ms or any other value. For most applications, 1 ms
is an appropriate value.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

255

19.5 STOP /HALT/IDLE modes

Most CPUs support power-saving STOP, HALT, or IDLE modes. Using these types of
modes is one possible way to save power consumption during idle times. As long as
the timer-interrupt will wake up the system with every embOS tick, or as long as
other interrupts will activate tasks, these modes may be used for saving power con-
sumption.

If required, you may modify the 0s_1dle() routine, which is part of the hardware-
dependant module RTOSInit.c, to switch the CPU to power-saving mode during idle
times. Refer to the CPU & Compiler Specifics manual of embOS documentation for
details about your processor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER 19 Configuration of target system (BSP)

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

257

Chapter 20

embOSView: Profiling and analyz-
ing

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

258

20.1 Overview

CHAPTER 20

embOSView: Profiling and analyzing

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used for communication with the target. The hardware-
dependent routines and defines and defines available for communication with
embOSView are located in RTOSInit.c. This file has to be configured properly. For
details on how to configure this file, refer the CPU & Compiler Specifics manual of
embOS documentation. The embOSView utility is shipped as embOSvView.exe with
embOS and runs under Windows 9x / NT / 2000. The latest version is available on
our website at www.segger.com

o emb0S Viewer ¥3.06

File “iew Options Trace MWindow 7

T ask list

Priol Id | Mame | Statuz | Datal Timeoutl Stackl EPULoadl Context... | Found... |
120 2982 MainTask Delay 0(E0544] 115/812E0:2102 324% 19378 0/2
119 29 TaskO(RR) Ready A0/51 2(30x23b2 3.73% 11969 0/2
119 2406 Taskl [RR) Ready 40/51 2(30x2502 37 11503 0/2
119 2430 TaskZ [RR) Ready A0/51 2(30x27h2 3327 12402 0/2

T System variables

Mame

05_YERSION

CPU

Libkdode NT
05_Time E0502
05_MumT azks 4
05_Statuz 0k,
05_pactiveT ask 29dc
05_pCurrentT ask 29dc
SysStack 75/ 2560303541
IntStack 1141280=0x3641
TraceBuffer RO0/500 [

o Trace

Trace | Time I Taskld | TazkMame | APIM ame

1] 367BE 2406 Task1 [RA] Task deactivated

1 367BE 29DC Task0O [RR] Task activated

2 36757 29DC Task0O [RR] Task deactivated

3 367EY 29B2 MainT ask Task activated

4 3E757 2982 MainT azk 05_Delay(3)

5 367EY 29B2 MainT ask Task deactivated

E 36757 29DC Task0O [RR] Task activated

7 36758 29DC Task0O [RR] Task deactivated

8 367H8 2430 Task2 [RR] Task activated

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760 29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated

158 36762 29DC Task0O [RR] Task activated LI
Bytes: 10497 / 23097 Packets: 785 /634 38400 baud on COM 1 i

embOSView is a very helpful tool for analysis of the running target application.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

20.2 Task list window

embOSView shows the state of every created task of the target application in the
Task list window. The information shown depends on the library used in your

259

application.
Iltem Description Builds
Prio Current priority of task. All
Task ID, which is the address of the task control
Id All
block.
Name Name assigned during creation. All
Status Current state of tas_k (ready, executing, delay, All
reason for suspension).
Data Depends on status. All
Timeout Time of next activation. All
Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Cor_|text Number of activations since reset. SP, DP, DT
Switches

Table 20.1: Task list window overview

The Task list window is helpful in analysis of stack usage and

running task.

User & reference guide for embOS

CPU load for every

© 2009 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER 20 embOSView: Profiling and analyzing

20.3 System variables window

embOSView shows the actual state of major system variables in the System vari-
ables window. The information shown also depends on the library used in your

application:
Item Description Builds
OS_VERSION Current version of embOS. All
CPU Target CPU and compiler. All
LibMode Library mode used for target application. All
OS_Time Current system time in timer ticks. All
OS_NUM_TASKS Current number of defined tasks. All
OS_Status Current error code (or O.K.). All
OS_pActiveTask Active task that should be running. SP, D, DP, DT
OS_pCurrentTask | Actual currently running task. SP, D, DP, DT
SysStack Used size/max. size/location of system SP, DP, DT
stack.
IntStack Used size/max. size/location of interrupt SP, DP, DT
stack.
Current count/maximum size and current .
TraceBuffer state of trace buffer. All trace builds

Table 20.2: System variables window overview

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

261

20.4 Sharing the SIO for terminal I/O

The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be used
for outputting debug messages. Input and output is done via the Terminal window,
which can be shown by selecting View/Terminal from the menu.

To ensure communication via the Terminal window in parallel with the viewer
functions, the application uses the function 0s_sendstring () for sending a string to
the Terminal window and the function 0S_setRxCallback() to hook a recep-
tion routine that receives one byte.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER 20 embOSView: Profiling and analyzing

20.5 API functions

urew
yselL
dSlI
FELINE

Routine Description
0S._SendString () iir‘:’js a string over SIO to the Terminal win- x| x
Sets a callback hook to a routine for receiving x| x X

0S_SetRxCallback ()
one character.

Table 20.3: Shared SIO API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

20.5.1 OS_SendString()

Description

Sends a string over SIO to the Terminal window.

Prototype

void OS_SendString (const char* s);

263

Parameter

Description

S

Pointer to a zero-terminated string that should be sent to the

Terminal window.

Table 20.4: OS_SendString() parameter list

Additional Information
This function uses 0s_coM_Sendl () which is defined in RTOSInit.c.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER 20 embOSView: Profiling and analyzing

20.5.2 OS_SetRxCallback()

Description

Sets a callback hook to a routine for receiving one character.

Prototype

typedef void OS_RX_CALLBACK (0S_U8 Data)
OS_RX_CALLBACK* 0OS_SetRxCallback (OS_RX_CALLBACK* cb);

Parameter Description

Pointer to the application routine that should be called when one
character is received over the serial interface.
Table 20.5: OS_SetRxCallback() parameter list

cb

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback function that
was hooked before the call.

Additional Information

The user function is called from embOS. The received character is passed as parame-
ter. See the example below.

Example

void GUI_X_OnRx(0S_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_TInit (void) {
0S_SetRxCallback(&GUI_X_ OnRx) ;
}

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

265

20.6 Using the API trace

embOS versions 3.06 or higher contain a trace feature for API calls. This requires the
use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls
can be started and stopped from embOSView via the Trace menu, or from within the
application by using the functions 0S_TraceEnable() and 0S_TraceDiasable().
Individual filters may be defined to determine which API calls should be traced for
different tasks or from within interrupt or timer routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is peri-
odically read by embOSView. The result is shown in the Trace window:

Trace | Time I Taskld | T askMame | APIM ame ;I
1] 367BE 2406 Task1 [RA] Task deactivated iy
1 367BE 29DC Task0O [RR] Task activated

2 36757 29DC Task0O [RR] Task deactivated

3 367EY 29B2 MainT ask Task activated

4 3E757 2982 MainT azk 05_Delay(3)

5 367EY 29B2 MainT ask Task deactivated

E 36757 29DC Task0O [RR] Task activated

7 36758 29DC Task0O [RR] Task deactivated

8 367H8 2430 Task2 [RR] Task activated

9 367E0 2430 Task2 [RR] Task deactivated

10 36760 29B2 MainT ask Task activated

1 3E760 29B2 MainT azk 05_Delay(3)

12 36760 29B2 MainT ask Task deactivated

13 367E0 2ADE Task1 [RA] Task activated

14 36762 2A0E Task1 [RA] Task deactivated -
1 I

Every entry in the Trace list is recorded with the actual system time. In case of calls
or events from tasks, the task ID (TaskId) and task name (TaskName) (limited to
15 characters) are also recorded. Parameters of API calls are recorded if possible,
and are shown as part of the APIName column. In the example above, this can be
seen with 0s_belay (3). Once the trace buffer is full, trace is automatically stopped.
The Trace list and buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set
up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As
the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that
occur outside a running task. These calls may come from the idle loop or during star-
tup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.
Options EHE

Eommunicationl General Trace |EIF'U Viewl Log I

— Filter

Task Mame [Filter 2 to 4]

—I MainTask [Filter 4 Enable
7| " Filter 3 Enable
‘7| ™ Filter 2 Enable

‘ e

ISR or 5W/-Timer ¥ Filter 1 Enable

Any Task [+ Filter 0 Enable
IL 1l Task deactivated -
|11 T ask activated
1101 Timer callback
02 b5
05_Delaylintil
05_SetPriority
05_WakeTask Select all |
05_CreateT ask
05_Teminate
05 Wil vent =] Deselectal

QK I Cancel | Apply |

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

266

CHAPTER 20 embOSView: Profiling and analyzing

To enable or disable a filter, simply check or uncheck the corresponding checkboxes
labeled Filter 4 Enable to Filter O Enable.

For any of these five filters, individual API functions can be enabled or disabled by
checking or unchecking the corresponding checkboxes in the list. To speed up the
process, there are two buttons available:

e Select all - enables trace of all API functions for the currently enabled (checked)
filters.

e Deselect all - disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name
can therefore be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of 0s_Delay () from the task called MainTask. After the set-
tings are saved (via the Apply or OK button), the new settings are sent to the target
application.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

267

20.7 Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOSView. By
default, trace is initially disabled in an application program. It may be very helpful to
control the recording of trace events directly from the application, using the following

functions.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

268 CHAPTER 20 embOSView: Profiling and analyzing

20.8 API functions

3 o= 3
Routine Description o 8 ©3
5 = P o
0S_TraceEnable () Enables tracing of filtered API calls. X| X[X| X
0S. Tracebisable () cDa:ISIasbles tracing of API and user function x| x| x
Sets up Filter 0 (any task), enables trac-
OS_TraceEnableAll () ing of all API calls and then enables the |X|X|X|X
trace function.
Sets up Filter 0 (any task), disables trac-
0S_TraceDisableAll () ing of all API calls and also disables XXX X
trace.
Sets the specified ID value in Filter 0
(any task), thus enabling trace of the
OS_TraceEnableld() specified function, but does not start XXX\ X
trace.
Resets the specified ID value in Filter 0
. (any task), thus disabling trace of the
OS_Tracebisableld() specified function, but does not stop XX XX
trace.
Sets the specified ID value in the speci-
: fied trace filter, thus enabling trace of the
OS_TraceEnableFilterld() specified function, but does not start XXX\ X
trace.
Resets the specified ID value in the spec-
. . ified trace filter, thus disabling trace of
OS_TracebDisableFilterId() |po spacified function, but does not stop XXX\ X
trace.

Table 20.6: Trace filter API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

269

20.8.1 OS_TraceEnable()

Description
Enables tracing of filtered API calls.

Prototype

void OS_TraceEnable (void) ;

Additional Information

The trace filter conditions should have been set up before calling this function. This
functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

270 CHAPTER 20 embOSView: Profiling and analyzing

20.8.2 OS_TraceDisable()
Description
Disables tracing of API and user function calls.
Prototype

void OS_TraceDisable (void);

Additional Information

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

271

20.8.3 OS_TraceEnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype

void OS_TraceEnableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

272 CHAPTER 20 embOSView: Profiling and analyzing

20.8.4 OS_TraceDisableAll()

Description
Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype

void OS_TraceDisableaAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected, but tracing is

stopped.
This functionality is available in trace builds only. In non-trace builds, the API call is

removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

273

20.8.5 OS_TraceEnableld()

Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified
function, but does not start trace.

Prototype
void OS_TraceEnableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <= 127
Values from 0 to 99 are reserved for embOS.

Table 20.7: OS_TraceEnableId() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 1d value.
These values are defined as symbolic constants in RT0OS.h.

This function may also enable trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

274 CHAPTER 20 embOSView: Profiling and analyzing

20.8.6 OS_TraceDisableld()

Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the speci-
fied function, but does not stop trace.

Prototype
void OS_TraceDisableId (0S_U8 Id);

Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <=127
Values from 0 to 99 are reserved for embOS.

Table 20.8: OS_TraceDisabledld() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct 1d value.
These values are defined as symbolic constants in RTOS.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

275

20.8.7 OS_TraceEnableFilterld()

Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId (0S_U8 FilterIndex,
0S_U8 Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

Id

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
0 <=1d <= 127

Values from 0 to 99 are reserved for embOS.

Table 20.9: OS_TraceEnabledFilterId() parameter list

Additional Information

To enable trace of a specific embOS API function, you must use the correct 14 value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for enabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

276 CHAPTER 20 embOSView: Profiling and analyzing

20.8.8 OS_TraceDisableFilterld()

Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId (0S_U8 FilterIndex,
0S_U8 Id)
Parameter Description
Index of the filter that should be affected:
FilterIndex 0 <= FilterIndex <=4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
Id 0 <=1Id<=127

Values from 0 to 99 are reserved for embOS.

Table 20.10: OS_TraceDisableFilterId() parameter list

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RT0S.h.

This function may also be used for disabling trace of your own functions.

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

277

20.9 Trace record functions

The following functions are used for writing (recording) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used internally
by the trace build libraries. If, for some reason, you want to trace your own functions
with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

To record data, trace must be enabled.

An ID value in the range from 100 to 127 must be used as the Id parameter. ID
values from 0 to 99 are internally reserved for embOS.

The events specified as Id have to be enabled in any of the trace filters.

Active system time and the current task are automatically recorded together with
the specified event.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

278 CHAPTER 20 embOSView: Profiling and analyzing

20.10 API functions

Routine Description

urew
jsel
dSl
FETTINE

Writes an entry identified only by its ID into

0S_Tracevoid() the trace buffer. XXX\ X
0S. Traceptr () Writes an e_ntry with ID and a pointer as x| % x
parameter into the trace buffer.

Writes an entry with ID and an integer as
OS_TraceData () parameter into the trace buffer. XX X)X
0S.Tracebatabtr () Writes an entry with ID, an integer, and a x| x| x| x

pointer as parameter into the trace buffer.

Writes an entry with ID, a 32-bit unsigned
0S_TraceU32Ptr () integer, and a pointer as parameter into the XX | X|X
trace buffer.
Table 20.11: Trace record API functions

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

279

20.10.1 OS_TraceVoid()

Description
Writes an entry identified only by its ID into the trace buffer.

Prototype
void OS_TraceVoid (0S_U8 Id);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d <= 127
Values from 0 to 99 are reserved for embOS.

Table 20.12: OS_TraceVoid() parameter list

Additional Information

This functionality is available in trace builds only, and the API call is not removed by
the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

280

CHAPTER 20

20.10.2 OS_TracePtr()

Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype

void OS_TracePtr

(0s_us 1d,
void* p);

embOSView: Profiling and analyzing

Parameter

Description

Id

b

ID value of API call that should be enabled for trace:

0 <=1d <= 127

Values from 0 to 99 are reserved for embOS.
Any void pointer that should be recorded as parameter.

Table 20.13: OS_TracePtr() parameter list

Additional Information

The pointer passed as parameter will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In non-trace builds,

the API call is removed by the preprocessor.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

281

20.10.3 OS_TraceData()

Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (0S_U8 Id,
int V) ;
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1d<=127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.

Table 20.14: OS_TraceData() parameter list

Additional Information

The value passed as parameter will be displayed in the trace list window of
embOSView.This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

282 CHAPTER 20 embOSView: Profiling and analyzing

20.10.4 OS_TraceDataPtr()

Description
Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
void OS_TraceDataPtr (0S_U8 1Id,
int v,
void* p);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=14 <= 127
Values from 0 to 99 are reserved for embOS.
v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Table 20.15: OS_TraceDataPtr() parameter list

Additional Information

The values passed as parameters will be displayed in the trace list window of embOS-
View. This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

283

20.10.5 OS_TraceU32Ptr()

Description

Writes an entry with ID, a 32-bit unsigned integer, and a pointer as parameter into
the trace buffer.

Prototype
void OS_TraceU32Ptr (0S_U8 1Id,
0S_U32 po0,
void* pl);
Parameter Description
ID value of API call that should be enabled for trace:
Id 0 <=1a <= 127
Values from 0 to 99 are reserved for embOS.
o Any unsigned 32-bit value that should be recorded as parameter.
pl Any void pointer that should be recorded as parameter.

Table 20.16: OS_TraceU32Ptr() parameter list

Additional Information

This function may be used for recording two pointers. The values passed as parame-
ters will be displayed in the trace list window of embOSView. This functionality is
available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

284 CHAPTER 20 embOSView: Profiling and analyzing

20.11 Application-controlled trace example

As described in the previous section, the user application can enable and set up the
trace conditions without a connection or command from embOSView. The trace
record functions can also be called from any user function to write data into the trace
buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing API and user
functions just after starting the application, when the communication to embOSView
is not yet available or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The
function 0S_TraceEnableID() sets the trace filter 0 which affects calls from any
running task. Therefore, the first call to setstate() in the example would not be
traced because there is no task running at that moment. The additional filter setup
routine 0S_TraceEnableFilterId() is called with filter 1, which results in tracing
calls from outside running tasks.

Example code

#include "RTOS.h"

#ifndef OS_TRACE_FROM_START
#define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;
/* Sample of application routine with trace */

void SetState(char* pState, char Value) {
#if OS_TRACE
OS_TraceDataPtr (APP_TRACE_ID_SETSTATE, Value, pState);
#endif
* pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
from start */
void main (void) {
0S_InitKern();

OS_InitHW() ;

#if (OS_TRACE && OS_TRACE_FROM_START)
/* OS_TRACE is defined in trace builds of the library */
0S_TraceDisableaAll () ; /* Disable all API trace calls */
OS_TraceEnableId (APP_TRACE_ID_ SETSTATE) ; /* User trace */
0S_TraceEnableFilterId (APP_TRACE_ID_SETSTATE) ; /* User trace */
OS_TraceEnable () ;

#endif

/* Application specific initilisation */
SetState(&MainState, 1);
OS_CREATETASK (&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack) ;
0S_Start () ; /* Start multitasking -> MainTask() */
}

By default, embOSView lists all user function traces in the trace list window as Rou-
tine, followed by the specified ID and two parameters as hexadecimal values. The
example above would result in the following:

Routinel00 (0Oxabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr ().

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

285

20.12 User-defined functions

To use the built-in trace (available in trace builds of embOS) for application program
user functions, embOSView can be customized. This customization is done in the
setup file emb0S.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see
an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number,
the function name and the type of two optional parameters that can be traced. The
format is explained in the following sample emb0S. ini file:

Example code

File: embOS.ini
embOSView Setup file

embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.

Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

H o

Every parameter has to be preceeded by a colon.

#

Define add. API functions.

Syntax: API(<Index>, <Routinename> [parameters])

Index: Integer, between 100 and 127

Routinename: Identifier for the routine. Should be no more than 32 characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:

int

ptr

#

#

API(100, "RoutinelOO0")
API(101, "RoutinelOl", int)
API(102, "RoutinelO2", int, ptr)

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

286 CHAPTER 20 embOSView: Profiling and analyzing

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

287

Chapter 21
Debugging

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

288

CHAPTER 21 Debugging

21.1 Runtime errors

Some error conditions can be detected during runtime. These are:

Usage of uninitialized data structures

Invalid pointers

Unused resource that has not been used by this task before
0S_LeaveRegion () called more often than 0S_EnterRegion()
Stack overflow (this feature is not available for some processors)

Which runtime errors that can be detected depend on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (it is not that
significant, but there is a difference). If embOS detects a runtime error, it calls the
following routine:

void OS_Error (int ErrCode) ;

This routine is shipped as source code as part of the module 0s_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops forever as
follows:

Example
/*
Run time error reaction
*/
void OS_Error (int ErrCode) {
OS_EnterRegion () ; /* Avoid further task switches */
0S_DICnt =0; /* Allow interrupts so we can communicate */
OS_EI();

0OS_Status = ErrCode;
while (0S_Status);
}

If you are using embOSView, you can see the value and meaning of 0s_status in the
system variable window.

When using an emulator, you should set a breakpoint at the beginning of this routine
or simply stop the program after a failure. The error code is passed to the function as
parameter.

You can modify the routine to accommodate your own hardware; this could mean
that your target hardware sets an error-indicating LED or shows a little message on
the display.

Note: When modifying the OS_Error() routine, the first statement needs
to be the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the 0s_Error () routine, you will see that it is more complicated than
necessary. The actual error code is assigned to the global variable 0s_status. The
program then waits for this variable to be reset. Simply reset this variable to 0 using
your in circuit-emulator, and you can easily step back to the program sequence caus-
ing the problem. Most of the time, looking at this part of the program will make the
problem clear.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

21.2 List of error codes

289

Value

Define

Explanation

100

OS_ERR_ISR_INDEX

Index value out of bounds during inter-
rupt controller initialization or interrupt
installation.

101

OS_ERR_ISR_VECTOR

Default interrupt handler called, but
interrupt vector not initialized.

120

OS_ERR_STACK

Stack overflow or invalid stack.

121

OS_ERR_CSEMA_OVERFLOW

Counting semaphore overflow.

128

OS_ERR_INV_TASK

Task control block invalid, not initial-
ized or overwritten.

129

OS_ERR_INV_TIMER

Timer control block invalid, not initial-
ized or overwritten.

130

OS_ERR_INV_MAILBOX

Mailbox control block invalid, not ini-
tialized or overwritten.

132

OS_ERR_INV_CSEMA

Control block for counting semaphore
invalid, not initialized or overwritten.

133

OS_ERR_INV_RSEMA

Control block for resource semaphore
invalid, not initialized or overwritten.

135

OS_ERR_MATILBOX_NOT1

One of the following 1-byte mailbox
functions has been used on a multi-
byte mailbox:

OS_PutMaill ()

0S_PutMailCondl ()

0S_GetMaill ()
0S_GetMailCondl () .

136

OS_ERR_MATLBOX_DELETE

0S_DeleteMB () was called on a mail-
box with waiting tasks.

137

OS_ERR_CSEMA_DELETE

0S_DeleteCSema () was called on a
counting semaphore with waiting
tasks.

138

OS_ERR_RSEMA_DELETE

0S_DeleteRSema () was called on a
resource semaphore which is claimed
by a task.

140

OS_ERR_MATLBOX_NOT_IN_LIST

The mailbox is not in the list of mail-
boxes as expected. Possible reasons
may be that one mailbox data struc-
ture was overwritten.

142

OS_ERR_TASKLIST_ CORRUPT

The OS internal task list is destroyed.

150

OS_ERR_UNUSE_BEFORE_USE

0S_Unuse () has been called before
0S_Use ().

151

OS_ERR_LEAVEREGION_BEFORE_ENTE
RREGION

0S_LeaveRegion () has been called
before 0S_EnterRegion() .

152

OS_ERR_LEAVEINT

Error in 0S_LeaveInterrupt ().

153

OS_ERR_DICNT

The interrupt disable counter
(os_bicnt) is out of range (0-15). The
counter is affected by the following API
calls:

OS_IncDI()

OS_DecRI ()

OS_EnterInterrupt ()
O0S_LeavelInterrupt ()

154

OS_ERR_INTERRUPT_DISABLED

0S_Delay () Oor0S_DelayUntil () called
from inside a critical region with inter-
rupts disabled.

Table 21.1: Error code list

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

290 CHAPTER 21

Debugging

Value Define

Explanation

156 OS_ERR_RESOURCE_OWNER

0S_Unuse () has been called from a
task which does not own the resource.

160 OS_ERR_ILLEGAL_IN_ISR

Illegal function call in an interrupt ser-
vice routine: A routine that may not be
called from within an ISR has been
called from within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in an interrupt ser-
vice routine: A routine that may not be
called from within a software timer has
been called from within a timer.

162 OS_ERR_ILLEGAL_OUT_ISR

embOS timer tick handler or UART han-
dler for embOSView was called without
a call of 0S_EnterInterrupt ().

170 OS_ERR_2USE_TASK

Task control block has been initialized
by calling a create function twice.

171 OS_ERR_2USE_TIMER

Timer control block has been initialized
by calling a create function twice.

172 OS_ERR_2USE_MAILBOX

Mailbox control block has been initial-
ized by calling a create function twice.

174 OS_ERR_2USE_CSEMA

Counting semaphore has been initial-
ized by calling a create function twice.

175 OS_ERR_2USE_RSEMA

Resource semaphore has been initial-
ized by calling a create function twice.

176 OS_ERR_2USE_MEMF

Fixed size memory pool has been ini-
tialized by calling a create function
twice.

180 OS_ERR_NESTED_RX_INT

0S_Rx interrupt handler for embOS-
View is nested. Disable nestable inter-
rupts.

190 OS_ERR_MEMF_INV

Fixed size memory block control struc-
ture not created before use.

191 OS_ERR_MEMF_INV_PTR

Pointer to memory block does not
belong to memory pool on Release

192 OS_ERR_MEMF_PTR_FREE

Pointer to memory block is already free
when calling 0S_MEMF_Release (). Pos-
sibly, same pointer was released twice.

193 OS_ERR_MEMF_RELEASE

OS_MEMF_Release () was called for a
memory pool, that had no memory
block allocated (all available blocks
were already free before).

194 0S_ERR_POOLADDR

OS_MEMF_Create () was called with a
memory pool base address which is not
located at a word alighed base address

195 0S_ERR_BLOCKSIZE

OS_MEMF_Create () was called with a
data block size which is not a multiple
of processors word size.

200 OS_ERR_SUSPEND_TOO_OFTEN

Nested call of 0s_Suspend () exceeded
OS_MAX_SUSPEND_CNT

201 OS_ERR_RESUME_BEFORE_SUSPEND

0S_Resume () called on a task that was
not suspended.

202 OS_ERR_TASK_PRIORITY

0S_CreateTask () was called with a
task priority which is already assigned
to another task. This error can only
occur when embOS was compiled with-
out round robin support.

Table 21.1: Error code list (Continued)

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

201

Value Define Explanation
An OS_EVENT object was used before it
210 OS_ERR_EVENT_INVALID
was created.
211 OS_ERR_2USE_EVENTOBJ An OS_EVENT object was created twice.
An OS_EVENT object was deleted with
212 OS_ERR_EVENT _DELETE s
waiting tasks

Table 21.1: Error code list (Continued)

The latest version of the defined error table is part of the comment just before the
0S_Error () function declaration in the source file 0S_Error.c.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

292 CHAPTER 21 Debugging

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

293

Chapter 22

Performance and resource usage

This chapter covers the performance and resource usage of embOS. It explains how
to benchmark embQOS and contains information about the memory requirements in

typical systems which can be used to obtain sufficient estimates for most target sys-
tems.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

294 CHAPTER 22 Performance and resource usage

22.1 Introduction

High performance combined with low resource usage has always been a major design
consideration. embOS runs on 8/16/32-bit CPUs. Depending on which features are
being used, even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM
can be supported by embOS. The actual performance and resource usage depends on
many factors (CPU, compiler, memory model, optimization, configuration, etc.).

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

295

22.2 Memory requirements

The memory requirements of embOS (RAM and ROM) differs depending on the used
features of the library. The following table shows the memory requirements for the
different modules.

Module Memory type Memory requirements
embOS kernel ROM 1100 - 1600 bytes *
embOS kernel RAM 18 - 50 bytes *
Mailbox RAM 8 - 20 bytes *
Semaphore RAM 2 bytes
Resource semaphore RAM 8 bytes *
Timer RAM 8 - 20 bytes *
Event RAM 0 bytes

Table 22.1: embOS memory requirements

* These values are typical values for a 32 bit cpu and depends on CPU, compiler, and
library model used.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

296 CHAPTER 22 Performance and resource usage

22.3 Performance

The following section shows how to benchmark embOS with the supplied example
programs.

22.4 Benchmarking

embOS is designed to perform fast context switches. This section describes two dif-
ferent methods to calculate the execution time of a context switch from a task with
lower priority to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method
uses the high-resolution measurement functions. Example programs for both meth-
ods are supplied in the \sample directory of your embOS shipment.

Segger uses these programs to benchmark the embOS performance. You can use
these examples to evaluate the benchmark results. Note, that the actual perfor-
mance depends on many factors (CPU, clock speed, toolchain, memory model, opti-
mization, configuration, etc.).

The following table gives an overview about the variations of the context switch time
depending on the memory type and the CPU mode:

Target Memory CPU mode Time / Cycles
ATMEL AT91SAM7S256 @ 48Mhz RAM ARM 4.09us / 196
ATMEL AT91SAM7S256 @ 48Mhz Flash ARM 6.406us / 307
ATMEL AT91SAM7S256 @ 48Mhz RAM Thumb 5.28us / 253
ATMEL AT91SAM7S256 @ 48Mhz Flash Thumb 6.823us / 327
NXP LPC3180 @ 208Mhz RAM ARM 0.948us / 197

Table 22.2: embOS context switch times
All named example performance values in the following section are determined with
the following system configuration:

All sources are compiled with IAR Embedded Workbench version 5.40 using thumb or
arm mode, XR library and high optimization level. embOS version 3.82 has been
used; values may differ for different builds.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

297

22.4.1 Measurement with port pins and oscilloscope

The example file MeasureCST_Scope.c uses the LED.c module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope.

The following source code is excerpt from MeasureCST_Scope.c:

#include "RTOS.h"
#include "LED.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks

/~k**

*

* HPTask
*/
static void HPTask(void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
LED_CIlrLEDO () ; // Stop measurement
}
}

/*********‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**‘k*‘k*‘k*‘k*******‘k‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k****
*
* LPTask
*/
static void LPTask (void) {
while (1) {

0S_Delay (100) ; // Syncronize to tick to avoid jitter
//

// Display measurement overhead

//

LED_SetLEDO () ;
LED_ClrLEDO () ;

//

// Perform measurement

//

LED_SetLEDO () ; // Start measurement

OS_Resume (&TCBHP) ; // Resume high priority task to force task switch
}
}

/*********‘k*‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k****

*

* main

*/

int main(void) {
0S_IncDI(); // Initially disable interrupts
O0S_InitKern() ; // Initialize OS
OS_InitHW() ; // Initialize Hardware for 0OS
LED _Init(); // Initialize LED ports

OS_CREATETASK (&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK (&TCBLP, "LP Task", LPTask, 99, StackLP);
0OS_Start () ; // Start multitasking
return O;

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

298 CHAPTER 22 Performance and resource usage

22.4.1.1 Oscilloscope analysis

The context switch time is the time between switching the LED on and off. If the LED
is switched on with an active high signal, the context switch time is the time between
rising and falling edge of the signal. If the LED is switched on with an active low sig-
nal, the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead
of switching the LED on and off. The time of this overhead is also displayed on the
oscilloscope as a small peak right before the task switch time display and has to be
subtracted from the displayed context switch time. The picture below shows a simpli-
fied oscilloscope signal with an active-low LED signal (low means LED is illuminated).
There are switching points to determine:

e A = LED is switched on for overhead measurement
e B = LED is switched off for overhead measurement
e C = LED is switched on right before context switch in low-prio task
e D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tpg.

The time needed for a complete context switch including the time needed to switch
the LED on and off in subroutines is marked as time tcp.

The context switching time tcg is calculated as follows:

tcs = tep - tas

Voltage [V]
A

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

299

22.4.1.2 Example measurements AT91SAM7S, ARM code in RAM

Task switching time has been measured with the parameters listed below:

embOS Version V3.82

Application program: MeasureCST_Scope.c
Hardware: AT91SAM7SE512 processor with 48MHz
Program is executing in RAM

ARM mode is used

Compiler used: IAR V5.40

CPU frequency (fcpy): 47.9232MHz

CPU clock cycle (tcyce): toycie = 1 / fepy = 1/ 47.9232MHz = 20,866ns

Measuring tpg and tcp

g 200v/] /] & 30002 1000 Trigd 2.20V

tag is measured as 312ns.
The number of cycles calcu-
lates as follows:

Cyclesag = tap / teycle
=332ns / 20.866ns

= 15.911Cycles

=> 16Cycles

AX = 332.000ns | 1/AX = 3.0120MHz AY(1) = 0.0V

- Mode -~ Source X Y X1 D X2 X1 X2
Normal 1 v 0.0s 332.000ns

g 200v/] /] £ 30008 1000/ Trigd % 2.20V

e mumber of cycles calcu --ﬂ----II--
The number of cycles calcu-
ptes'as Tolows: I

Cyclescp = tep / teycle

= 421420ég?:s /I 20.866ns -- --- ———— -
~ . |]
- sty T o
L

= £.420000us] 1/AX = 226 2kHz AY(1) = 0.0V]

- Mode -~ Source X Y X1 D X2 X1 X2
Normal 1 v 670.000ns 5.09000us

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tcs = tep - tag = 212Cycles - 16Cycles = 196Cycles
=> 196Cycles (4.09us @48MHz).

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

300 CHAPTER 22 Performance and resource usage

22.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASH

Task switching time has been measured with the parameters listed below:

embOS Version V3.82

Application program: MeasureCST_Scope.c
Hardware: AT91SAM7ES512 processor with 48MHz
Program is executing in FLASH

Thumb mode is used

Compiler used: IAR V5.40

CPU frequency (fcpy): 47.9232MHz

CPU clock cycle (tcyce): teycie = 1 / fepy = 1/ 47.9232MHz = 20,866ns

Measuring tyg and t¢p

0 200v/ @ 6.0008 20008/ Trigd % 2.20v

e mumber of cycles calcu: --II-------
The number of cycles calcu- --

lates as follows:
Cyclespg = tap / teycle
=416.0ns / 20.866ns
= 19.937Cycles

g o
N

AX = 416.000ns | 1/AX = 2.4038MHz AY

- Mode -~ Source X Y X1 D X2 X1 X2
Normal 1 v 0.0s 416.000ns

g 200v/] /] o 59608 2000/ Trigd % 2.20V

tcp is measured as 7250ns.
The number of cycles calcu-
lates as follows:

Cyclescp = tep / teyele

= 7250ns / 20.866ns

= 347.46Cycles

=> 347Cycles

AX =7.250000us | 1/AX = 137.93kHz

AY(1) = 0.0V
- Mode -~ Source X Y X1 D X2 X1 X2
Normal 1 v 856.000ns 8.10600us

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tcs = tep - tag = 347Cycles - 20Cycles = 327Cycles
=> 327Cycles (6.83us @48MHz).

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

301

22.4.1.4 Measurement with high-resolution timer

The context switch time may be measured with the high-resolution timer. Refer to
section High-resolution measurement on page 227 for detailed information about the
embOS high-resolution measurement.

The example MeasureCST_HRTimer_embOSView.c uses a high resolution timer to
measure the context switch time from a low priority task to a high priority task and
displays the results on embOSView.

#include "RTOS.h"
#include "stdio.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static 0S_U32 _Time; // Timer values

/********‘k*‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**********‘k*‘k****‘k***‘k*‘k*‘k********‘k*‘k
*

* HPTask
*/
static void HPTask (void) {
while (1) {
0S_Suspend (NULL) ; // Suspend high priority task
OS_Timing_End (& _Time) ; // Stop measurement
}
}

/*k*k*k*k*k*k*k**************k*k*k*k***
*

* LPTask
*/
static void LPTask (void) {
char acBuffer[100]; // Output buffer
0S_U32 MeasureOverhead; // Time for Measure Overhead
0S_U32 v;
//

// Measure Overhead for time measurement so we can take
// this into account by subtracting it

//

0S_Timing_Start (&MeasureOverhead) ;

OS_Timing_End (&MeasureOverhead) ;

//
// Perform measurements in endless loop
//
while (1) {
0S_Delay (100) ; // Sync. to tick to avoid jitter
OS_Timing_Start (&_ Time) ; // Start measurement
OS_Resume (&TCBHP) ; // Resume high priority task to force task switch
v = 0S_Timing_GetCycles (& _Time) - OS_Timing GetCycles (&MeasureOverhead) ;
v = 0OS_ConvertCycles2us (1000 * v); // Convert cycles to nano-seconds

sprintf (acBuffer, "Context switch time: %u.%.3u usec\r", v / 1000, v % 1000);
0S_SendString (acBuffer) ;
}
}

The example program calculates and subtracts the measurement overhead itself, so
there is no need to do this. The results will be transmitted to embOSView, so the
example runs on every target that supports UART communication to embOSView.

The example program MeasureCST_HRTimer_Printf.c is equal to the example pro-
gram MeasureCST_HRTimer_embOSView.c but displays the results with the printf ()
function for those debuggers which support terminal output emulation.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

302 CHAPTER 22 Performance and resource usage

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

303

Chapter 23

Supported development tools

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

304 CHAPTER 23 Supported development tools

23.1 Overview

embOS has been developed with and for a specific C compiler version for the selected
target processor. Check the file RELEASE.HTML for details. It works with the specified
C compiler only, because other compilers may use different calling conventions
(incompatible object file formats) and therefore might be incompatible. However, if
you prefer to use a different C compiler, contact us and we will do our best to satisfy
your needs in the shortest possible time.

Reentrance

All routines that can be used from different tasks at the same time have to be fully
reentrant. A routine is in use from the moment it is called until it returns or the task
that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for
some reason you need to have non-reentrant routines in your program that can be
used from more than one task, it is recommended to use a resource semaphore to
avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the com-
piler may have options that force it to generate non-reentrant code. It is recom-
mended not to use these options, although it is possible to do so under certain
circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are
fully reentrant. Everything else has to be thought about carefully.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

305

Chapter 24

Limitations

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

306

CHAPTER 24 Limitations

The following limitations exist for embOS:

Max.
Max.
Max.
Max.
Max.
Max.
Max.
Task specific Event flags:

no.
no.
no.
no.
no.

of tasks:

of priorities:

of semaphores:
of mailboxes:
of queues:

size. of queues:

no.

of timers

limited by available RAM only
255

limited by available RAM only
limited by available RAM only
limited by available RAM only
limited by available RAM only
limited by available RAM only
8 bits / task

We appreciate your feedback regarding possible additional functions and we will do
our best to implement these functions if they fit into the concept.

Do not hesitate to contact us. If you need to make changes to embOS, the full source
code is available.

User & reference guide for embOS

© 2009 SEGGER Microcontroller GmbH & Co. KG

307

Chapter 25

Source code of kernel and library

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

308 CHAPTER 25 Source code of kernel and library

25.1 Introduction

embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are
not explained in detail. The object version offers the full functionality of embOS
including all supported memory models of the compiler, the debug libraries as
described and the source code for idle task and hardware initialization. However, the
object version does not allow source-level debugging of the library routines and the
kernel.

The full source version gives you the ultimate options: embOS can be recompiled for
different data sizes; different compile options give you full control of the generated
code, making it possible to optimize the system for versatility or minimum memory
requirements. You can debug the entire system and even modify it for new memory
models or other CPUs.

The source code distribution of embOS contains the following additional files:

e The cpu folder contains all CPU and compiler specific source code and header
files used for building the embOS libraries. It also contains the sample start
project, workspace, and source files for the embOS demo project delivered in the
Start folder. Normally, you should not modify any of the files in the cpu folder.

e The Genossrc folder contains all embOS sources and a batch file used for compil-
ing all of them in batch mode as described in the following section.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

309

25.2 Building embOS libraries

The embOS libraries can only be built if you have purchased a source code version of
embOS.

In the root path of embOS, you will find a DOS batch file PrREP.BAT, which needs to
be modified to match the installation directory of your C compiler. Once this is done,
you can call the batch file Mm.BAT to build all embOS libraries for your CPU.

Note: Rebuilding the embOS libraries using the M.bat file will delete and
rebuild the entire Start folder. If you made any modifications or built own
projects in the Start folder, make a copy of your start folder before rebuild-
ing embOS.

The build process should run without any error or warning message. If the build
process reports any problem, check the following:

e Are you using the same compiler version as mentioned in the file RELEASE . HTML?

e Can you compile a simple test file after running PREP.BAT and does it really use
the compiler version you have specified?

e Is there anything mentioned about possible compiler warnings in the
RELEASE.HTML?

If you still have a problem, let us know.

The whole build process is controlled with a few amount of batch files which are
located in the root directory of your source code distribution:

e Prep.bat: Sets up the environment for the compiler, assembler, and linker.
Ensure, that this file sets the path and additional include directories which are
needed for your compiler. Normally, this batch file is the only one which might
have to be modified to build the embOS libraries. Normally, this file is called from
M.bat during the build process of all libraries.

e Clean.bat: Deletes the whole output of the embOS library build process. It is
called automatically during the build process, before new libraries are generated.
Normally it deletes the start folder. Therefore, be careful not to call this batch
file accidentally. Normally, this file is called initially by M.bat during the build
process of all libraries.

e cc.bat: This batch file calls the compiler and is used for compiling one embQOS
source file without debug information output. Most compiler options are defined
in this file and should normally not be modified. For your purposes, you might
activate debug output and may also modify the optimization level. All modifica-
tions should be done with care. Normally, this file is called from the embOS inter-
nal batch file cc_os.bat and can not be called directly.

e ccd.bat: This batch file calls the compiler and is used for compiling 0s_Global.c
which contains all global variables. All compiler settings are equal to those used
in cc.bat, except debug output is activated to enable debugging of global vari-
ables when using embOS libraries. Normally, this file is called from the embOS
internal batch file cc_os.bat and can not be called directly.

e asm.bat: This batch file calls the assembler and is used for assembling the
assembly part of embOS which normally contains the task switch functionality.
Normally this file is called from the embOS internal batch file cc_os.bat and can
not be called directly.

e MakeH.bat: Builds the embOS header file RTOS.h which is composed from the
CPU/compiler-specific part 0s_chip.h and the generic part 0s_raw.h. Normally,
RTOS.h is output in the subfolder start\Inc.

e Ml.bat: This batch file is called from M.bat and is used for building one specific
embOS library, it can not be called directly.

e M.bat: This batch file has to be called to generate all embQOS libraries. It initially
calls clean.bat and therefore deletes the whole start folder. The generated
libraries are then placed in a new start folder which contains start projects,
libraries, header, and sample start programs.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

310 CHAPTER 25 Source code of kernel and library

25.3 Major compile time switches

Many features of embOS may be modified by compile-time switches. All of them are
predefined to reasonable values in the distribution of embOS. The compile-time
switches must not be changed in rRT0S.h. When the compile-time switches should be
modified to alter any of the embOS features, the modification has to be done in
OS_RAW.h or has to be passed as parameters during the library build process. embOS
sources have to be recompiled and RTOS.h has to be rebuilt with the modified
switches.

25.3.1 OS_RR_SUPPORTED

This switch defines whether round robin scheduling algorithm is supported. All
embOS versions enable round robin scheduling by default. If you never use round
robin scheduling and all of your tasks run on different individual priorities, you may
disable round robin scheduling by defining this switch to 0. This will save RAM and
ROM and will also speed up the task-switching process. Ensure that none of your
tasks ever run on the same priority when you disable round robin scheduling. This
compile time switch must not be modified in rRTOS.h. It has to be modified in
0S_RAW.h before embOS libraries are rebuilt.

25.3.2 OS_SUPPORT_CLEANUP_ON_TERMINATE

This compile time switch is new since version 3.26 of embOS. If enabled, it allows
termination of tasks which are claiming resource semaphores or are suspended on
any synchronization object.

Note: By default, this switch is on for 16- and 32-bit CPUs.
For 8-bit CPUs it is off.

Even though the overhead is minimal and execution time is not affected significantly,
you may define this switch to zero when you do not terminate tasks in your applica-
tion, or if your application ensures, that tasks are never suspended on any synchro-
nization object or claim any resource semaphores when they are terminated.

Disabling this switch will save some RAM in the task control structure and will also
speed up the wait functions for synchronization objects.

When using an 8-bit CPU, you have to enable this switch (define it to be unequal to
0) to enable termination of tasks which are suspended on synchronization objects or
claim resource semaphores.

This compile time switch must not be modified in RT0S.h. It can only be modified in
OS_RAW.h or has to be passed as define during the build process when embQS librar-
ies are rebuilt.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

311

Chapter 26
FAQ (frequently asked questions)

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

312 CHAPTER 26 FAQ (frequently asked questions)

Q: Can I implement different priority scheduling algorithms?

A: Yes, the system is fully dynamic, which means that task priorities can be changed
while the system is running (using 0S_sSetPriority()). This feature can be used
for changing priorities in a way so that basically every desired algorithm can be
implemented. One way would be to have a task control task with a priority higher
than that of all other tasks that dynamically changes priorities. Normally, the
priority-controlled round-robin algorithm is perfect for real-time applications.

Q: Can I use a different interrupt source for embQS?

A: Yes, any periodical signal can be used, that is any internal timer, but it could also
be an external signal.

Q: What interrupt priorities can I use for the interrupts my program uses?

A: Any.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

313

Chapter 27

Glossary

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

314

Cooperative multi-
tasking

Counting sema-
phore

CPU

Critical region

Event

Interrupt Handler

ISR

Mailbox

Message

Multitasking

NMI
Preemptive multi-

tasking

Process

Processor

User & reference guide for embOS

CHAPTER 27 Glossary

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be sig-
naled more than once.

Central Processing Unit. The “brain” of a microcontroller; the
part of a processor that carries out instructions.

A section of code which must be executed without interrup-
tion.

A message sent to a single, specified task that something has
occurred. The task then becomes ready.

Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

A data buffer managed by the RTOS, used for sending mes-
sages to a task or interrupt handler.

An item of data (sent to a mailbox, queue, or other container
for data).

The execution of multiple software routines independently of
one another. The OS divides the processor's time so that the
different routines (tasks) appear to be happening simulta-
neously.

Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer-interrupt.

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the inter-
rupted task is returned to.

Processs are task which their own memory layout. 2 processes
can not normally access the same memory mocations.
Different processes typically have different access rights and
(in case of MMUs) different translation tables.

Short for microprocessor. The CPU core of a controller

© 2009 SEGGER Microcontroller GmbH & Co. KG

Priority

Priority inversion

Queue

Ready

Resource

Resource sema-
phore

RTOS

Running task

Scheduler

Semaphore

Software timer

Stack

Superloop

Task

Thread

User & reference guide for embOS

315

The relative importance of one task to another. Every task in
an RTOS has a priority.

A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. The lower priority task temporarily gets
the highest priority until it releases the resource.

Like a mailbox, but used for sending larger messages, or mes-
sages of individual size, to a task or an interrupt handler.

Any task that is in “ready state” will be activated when no
other task with higher priority is in “ready state”.

Anything in the computer system with limited availability (for
example memory, timers, computation time). Essentially, any-
thing used by a task.

A type of semaphore used for managing resources by ensuring
that only one task has access to a resource at a time.

Real-time Operating System.

Only one task can execute at any given time. The task that is
currently executing is called the running task.

The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

A data structure used for synchronizing tasks.

A data structure which calls a user-specified routine after a
specified delay.

An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Threads are tasks which share the same memory layout. 2
threads can access the same memory mocations. If virtual
memory is used, the same virtaul to physical translation and
access rights are used

(-> Thread, Process)

© 2009 SEGGER Microcontroller GmbH & Co. KG

316 CHAPTER 27 Glossary

Tick The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

317

IndeXx

B
Baudrate for embOSViewco.e.e. 253
C
CstartuUp oo s 32
Compiler i 304
Configuration definesccevvviennnnn. 252
Configuration, of embOS 239, 249-255
Counting Semaphoresccvvvvinennnn. 101
Critical regionscoceivinnnne. 26, 215-219
D
Debug version, of embOScecveniee. 33
Debuggingcccoviiiiiiiii 287-291
Error COAES .viiiiiiiii i s 289
runtime errorsooviviiiiiiiiiiieeeeans 288
Development toolscccvvviiiiiiiiennne, 303
E
embOS
building libraries ofcciviiiinnnl. 309
different builds ofcooiiiiiiiiiil, 33
features of ... 17
embOS featuresccoeviiiiiiiiiiiiiiiia 17
embOS profilingcocoviiiiii 33
embOSView ...cccviiiiiiiiiiiii 257-285
APL trace ..vvvvvviiiiiiiiiiiiiiiiii s 265
OVEIVIEW ittt it s iiineesennneeaas 258
SIO i 261
system variables window 260
task list window ..o, 259
trace filter setup functions 267
trace record functionsoeeel 277
Error codesovviviiiiiiiiiiiiiii 289
Events ... 28, 145-166
I
Internal data-structures 238
Interrupt control macros 210
Interrupt level ... 21
Interrupt service routines 21, 195

User & reference guide for embOS

Interruptscooviiiiiiii 195-214
enabling/disabling ...l 207
interrupt handleroooii, 201

ISR 195

L

Libraries, buildingcoooiiiiiiiintns 309

Limitations, of embOSvviivvvvinnns 305

M

MailboXesccovvvviiiiiiiiiiienns 28, 115-132
basiCs v 117
single-byte ... 119

Measurementcccoiiiiiiiiiii 223
high-resolutioncoooeiiine, 227
low-resolutioncccceviiiiiiiiin, 223

Memory management
fixed block sizeccvvviiiiiiiiiiii, 171
heap memorycocooviiiiiiiiiiiiii 167

Memory poolsccoceviiiiiiiiiii 171-185

Multitasking systemsccovviiiiiiinnnn. 23
cooperative multitasking 25
preemptives multitasking 24

N

Nesting interruptsccooiiiiiiiiiiiniiinns 211

Non-maskable interruptscee.ee. 214

o

OS_BAUDRATE .iiiiiiiiiiie i veenne s 252

OS_CallISR() +ivrrririiniiinineiieennernennneenes 203

OS_CallNestableISR() ...coovvvrvviiiiiiinnnnns 204

OS_ClearEvents() ...ccvvevviiiiiniieiinnnnenns. 154

OS_ClearMB() covvvrviiiiiiiiiii i e 130

OS_COM_INIE() vevvrrireiiniieiieineiiennneenes 251

OS_COM_Sendl() .uvvevervrirrnenrnernnnnnennns 251

OS_ConvertCycles2us() ..cvvvvviiiviiinnnnns 251

OS_CREATECSEMA() +ievviriiiiiniiiennnennes 104

OS_CreateCSema() ..cvvvvvrririiniiiennnennes 105

OS_CREATEMB() .cvvviviiiiiiiiiieieiinannens, 121

OS_CREATERSEMA() +ivviiviiiiiiiieiineenens 93

OS_CREATETASK() tevvviriireiiernneiiennnennens 39

© 2009 SEGGER Microcontroller GmbH & Co. KG

318

OS_CreateTask() ...civevviiiiiiiiiiiiiiiieanns 40
OS_CREATETASK_EX() sovvveiiriiieiiniinnnnnns 42
OS_CreateTaskEX() .iivvvviiiiiiiiiiiiiiiiennnn, 43
OS_CREATETIMER() vvvivvieeiieiineiiennnnnnens 66
OS_CreateTimer() ...cvoevviiviiiiiiiiiiiineaan, 67
OS_CREATETIMER_EX() .covivvviniiiiiinnnens 77
OS_CreateTimerEX() ...vovvveviiiiiiiiinrnnnnss 78
0OS_CSemaRequest()cvvvvvrvvievinninnnns 110
(OIS B1=Tol 24 1 () IR 208
OS_Delay() vvviiiiiiiiiiiiiiiie i 44
OS_DelayUntil() .oooovvviiiiiiiiiiiiieieens 45
OS_DeleteCSema()vvvvvvviriieiinninnnns 113
OS_DeleteMB() vvvvviiiiiiiiiiiiiiiiieianns 132
OS_DeleteTimer() .cocovviviiiiiiiiiiieiieanns 72
OS_DeleteTimerExX() .coovvviviiiiviiiniiinnnnnn. 83
OS_DI() tererrrrernnennerinninernnennerneannernnans 209
OS_EI() vieriiiiiiiiiiii i rieennenneans 209
OS_EnterInterrupt()covvvvinnns 205-206
OS_EnterNestableInterrupt() 212
OS_EnterRegion() ...covvvvvivviiiiiiiinninnnns 218
OS_EVENT_Create() ...vvvvvvvvreviennnninnnns 158
OS_EVENT_Delete() .civvvvvevirviiennnninnnns 166
OS_EVENT_Get() .covvvviiiiiiiiiiininnennnnns 165
OS_EVENT_Pulse() .icovviviiiiiiiiiiiiiinnnnns 164
OS_EVENT_Reset() .vvvvvvviririineininnnnnnnns 163
OS_EVENT_Set() .coovvvviriiiiiiieiiiineinens 161
OS_EVENT_Wait() .eivivvviiiiiiiinnnnnens 159
OS_EVENT_WaitTimed() ...cveevvvvvievnnnnns 160
0OS_ExtendTaskContext()ccovvvvvvinnnnnn. 46
OS_free() wvovviiiiiiiiiiiii i 169
OS_FSYS i 252
0OS_GetCSemaValue()covvvvnenns 111-112
0OS_GetEventsOccurred() ...cvvvvvvinvnnnnn. 153
OS_GetMail() +vvveveeiiii i 126
OS_GetMaill() .oovviriiiiiiiiii s 126
0S_GetMailCond() .vvvvvvvviiiiiiiiiiieiens 127
0S_GetMailCond1() .covvvviiiiviiiiiiiiinnns 127
0OS_GetMailTimed() ..covvvvivviiiiiiiieinns 128
0S_GetMessageCnt() ..covvvvvvviiiiinnnnnnnn. 131
OS_GetpCurrentTask() ...covvvvvviiiiiinnnnnn. 49
OS_GetpCurrentTimer()cocvvvvenns 76, 87
OS_GetPriority() .oovvveviiiiiiiiiieea 50
OS_GetResourceOwnerccevvvvvvvinennns 99
OS_GetSemaValue() ...covvvviviinviiiiinnnens 98
OS_GetStackBase() ...ccovvvvviiiiiiiiinnnnnn. 190
OS_GetStackSize() ..ovvvvvviviieiiiinninenns 191
0OS_GetStackSpace() .coovvvvvviiiiiiiiiinnnn. 192
OS_GetStackUsed() ...covvvvvvviiiiiinnnnnnnn. 193
OS_GetTaskID() .ivvvvrrririinirieiineiieinaninens 52
OS_GetTime() .oovvivviiiiiiiiiieeens 225
0OS_GetTime_Cycles() ..covvvvvrviinvinninnnns 251
OS_GetTime32() vovvvvrvireiiiieiiinnninens 226
0OS_GetTimerPeriod() ...ovvovviiiiiiiiiinennnn. 73
OS_GetTimerPeriodEX() ...cvvvvvvviiviinnninns 84
OS_GetTimerStatus()ocovvvvviiiiiiinnnnns 75
OS_GetTimerStatusEX() ...cvvovvvvievinennnns 86
OS_GetTimerValue()covovvivvinviiiinnnens 74
OS_GetTimerValueEx()covvvvviiiiiiinnnnns 85
OS_Idle() tevvviiiiiiiiiiiiiiiiineinens 251, 255
OS_INCDI() tivriirrrneiiniieiinnseianaaneannans 208
OS_INitHW() cviiriiiiiiic e 251
OS_ISR_IX() weviiiiiiiiiiiiiic i 251
OS_ISR_EX() tevvierireiiniineiineineiinennennnans 251
OS_ISTask() evvrerirriririeiineiinrnneinennnennens 53
OS_Leavelnterrupt()covvvvviiiiiininnnnnn. 206
0OS_LeaveNestablelnterrupt() 213
OS_LeaveRegion() ...covvvvviiiiiiiiiinnninnnns 219

User & reference guide for embOS

Index

OS_malloc() evvvrviiiiiii e 169
OS_MEMF_AHOC() tvreeiiiiiiiiieiieiaeeen, 176
OS_MEMF_AllocTimed() ...covvvvievinennnnns 177
OS_MEMF_Create() ..covvvvvievnniiiennnnnnnnns 174
OS_MEMF_Delete() ..covvvviiiiiiiiiiinnenns 175
OS_MEMF_FreeBlock() ...icovvvvviiiiiiinnnns 180
OS_MEMF_GetBlockSize()civovvvvinnnns 182
OS_MEMF_GetMaxUsed()ccvvvvvnvinnnns 184
OS_MEMF_GetNumBIlocks()cccvvvvnnnen. 181
OS_MEMF_GetNumFreeBlocks() 183
OS_MEMF_ISINPOOI() .iivvviviiiiiiiinennnnns 185
OS_MEMF_Release()covvevvriiiiiniiinnnns 179
OS_MEMF_Request() ...oovvvvviiiiiiiininnnnns 178
OS_PutMail() .vvvvviiiiiiiii i 122
OS_PutMaill() .iovvvreiieiiiii e 122
OS_PutMailCond() .vivvvvrviiiiiiieinnennens 123
OS_PutMailCond1() .icovvrviiiiiiiiieiinnnnenns 123
OS_PutMailFront() ...ccovvviiiiiiiiiiiiiinnnns 124
OS_PutMailFront1()icovviiiiiiiiiiinnnns 124
OS_PutMailFrontCond() ...covvvvvivvineinnnns 125
OS_PutMailFrontCond1()covvvvvvvnnnnn. 125
OS_Q_Clear() wieeverererrrnrrneennerneannernenns 143
OS_Q Create() .vvvvrvriiriiiiiiiiiieeninen, 137
0S_Q_GetMessageCnt() ...cvvvvvievinirnnnns 144
OS_Q_GetPtr() .oveeiiiiiiiiiieiee e 139
0OS_Q_GetPtrCond() vvervvrrrirrinrriennnenns 140
OS_Q_GetPtrTimed() ..ccvvvvvvrvieiieennenns 141
OS_Q_PUrge() «ieevvrriieiiiiinnneiieannennnns 142
OS_Q_PUE() verriiriiiiiiiic e, 138
OS_realloc() .vvvvviiiiiiiiii s 169
OS_Request() ..covviviiiiiiiiiiiiiiieneen 97
OS_Restorel() .ivevvrvrirvireiinnineiineinennnnns 209
OS_ResUME() tvrviiiiiiiiiiiieii i 54
OS_RetriggerTimer() ..ccovviviiiiiiiiiiinnnnnn. 70
OS_RetriggerTimerEX() ...ccvvvvvviieiinnnnens 81
0S_SendString() ...vvveviriiiiiiiieeas 263
OS_SetPriority() .iovvviiiiiiiiiiiie 55
0OS_SetRxCallback() ..covvvvvvviiiiiiinennnns 264
0OS_SetTaskName() ...coevvvviiiiiiiiiiiennnn, 56
0OS_SetTimerPeriod() ..coivvvviiiiiiiiiiiinnnnns 71
OS_SetTimerPeriodEX() ...covvvvivviiiiinnnnens 82
OS_SetTimeSlice() ..ocovviiiiiiiiiiiiiiienns 57
OS_SignalCSema() ..ccovvvvievinninenns 106-107
0OS_SignalEvent() ...icovviviivviiiiieiinenens 152
OS_StartTimer() «.vveviiiiiiiiiiiiiii i 68
OS_StartTimerEx() ..ocvvvvviiiiiiiiienieenens 79
OS_StopTimer() .ooovvvvviiieiiiierieiieeaens 69
OS_StopTimerEX() .vovvvviviiiiiiiiiiiieenens 80
OS_Suspend() .cevveviiiiiiiiiii 58
OS_Terminate() ..ovvvvivviiiiiiii e 59
OS_TICK_AddHOOK() ..evveviiiiiiiienen, 246
OS_TICK_Config() vveevrrrririnnerinnnnernnnns 244
OS_TICK_Handle() .ccvvvvrviviiiiiniiiennenn, 242
OS_TICK_HandleEX() .ccvvvvvvvviiiiinninnnns 243
OS_TICK_RemoveHooK()ccvvvevivnnnnns 247
OS_TiMeE it e 237
OS_TimeDeX ..ovviiiiiiiiiii i 237
OS_Timing_End() .covvvivviiiiiiiiiiiiianns 230
OS_Timing_GetCycles()covvvviiviiirnnnns 232
OS_Timing_Getus() ...covvvvvviiiviineiinnnns 231
OS_Timing_Start() ...ccooviiviiiiiiiiiinnns 229
OS_TraceData() ..ovvvvvvviiiiiiiiiinieinens 281
OS_TraceDataPtr()covvvvvvviiiiiniinennnns 282
OS_TraceDisable() ..ccovvviiiiiiiiiiinnnn, 270
OS_TraceDisableAll()ccccvvivviiiiiinnnns 272
OS_TraceDisableFilterId()c.cevvnen.. 276
OS_TraceDisableId()cccovviiiiiiiiinnnns 274

© 2009 SEGGER Microcontroller GmbH & Co. KG

OS_TraceEnable()covviiiiiiiiiiiiininnens 269
OS_TraceEnableAll() ...covvvvvvviiiiiiinennnn, 271
OS_TraceEnableFilterId()ccvvvvennnn. 275
OS_TraceEnableId()ccovvvviiiiiiiiennnnn. 273
OS_TracePtr() ..ovovviiiiiiiiiiiiiieiie e 280
OS_TraceU32Ptr() ..ccvvovviiiiiiiiiiinnennens 283
OS_TraceVoid() ..cvvevviriinriiniiniiieinnannens 279
OS_UART it i e aa e 252
OS_UNUSE() tiririiiiiiiiiiiiii i i aeas 96
OS_USE() +iiviiriiiiiire i inennnennennes 94
0OS_WaitCSema() ...ooovvvviiiiiiiiiiinennannn 108
OS_WaitCSemaTimed()covvvvvievnnnnnens 109
OS_WaitEvent()oovvvviiiiiiiiiiiiiiienens 148
OS_WaitEventTimed()coovvivvivvinennnns 150
OS_WaitMail() .vveviieiiii i 129
OS_WaitSingleEvent()cccvvvvviiinnnnnn. 149
0OS_WaitSingleEventTimed() 151
OS_WakeTask() .cvvvvririiiiiiiiiiiiienneasn 60
P
Preemptive multitaskingooel 24
Priority oo 26
Priority inversionccovviiiiiiiiiiiiienn 27
Profiling ...ccvviiiii i 33
Q
QUEUES i 28, 133-144
R
Reentranceccvviiiiiiiiiiiiiiininee 304
Release version, of embOSvevveee. 33
Resource semaphoresccoevvvvvvinnnnns 89
Round-robincccvvieiiiiiiiiiiiiii i 26
RTOSInit.c configuration 250
Runtime errors ... 288
S
Schedulercooviiiiiiii 26
SemMaphoresccvvviiiiiiii 28
Counting .oocvviiiiiiii 101-113
ReSOUIrCe ..ovviiiiiiiiiiiiie e 89-100
Software timerccoviiiiiiiiis 63-76
Software timer API functions 65
Stack .o 29, 187-193
Stack pointer ... 29
Stacks
SWItChING .o 30
SUPEMIOOP ittt e 21
Switching stackscooviiiiiiiiiini 30
Syntax, conventions usedccevvinennns 7
System variablesooll 235-238
T
Task communicationcccoevviviiiinennn. 28
Task control blockcccvvviiivviiinnnnn, 29, 36
Task routines 22— .. .cciiiiiiiiiiiiiii s 61
TASKS it e 20, 35
communication ... 28
global variablesccoiiiiiiii, 28
multitasking systemscocciiiiiiiian. 23
periodical pollingccoiiiiiiiiiiiiin, 28
single-task systemscooociiiiiiiiinnns 21
status ..o 31
8] o1=1 4 [0] o PP 21

User & reference guide for embOS

Index 319

SWItChing i 29
TCB it et 29
Time measurementccvvvvviiiinnns 221-234
Time variablesccciiiiiiiiiiiiiiiins 237
U
[2 258
UART, for embOSiiiiiiiiiiiiii e 253
Vv
Vector table file .ovvvveiiiii s 253

© 2009 SEGGER Microcontroller GmbH & Co. KG

320 Index

User & reference guide for embOS © 2009 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction to embOS
	1.1 What is embOS
	1.2 Features

	Basic concepts
	2.1 Tasks
	2.1.1 Threads
	2.1.2 Processes

	2.2 Single-task systems (superloop)
	2.2.1 Advantages & disadvantages
	2.2.2 Using embOS in super-loop applications
	2.2.3 Migrating from superloop to multi-tasking

	2.3 Multitasking systems
	2.3.1 Task switches
	2.3.2 Cooperative task switch
	2.3.3 Preemtive task switch
	2.3.4 Preemptive multitasking
	2.3.5 Cooperative multitasking

	2.4 Scheduling
	2.4.1 Round-robin scheduling algorithm
	2.4.2 Priority-controlled scheduling algorithm
	2.4.3 Priority inversion

	2.5 Communication between tasks
	2.5.1 Periodical polling
	2.5.2 Event driven communication mechanisms
	2.5.3 Mailboxes and queues
	2.5.4 Semaphores
	2.5.5 Events

	2.6 How task-switching works
	2.6.1 Switching stacks

	2.7 Change of task status
	2.8 How the OS gains control
	2.9 Different builds of embOS
	2.9.1 Profiling
	2.9.2 List of libraries
	2.9.3 embOS functions context

	Tasks
	3.1 Introduction
	3.1.1 Example of a task routine as an endless loop
	3.1.2 Example of a task routine that terminates itself

	3.2 Cooperative vs. preemptive task switches
	3.2.1 Disabling preemptive task switches for tasks at same priorities
	3.2.2 Completely disabling preemptions for a task

	3.3 API functions
	3.3.1 OS_CREATETASK()
	3.3.2 OS_CreateTask()
	3.3.3 OS_CREATETASK_EX()
	3.3.4 OS_CreateTaskEx()
	3.3.5 OS_Delay()
	3.3.6 OS_DelayUntil()
	3.3.7 OS_ExtendTaskContext()
	3.3.8 OS_GetpCurrentTask()
	3.3.9 OS_GetPriority()
	3.3.10 OS_GetSuspendCnt()
	3.3.11 OS_GetTaskID()
	3.3.12 OS_IsTask()
	3.3.13 OS_Resume()
	3.3.14 OS_SetPriority()
	3.3.15 OS_SetTaskName()
	3.3.16 OS_SetTimeSlice()
	3.3.17 OS_Suspend()
	3.3.18 OS_Terminate()
	3.3.19 OS_WakeTask()
	3.3.20 OS_Yield()

	Software timers
	4.1 Introduction
	4.2 API functions
	4.2.1 OS_CREATETIMER()
	4.2.2 OS_CreateTimer()
	4.2.3 OS_StartTimer()
	4.2.4 OS_StopTimer()
	4.2.5 OS_RetriggerTimer()
	4.2.6 OS_SetTimerPeriod()
	4.2.7 OS_DeleteTimer()
	4.2.8 OS_GetTimerPeriod()
	4.2.9 OS_GetTimerValue()
	4.2.10 OS_GetTimerStatus()
	4.2.11 OS_GetpCurrentTimer()
	4.2.12 OS_CREATETIMER_EX()
	4.2.13 OS_CreateTimerEx()
	4.2.14 OS_StartTimerEx()
	4.2.15 OS_StopTimerEx()
	4.2.16 OS_RetriggerTimerEx()
	4.2.17 OS_SetTimerPeriodEx()
	4.2.18 OS_DeleteTimerEx()
	4.2.19 OS_GetTimerPeriodEx()
	4.2.20 OS_GetTimerValueEx()
	4.2.21 OS_GetTimerStatusEx()
	4.2.22 OS_GetpCurrentTimerEx()

	Resource semaphores
	5.1 Introduction
	5.2 API functions
	5.2.1 OS_CREATERSEMA()
	5.2.2 OS_Use()
	5.2.3 OS_Unuse()
	5.2.4 OS_Request()
	5.2.5 OS_GetSemaValue()
	5.2.6 OS_GetResourceOwner()
	5.2.7 OS_DeleteRSema()

	Counting Semaphores
	6.1 Introduction
	6.2 API functions
	6.2.1 OS_CREATECSEMA()
	6.2.2 OS_CreateCSema()
	6.2.3 OS_SignalCSema()
	6.2.4 OS_SignalCSemaMax()
	6.2.5 OS_WaitCSema()
	6.2.6 OS_WaitCSemaTimed()
	6.2.7 OS_CSemaRequest()
	6.2.8 OS_GetCSemaValue()
	6.2.9 OS_SetCSemaValue()
	6.2.10 OS_DeleteCSema()

	Mailboxes
	7.1 Introduction
	7.2 Basics
	7.3 Typical applications
	7.4 Single-byte mailbox functions
	7.5 API functions
	7.5.1 OS_CREATEMB()
	7.5.2 OS_PutMail() / OS_PutMail1()
	7.5.3 OS_PutMailCond() / OS_PutMailCond1()
	7.5.4 OS_PutMailFront() / OS_PutMailFront1()
	7.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
	7.5.6 OS_GetMail() / OS_GetMail1()
	7.5.7 OS_GetMailCond() / OS_GetMailCond1()
	7.5.8 OS_GetMailTimed()
	7.5.9 OS_WaitMail()
	7.5.10 OS_ClearMB()
	7.5.11 OS_GetMessageCnt()
	7.5.12 OS_DeleteMB()

	Queues
	8.1 Introduction
	8.2 Basics
	8.3 API functions
	8.3.1 OS_Q_Create()
	8.3.2 OS_Q_Put()
	8.3.3 OS_Q_GetPtr()
	8.3.4 OS_Q_GetPtrCond()
	8.3.5 OS_Q_GetPtrTimed()
	8.3.6 OS_Q_Purge()
	8.3.7 OS_Q_Clear()
	8.3.8 OS_Q_GetMessageCnt()

	Task events
	9.1 Introduction
	9.2 API functions
	9.2.1 OS_WaitEvent()
	9.2.2 OS_WaitSingleEvent()
	9.2.3 OS_WaitEventTimed()
	9.2.4 OS_WaitSingleEventTimed()
	9.2.5 OS_SignalEvent()
	9.2.6 OS_GetEventsOccurred()
	9.2.7 OS_ClearEvents()

	Event objects
	10.1 Introduction
	10.2 API functions
	10.2.1 OS_EVENT_Create()
	10.2.2 OS_EVENT_Wait()
	10.2.3 OS_EVENT_WaitTimed()
	10.2.4 OS_EVENT_Set()
	10.2.5 OS_EVENT_Reset()
	10.2.6 OS_EVENT_Pulse()
	10.2.7 OS_EVENT_Get()
	10.2.8 OS_EVENT_Delete()

	Heap type memory management
	11.1 Introduction
	11.2 API functions

	Fixed block size memory pools
	12.1 Introduction
	12.2 API functions
	12.2.1 OS_MEMF_Create()
	12.2.2 OS_MEMF_Delete()
	12.2.3 OS_MEMF_Alloc()
	12.2.4 OS_MEMF_AllocTimed()
	12.2.5 OS_MEMF_Request()
	12.2.6 OS_MEMF_Release()
	12.2.7 OS_MEMF_FreeBlock()
	12.2.8 OS_MEMF_GetNumBlocks()
	12.2.9 OS_MEMF_GetBlockSize()
	12.2.10 OS_MEMF_GetNumFreeBlocks()
	12.2.11 OS_MEMF_GetMaxUsed()
	12.2.12 OS_MEMF_IsInPool()

	Stacks
	13.1 Introduction
	13.1.1 System stack
	13.1.2 Task stack
	13.1.3 Interrupt stack

	13.2 API functions
	13.2.1 OS_GetStackBase()
	13.2.2 OS_GetStackSize()
	13.2.3 OS_GetStackSpace()
	13.2.4 OS_GetStackUsed()

	Interrupts
	14.1 What are interrupts?
	14.2 Interrupt latency
	14.2.1 Causes of interrupt latencies
	14.2.2 Additional causes for interrupt latencies

	14.3 Zero interrupt latency
	14.4 High / low priority interrupts
	14.5 Rules for interrupt handlers
	14.5.1 General rules
	14.5.2 Additional rules for preemptive multitasking

	14.6 API functions
	14.6.1 OS_CallISR()
	14.6.2 OS_CallNestableISR()
	14.6.3 OS_EnterInterrupt()
	14.6.4 OS_LeaveInterrupt()
	14.6.5 Example using OS_EnterInterrupt()/OS_LeaveInterrupt()

	14.7 Enabling / disabling interrupts from C
	14.7.1 OS_IncDI() / OS_DecRI()
	14.7.2 OS_DI() / OS_EI() / OS_RestoreI()

	14.8 Definitions of interrupt control macros (in RTOS.h)
	14.9 Nesting interrupt routines
	14.9.1 OS_EnterNestableInterrupt()
	14.9.2 OS_LeaveNestableInterrupt()

	14.10 Non-maskable interrupts (NMIs)

	Critical Regions
	15.1 Introduction
	15.2 API functions
	15.2.1 OS_EnterRegion()
	15.2.2 OS_LeaveRegion()

	Time measurement
	16.1 Introduction
	16.2 Low-resolution measurement
	16.2.1 API functions

	16.3 High-resolution measurement
	16.3.1 API functions

	16.4 Example

	System variables
	17.1 Introduction
	17.2 Time variables
	17.2.1 OS_Time
	17.2.2 OS_TimeDex

	17.3 OS internal variables and data-structures

	System tick
	18.1 Introduction
	18.2 Tick handler
	18.2.1 API functions

	18.3 Hooking into the system tick
	18.3.1 API functions

	Configuration of target system (BSP)
	19.1 Introduction
	19.2 Hardware-specific routines
	19.3 Configuration defines
	19.4 How to change settings
	19.4.1 Setting the system frequency OS_FSYS
	19.4.2 Using a different timer to generate the tick-interrupts for embOS
	19.4.3 Using a different UART or baudrate for embOSView
	19.4.4 Changing the tick frequency

	19.5 STOP / HALT / IDLE modes

	embOSView: Profiling and analyzing
	20.1 Overview
	20.2 Task list window
	20.3 System variables window
	20.4 Sharing the SIO for terminal I/O
	20.5 API functions
	20.5.1 OS_SendString()
	20.5.2 OS_SetRxCallback()

	20.6 Using the API trace
	20.7 Trace filter setup functions
	20.8 API functions
	20.8.1 OS_TraceEnable()
	20.8.2 OS_TraceDisable()
	20.8.3 OS_TraceEnableAll()
	20.8.4 OS_TraceDisableAll()
	20.8.5 OS_TraceEnableId()
	20.8.6 OS_TraceDisableId()
	20.8.7 OS_TraceEnableFilterId()
	20.8.8 OS_TraceDisableFilterId()

	20.9 Trace record functions
	20.10 API functions
	20.10.1 OS_TraceVoid()
	20.10.2 OS_TracePtr()
	20.10.3 OS_TraceData()
	20.10.4 OS_TraceDataPtr()
	20.10.5 OS_TraceU32Ptr()

	20.11 Application-controlled trace example
	20.12 User-defined functions

	Debugging
	21.1 Runtime errors
	21.2 List of error codes

	Performance and resource usage
	22.1 Introduction
	22.2 Memory requirements
	22.3 Performance
	22.4 Benchmarking
	22.4.1 Measurement with port pins and oscilloscope

	Supported development tools
	23.1 Overview

	Limitations
	Source code of kernel and library
	25.1 Introduction
	25.2 Building embOS libraries
	25.3 Major compile time switches
	25.3.1 OS_RR_SUPPORTED
	25.3.2 OS_SUPPORT_CLEANUP_ON_TERMINATE

	FAQ (frequently asked questions)
	Glossary
	Index
	B
	C
	D
	E
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

