embOS

Real Time Operating System
Software Version 3.10d
CPU independent

User’s & reference manual

Document revision 2

YT
SEGGER

A product of SEGGER Microcontroller Systeme GmbH

2/136 User's & reference manual for embOS real time OS

Disclaimer

The information in this document is subject to change without notice. While the
information herein is assumed to be accurate, SEGGER MICROCONTROLLER
SYSTEME GmbH (the manufacturer) assumes no responsibility for any errors
or omissions.

The author makes and you receive no warranties or conditions, express, im-
plied, statutory or in any communications with you. The manufacturer specifi-
cally disclaims any implied warranty of merchantability or fitness for a particular
purpose.

Copyright notice

No part of this publication may be reproduced, stored in an retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the manufac-
turer. The Software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license. If
you have received this product as trial version for evaluation, you are entitled to
evaluate it, but you may under no circumstances use it in a product. If you want
to do so, you need to obtain a fully licensed version from the manufacturer.

© 1996 - 2002 Segger Microcontrollersysteme GmbH
http://www.segger.com/

Trademarks

Names mentioned in this manual may be trademarks of their respective com-
panies.

Brand and product names are trademarks or registered trademarks of their re-
spective holders.

Contact / registration

Please register the software. This way we can make sure you will receive up-
dates or notifications of updates as soon as they become available. For regis-
tration please fill in and send us the registration card,

Contact address
SEGGER Microcontroller Systeme GmbH

Email : support@segger.com
Internet: http://www.segger.com/

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 3/136

Contents
Do F= 10 = 2
(@707)Y/ 4o] o1 a1] (o USRIt 2
I = T [T = PSR 2
Contact / registrationoouuiiii i 2
(@7 0] o1 1= £ 3
1. About thiS dOCUMENT ..o 6
P I N U g o) €[] < 6
1.2. How to use this manual.............coooriiiiiiiiii e 6
1.3. Typographic Conventions for SYNtaxccccoooooooiiiiiiiieeeeeeee e 6
2. Introduction 10 @MIDOS.............cooo e 7
2.1. What is @MBOS 7 ... 7
A =Y | 11 (=P 7
I I = = 1 [o) 1= o £ PSR 9
X TRt O 1=] SR 9
3.2. Multitasking: cooperative - preemptive.............coiiiiiiiiiiiiiee e 9
KR S Ted 1= To 11111 T IR 10
3.4. Communication between tasksuueiiiiiiiiiiiiiiiii e 12
3.5. HOW task-SWitChiNg WOTKSuuuuuueiiiiiii s 13
3.6. SWItCNING StACKSuuuuiiiiiiiiiiiiiii s 14
3.7. Change Of task STAtUSuuiiiiiiiiiiiiiii e 15
3.8. What happens after reSet..........ooeviiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e eeeeeneees 16
3.9. How the OS gains CONTIOluuuiiiiiiiiiiiiiiiiiii e 17
3.10. Different builds of @mbOS................oummmmmmii e 18
4. Configuration for your target system (RTOSINIT.C)....coovviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 20
4.1. Routines in RTOSINIL.C.cooeeeeeeeeeeeeee e 20
4.2. Configuration defines ... 20
4.3. HOW t0 change SettiNgSiii i 21
4.4. 0S8 CONFIG....ccoo e 22
ST 1=] Q0 U (] 1= P 23
5.1. OS CREATETASKoettttttttttttttetit ittt e e s asaasasasaaasasaasasssssssansssssnnnnnnnnnes 24
5.2. OS _CreateTaskcceee i 26
5.3. OS_Delay: Suspend for fixed timeoouvuiiiiiiiii e 28
5.4. OS_DelayUntil: Suspend until............coooommmiiiiiii e, 29
5.5. OS_SetPriority: Change priority Of @ task...........uuuuuiiiiiiiiiiiiiiiiis 30
5.6. OS_GetPriority: Retrieve priority of ataskcvviiiiiiiiiiee e, 31
5.7. OS_SetTimeSlice: Change timeslice of a task...............euuviiiiiiiiiiiiiiiiiiis 32
5.8. OS_Terminate: Terminate atask..........cccvveiiii i, 33
5.9. OS _WaKETASK.....uuiieii et e e e e e e e e 34
5.10. OS _ISTASK ettt s 35
5.11. OS_GetTASKIDeeieieieiiiiiiiiiieiie e naas 36
5.12. OS_GetpCurrentTaskooouuiiiiie e 37
B. SOFtWAIE TIMIEE ... e e e e e e ettt e e e e e e e eeeaesna e e e eeeeeeennnnnnns 38
6.1. OS_CREATETIMER ... e e e e e e e e e e e 39
I @ T =7 (= I o 1= R 40
6.3. OS _SHAMTIMET .ceeeeie e e e e e 41
R @ 1 T (o] o 1T 1= PSS 42
6.5. OS _RetrigQEIrTIMENo e e e e 43
6.6. OS_SetTimerPerioqcoooieiiiee e e e e e 44
6.7. OS _DeleteTiMEN ...eeee e e e e e 45
6.8. OS_GetTiMerPeriod.......ccooeuiiiiiee e e e e e e 46
6.9. OS_GetTimMerValUe.........cooomiiiiee e 47
6.10. OS_GetTimerStatus........oeeiieii e e e 48

© 1996- 2002 Segger Microcontroller Systeme GmbH

4/136 User's & reference manual for embOS real time OS

6.11. OS_GetpCUIMENTTIMEro e e e e e e eeeeees 49
7. RESOUICE SEMAPNOIESceuiiiiii e e e e e e e e e e e e e eaaans 50
7.1. Example for use of Resource semaphore............ccooooiiiiiiiiiiii i, 51
7.2. OS_CREATERSEMA ittt sssssssssesnnnnnnnes 53
7.3. OS_Use: USING @ RESOUICEcoiiiiiiiiiiiiiieiiee et a e 54
7.4. OS_Unuse: Release RESOUICE.........coooviivuiiiiiiiii e 56
A T O 1S T = To (U= S 57
7.6. OS_GetSemMAVaAlUEcouuiiiiiie e 58
7.7. OS_GetRESOUIrCEOWNETceeiieeeeieeeeeeeeeeeeee ettt e e ee e e eeeeeeeeees 59
L I OTo TN g1 gTo IS T=T o gF=T o] gL] =T 60
8.1. Example for OS_SignalCSema and OS_WaitCSemacccevvvrieeeeeeiennnnns 60
8.2. OS _CREATECSEMAttt eaasasassssssssssnsssnnssssssnsnnnnnnes 61
8.3. OS _CreatelSemAccceieiiieiiiiieeeeee et ———————_ 62
8.4. OS_SignalCSema: Incrementingcoooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 63
8.5. OS_WaitCSema: Decrementingcoevvvviiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 64
8.6. OS_WaitCSemaTimed: Decrementing with timeout..................... 65
8.7. OS_GetCSemMAVaAIUEcceeeeeiieeiieeeeeeeeeeeeeeeee s nnnnnnnnnnnne 66
8.8. OS _DeletelSEMAviiiee e aaaaane 67
S B\ = 1 0o)= S 68
S B BT o VN 0 =1 0T)T 68
S B = 7= T [SRR 68
1S JRC T Y/ o Toz= 1 IF=T o] o] o7 i o] 1S 0 SEPRPPR 69
9.4. Number of and size of mailboxes, type of mailccccoiiiii 70
9.5. OS_CREATEMB: Creating @ mailbOXcccuuiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee 71
9.6. Single byte MailboX fUNCHONS...........coiiiiiiiiiiii e 72
9.7. OS_PutMail / OS_PutMail1: Store message.........coovvevreeiiiiieeeieeeeiiceee e 73
9.8. OS_PutMailCond / OS_PutMailCond1: Store Message if possible.................... 74
9.9. OS_GetMail / OS_GetMailTeiiiiieeeeeeee e e e eeenees 75
9.10. OS_GetMailCond / OS_GetMailCondTeuieiiiiieiiiiiiiiiiieeiieieeeieeeeneeeeeennnnees 76
9.11. OS_ClearMB: Empty @ MailbOXcceviiiiiiiiii e 77
9.12. OS_GetMeESSAGEC Lo 78
9.13. OS _DEIEIEMBcooeeeeeeeeeeeeeeeeeeeee et a———————————————— 79
10, QUEUES ...t na 80
10.1. WHRY QUUEUES 7 ...ttt ess s st essnsnnnnnnne 80
L T2 = 2= T T2 PP 80
10.3. Number of and size of queues, type of messages...............uuvvevviviiiiiiiiininnnnnnns 81
10.4. OS_Q_Create: Creating @ meSSage QUEUEceeeeeeeeereeemmenennnnnnennnnnnnnnnnnnnes 82
10.5. OS_Q_Put: StOre MeSSAGE ..cvvvuuiiii i e e e eeeenees 83
10.6. OS_Q_GetPtr: Retrieve MeSSaAge.........uuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeinnnenenenennnnnnnnes 84
10.7. OS_Q_GetPtrCond: Retrieve message if availableccccoeviiiiiii i, 85
10.8. OS_Q_Purge: Delete message in QUEUE............eeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieienneees 86
10.9. OS_Q_GetMessageCnt: Get number of messages in queue.......................... 87
I R =T P 88
11.1. OS_WaIEVENT ... e e e e e e 89
11.2. OS_WaitSINgIEEVENT ... 90
11.3. OS_WatEVentTimedccoooiiiiie e 91
11.4. OS_WaitSingleEventTimed ..o 92
11.5. OS_SIgNaAlEVENT......ooiiiiiiiiiiieee ettt aesaeesseabensannnnnnes 93
11.6. OS_GetEVventSOCCUIEd...........uuuiiii i e e 95
11.7. OS_ClearEvents: Clear List of Events ..., 96
1, S ACKS ... nnne 97
L2 IS T o 1= o = T (o PP 97
12.2. SYSIEM STACK......ceeiiee e 97
L2 TR - TS = 7= o PR 97
12.4. INterrUPt STACK ...coeeeeeee e 98
12.5. OS_GetStaCkSPace.......ccoveiiiiiiie e 98

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 5/136

G TR 01 =T 4 U o) PSSR 100
13.1. Rules for interrupt handlers..............oouuiiiiiiiiii e, 101
13.2. Calling embOS routines from within an ISRccooii 102
13.3. Enabling / Disabling interrupts from "C" ... 103
13.4. Nesting interrupt routines ... 106
13.5. Non maskable interrupts (NMIS)..........cooeiiiiiiiii e 107

14. Critical REGIONScoviiiiiiiiiiiiiiieeee e 108
14.1. OS_ENterREGION 109
14.2. OS_LeaVEREGION.ceiiiiiiiiiee e 110

15, SYSIEM VArIAbIES ... —————— 111
15.1. TIME Variablescoooeie e 111
15.2. OS internal variables and data-structures............ccccooooiriiiiiiii e 112

16. STOP / HALT / IDLE MOdE.......ccooieeeeeeeeeeeeeee e 113

17. embOSView: Profiling and analyzing..............cccciiii e 114
LA T O A=Y oo 114
17.2. TASK ISt WINAOW ... e e e e e e e 115
17.3. System variables ... 115
17.4. Sharing the SIO for Terminal 1/O........cooooiiiiiii i, 115
17.5. USING the API-raceueeiieeeeeeeee e 116
17.6. Trace filter setup fuNCHONScoooviiiii e 118
17.7. Trace record fUNCHIONSccooeeeeieee 121
17.8. Application controlled trace exampleooovviiiiiiiiiiiii e 123
17.9. embOS.ini: User defined funCtions..........ccoooioiiiiiiiiiiieeeeeee e 125

18. DeDUGING ... 126
18.1. RUN-TIME ©ITOIS ... e 126
18.2. List Of €ITOr COUES ... 127

19. Supported development tOOIS.......ccooeeeeeeii i 129
L TR I =TT o = T 1= TR 129

P24 TR 0 g1 2= () 1R 130

21. Source code of kernel and library ... 131
21.1. BUilding @mbBOS liDrari€S........cccooiiieieieieeeeeeeee e 131

22. AdditioNal MOAUIESceeeiiiii e e e e e e e e e e e e e e eeeenne 132
22.1. Keyboard-Manager: KEYMAN.C........oooiiii e 132
22.2. Additional libraries and MOdUIESouuuiiiiiiiiiicce e 133

23. FAQ (frequently asked QUESTIONS) ...ccooeeieeeeeiee 134

24, GlOSSAIY ..o 135

28, INABX e 136

© 1996- 2002 Segger Microcontroller Systeme GmbH

6/136 User's & reference manual for embOS real time OS

1. About this document

This guide describes the functionality and user APl of embOS Real Time Op-
erating System.

1.1. Assumptions

This guide assumes that you already have a solid knowledge of the following:

e The software-tools used to build your application (assembler, linker, "C"-
compiler)

e The C-language

e The target processor

e DOS-command-line

If you feel your knowledge of C is not good enough, we recommend The C Pro-
gramming Language by Kernighan and Richie, which describes the standard in
C-programming and in newer editions also covers ANSI C.

1.2. How to use this manual

This Manual explains all the functions and macros that embOS offers. How-
ever, it does cover the entire subject of real-time-programming. It assumes you
have a working knowledge of the C-Language, knowledge of assembly pro-
gramming is not required.

The intention of this manual is to give you a CPU & compiler independent intro-
duction of embOS and to be a reference for all embOS API functions.

For a quick and easy startup with embOS, please check out chapter 2 in the
CPU & Compiler Specifics manual of embOS documentation, which includes a
step-by-step introduction about using embOS.

1.3. Typographic Conventions for Syntax
This manual uses the following typographic conventions for syntax:
Regular size Arial for normal text

Regular size courier for text that you enter at the command-prompt and for what
you see on your display

Regul ar size courier for RTOS-functions nentioned in the
t ext

Reduced size courier in a franme for
program exanpl es

Boldface Arial for very important sections

Italic text for keywords

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 7/136

2. Introduction to embOS

2.1. What is embOS ?

embOS is a priority-controlled Multitasking-System, designed to be used as
embedded operating system for the development of real-time applications for a
variety of microcontrollers.

embOS is a high performance tool that has been optimized for minimum mem-
ory consumption in both RAM and ROM, high speed and versatility.

2.2. Features

In the development process of embOS, the limited resources of microcontrol-
lers have always been kept in mind. The internal structure of the RTOS has
been optimized in a variety of applications with different customers over a pe-
riod of more than 5 years to fit the needs of the industry. Fully source-
compatible RTOS are available for a variety of microcontrollers, making it an ef-
fort well worth the time to learn how to structure real-time programs with real-
time-operating systems.

embOS is highly modular. This means that only those functions that are
needed are linked, keeping the ROM-size very small. (Minimum is little more
than1 kByte ROM and about 30 bytes of RAM (plus memory for stacks))

A couple of files are supplied in source-code-form to make sure that you do not
lose any flexibility by using embOS and that you can customize the system to
fully fit your needs.

The tasks that are created by the programmer can easily and safely communi-
cate with each other using a complete palette of communication mechanisms
like semaphores, mailboxes and events.

© 1996- 2002 Segger Microcontroller Systeme GmbH

8/136

User's & reference manual for embOS real time OS

Some features of embOS are:

Preemptive scheduling

Guarantees that of all tasks in READY-state the one with the highest priority
executes, except for situation where priority-inversion applies.

Round robin scheduling for tasks with identical priorities

Preemptions can be disabled for entire tasks or sections of a program

up to 255 Priorities

Every task can have an individual priority = The response of tasks can be
precisely defined according to the requirements of the application

Unlimited no. of tasks

No. of tasks is limited by the amount of available memory only

Unlimited no. of semaphores

No. of semaphores is limited by the amount of available memory only

2 types of semaphores : Resource-, counting

Unlimited no. of mailboxes

No. of mailboxes is limited by the amount of available memory only

Size and number of messages can be freely defined when initializing mailbox
Unlimited no. of software-timers

No. of software-timers is limited by the amount of available memory only
8-bit events for every task

Time resolution can be freely selected (default 1Tms)

Easily accessible time variable

Power management : Unused calculation-time can automatically be spent in
halt-mode = power-consumption is minimized

Full interrupt support

Interrupts can call any function except those that require waiting for data or
create, delete or change the priority of a task.

Interrupts can wake-up or suspend tasks and directly communicate with
tasks using all available communication-instances (mailboxes, semaphores,
events)

Very short interrupt-disable-time = short interrupt-latency-time

Nested interrupts are permitted

embOS has its own interrupt-stack, usage is optional

Frame-application for easy start

Debug-version performs run-time checks simplifying development

Profiling and stack check may be implemented by choosing specified librar-
ies.

Monitoring during run time via UART available (embOSView).

Very fast, efficient yet small code

Minimum RAM usage

Core written in assembly language

Interfaces "C" and / or assembly

Initialization of microcontroller hardware as sources

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 9/136

3. Basic concepts

3.1. Tasks

In this context, a task is a program running on the CPU-core of a microcontrol-
ler. Without a multitasking-kernel (without RTOS), only one task can be exe-
cuted by the CPU. This is called a single-task-system. A real-time operating
system allows execution of multiple tasks on a single CPU. All tasks execute
as if they would completely "own" the entire CPU. The tasks are "scheduled";
the RTOS can activate and deactivate every task.

3.2. Multitasking: cooperative - preemptive

There are different ways the calculation-power of the CPU can be distributed
among the tasks.

Cooperative Multitasking

This scheduling-system expects cooperation of all tasks. Tasks can only be
suspended if they call a function of the operating system. If they do not, the
system "hangs", meaning that the other tasks have no chance of being exe-
cuted by the CPU.

Preemptive multitasking

Real-time systems can be accomplished with preemptive multitasking only. A
real-time operating system needs a regular timer-interrupt in order to be able to
interrupt tasks at defined times and to perform task-switches if necessary.

© 1996- 2002 Segger Microcontroller Systeme GmbH

10/136 User's & reference manual for embOS real time OS

3.3. Scheduling

There are different algorithms that determine which task to execute, called
"scheduler". All schedulers have one thing in common:

They distinguish between tasks that are ready to be executed (In the READY
state) and the other tasks, that are suspended for a reason (Delay, waiting for
mailbox, waiting for semaphore, waiting for event etc.). The scheduler selects
one of the tasks that are ready and activates it: It executes the program of this
task.

This is what all schedulers have in common; the main difference is in how they
distribute the computation time between the tasks in READY state.

Round-robin scheduling algorithm

In this case, the scheduler has a list of tasks and - when deactivating the active
task - activates the next task that is in the READY state. Round-Robin works
with either preemptive or cooperative multitasking. Round-Robin works well if
you do not need to guarantee response-time and if the response time is not an
issue of importance or if all tasks have the same priority. Round-robin schedul-
ing can be symbolized as follows:

All tasks are on the same level, the possession of the CPU changes periodically
after a predefined execution time. This time is called Timeslice and may be de-
fined individually for every task.

Priority controlled scheduling algorithm

In real-world applications, the different tasks require different response times.
For example in an application that controls a motor, the keyboard and a display,
the motor usually requires faster reaction than keyboard and display. While the
display is being updated, the motor needs to be controlled. This makes pre-
emptive multitasking a must. Round-Robin might work, but since it can not
guarantee a certain reaction time, an improved algorithm should be used: Every
task is assigned a priority; the order of execution depends on this priority. The
rule is very simple to put in words:

The Scheduler activates the task that has the highest priority of all tasks
in READY -state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task.

However, the scheduler can be switched off in sections of a program where
task-switches are prohibited. (— Critical region)

embOS uses a priority controlled scheduling algorithm with Round-Robin be-
tween tasks of identical priority. One hint at this point: Round-Robin scheduling
is a nice feature because you do not have to think about which task is more im-
portant than an other one. Tasks with identical priority can not block each other
for longer periods of time. But Round-Robin scheduling also costs time by con-
stantly switching between tasks of identical priority if two or more tasks of iden-

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 11/136

tical priority are ready and no task of higher priority is ready. It is more efficient
to assign different priorities to different tasks because this avoids unnecessary
task switches.

Priority inversion

The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in READY-state

But what happens if the high-priority task is blocked because it is waiting for a
resource owned by a low-priority task? According to the above rule, it would
wait until the low-priority-task gets active again and releases the resource.

The other rule is: No rule without exception.

In order to avoid this kind of situation, the low-priority tasks that is blocking the
high-priority task gets assigned the higher priority of the high-priority task until it
releases the resource and it therefore no longer blocks the high-priority task.
This is known as priority inversion.

© 1996- 2002 Segger Microcontroller Systeme GmbH

12/136

User's & reference manual for embOS real time OS

3.4. Communication between tasks

In a multi-task program (multithreaded program) multiple tasks work completely
separated from each other. But since all of these tasks work in the same appli-
cation, they probably have to communicate and exchange data or have to be
synchronized. It also has to be made sure that resources are not used by dif-
ferent tasks at the same time.

Global variables

The easiest way to do this is to use global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time
using global variables has various disadvantages.

For example if you want synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation
time & power, and your reaction time is depending on how often you poll.

Communication mechanisms

When multiple tasks work with one an other, a lot of times they have to
e exchange data,

¢ synchronize to an other task

e make sure that a resource is used by no more than one task at a time

For these purposes embOS offers mailboxes, semaphores and events.

Mailboxes

A mailbox is basically a data-buffer, that is managed by the RTOS and that
works without conflicts and problems even if multiple tasks and interrupts try to
access the mailbox simultaneously. embOS also automatically activates tasks
that are waiting for a message in a mailbox the moment they receive new data
and - if necessary - automatically switches to this task.

Semaphores

Events

Two types of semaphores are used to synchronize tasks and to manage re-
source. Most commonly used are resource semaphores. For details and sam-
ples, check out the section on semaphores and look for samples on our
website.

A task can wait for a particular event without using any calculation time. The
idea is as simple as convincing: There is no sense in polling if we can simply
activate the task the moment the event that the task is waiting for occurs. This
saves a lot of calculation power and makes sure the task can respond to the
event without delay. Typical applications for events are where a task waits for
data, a pressed key, a received command or character or the pulse of an exter-
nal real-time clock.

For details, refer to the section — Events

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 13/136

3.5. How task-switching works

A real-time multitasking system lets multiple tasks run like multiple single-task-
programs quasi-simultaneous on a single CPU.
A task consists of three parts in the multitasking-world:
e The program-code, which usually resides in ROM

(though it does not have to!)
¢ A stack, residing in a RAM-area that can be accessed by the stack pointer
¢ A task-control-block, residing in RAM
The task-control-block (TCB) contains status information of the task: the stack-
pointer, priority, current status (Ready, waiting and reason for suspension) and
other management data. This TCB is accessed by the RTOS only.
The stack has the same function as in a single-task-system:
Storage of local variables, parameters, return addresses and temporary storage
of intermediate calculation results and register values.

© 1996- 2002 Segger Microcontroller Systeme GmbH

14/136 User's & reference manual for embOS real time OS

3.6. Switching stacks

The following little drawing demonstrates the process of switching from one
stack to an other.

The scheduler deactivates the current task by saving the processor registers on
the current stack.

It then selects the active task by loading the stack pointer and the processor-
registers from the values stored on this stack.

Task O Task n
Task Control Stack Task Control Stack
block block
variables variables
temp. storage temp. storage
ret. addresses ret. addresses
CPU CPU
registers registers
SP > SP >
Free Stack Free Stack
area area
N\ V4
\ /
\ /
\ /
\ /
\ /

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

15/136

3.7. Change of task status

When a task is created, it is automatically put in the READY state
(TS_READY). As soon as there is no task with higher priority in the same state,
this task is activated. This task will stay active until a task with higher priority
becomes READY or the task is deactivated or it waits for a mailbox, sema-

phore, event or expiration of a delay.

The following drawing shows all possible task-states and the transitions.

Not existing

CREATETASK() Terminate()

TS_READY

]

Wait for Event, mailbox
or semaphore

1 Delay()

TS_DELAY

Active
Task

© 1996- 2002 Segger Microcontroller Systeme GmbH

16/136 User's & reference manual for embOS real time OS

3.8. What happens after reset

On Reset, the special-function registers are set to their respective values.

After Reset, program execution starts.

The PC-register is set to the start address defined by the start-vector or start
address (depending on CPU). This start address is usually in a Startup-module
shipped with the C-compiler (and sometimes part of the standard library)

The startup code does the following:

e Load the SP (Stack-Pointer(s), with the(ir) default values, which is (for most
CPUs) the end of the defined stack-segment(s)

¢ Initialize all data segments to their respective value

e call "main" routine

The process can be shown as a flowchart as follows:

Load SP

v

Init memory

v

main()

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 17/136

3.9. How the OS gains control

In a single-task-program, the mai n routine is part of the user-program which
takes control right after the Cstartup.

Normally embOS works with the standard Cstartup-module without any
change. If there are any changes required, those changes are documented in
the startup file which is shipped with embOS.

mai n() is still part of your application program. Basically main creates one or
more tasks and then starts multitasking by calling OS_Start (). From here on,
the scheduler controls which task is executed.

mai n() will not be interrupted by any of the created tasks, because these tasks
are executed only after the callto OS_St art (). Itis therefore usually good
practice to create all or most of your tasks here, as well as control structures
such as Mailboxes and Semaphores. A good practice is to write software in
form of modules which are —up to a point - reusable. These modules usually
have an initialization routine, which would create the task(s) and or control
structures required for this module. A typical main() looks similar to the follow-

ing example:

/***

*

* mai n

*

EE IR IR S S I S S S S S I S I I S S I S I S S S R I I S I I I

*/

voi d nmai n(void) {
OS_InitKern(); /* initialize OS (should be first !) */
OS_InitHW); /* initialize Hardware for OS (in Rtoslnit.c) */
/* Call Init routines of all program nmodules which in turn will create
the tasks they need ... (Order of creation may be inportant) */

MODULEL_Init();
MODULE2_I nit();
MODULE3_I nit();
MODULE4_Init();
MODULES_I nit();
CS Start(); /* Start multitasking */

With the call to OS_St art (), the scheduler starts the highest-priority task.
Please note, that OS_St art () does not return.

© 1996- 2002 Segger Microcontroller Systeme GmbH

18/136

User's & reference manual for embOS real time OS

The following flowchart illustrates the starting procedure:

Reset of
CPU

h 4

Load SP
y
Init
memory
r Init
Hardware

Create Tasks, Mailboxes,
Semaphores

embOS
Scheduler

3.10. Different builds of embOS

embOS comes in different builds (Different versions of the libraries). The rea-
son for different builds is that requirements vary during development. While de-
veloping software, the performance (and resource usage) is not as important as
in the final version which usually goes as release version into the product. But
during development even small programming errors should be caught by use of
assertions. These assertions are compiled into the debug version of the
embOS libraries and make the code a bit bigger (about 50%) and also slightly
slower than the release or stack check version used for the final product. This
concept gives you the best of both worlds: A compact and very efficient build
for your final product (release or stack check versions of the libraries) and a
safer, but slower and bigger version for development which will catch most of
the common programming errors. Of course you may also use the release ver-
sion of embOS during development, but it will not catch these application pro-
gramming errors.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

19/136

3.10.1. Profiling

embOS supports profiling in profiling builds. Profiling makes precise informa-
tion available about the execution time of individual tasks.

You may always use the profiling libraries, but they induce certain overhead
(Bigger task control blocks, add. ROM (app. 200 bytes) and add. run time over-
head). This overhead is usually acceptable, but for best performance you may
want to use non-profiling builds of embOS if you do not use this feature.

3.10.2. List of libraries

In your application program, you need to let the compiler know which build of
embOS you are using. This is done by defining a single identifier prior to in-
cluding RTOS.h.

Profiling

Build Define Explanation

R: Release OS LIBMODE R |Smallest, fastest build

S: Stack check OS _LIBMODE_S |Same as release, plus stack
checking

SP: Stack check plus|OS _LIBMODE_SP|Same as stack checking plus pro-

filing

D:

Debug

OS_LIBMODE_D

Maximum run-time checking

DP:

Debug plus Pro-
filing

OS_LIBMODE_DP

Maximum run-time checking plus
Profiling

DT:

Trace, including
Debug, Profiling

OS_LIBMODE_DT

Tracing API calls, maximum run-
time checking plus Profiling

© 1996- 2002 Segger Microcontroller Systeme GmbH

20/136

User's & reference manual for embOS real time OS

4. Configuration for your target system (RTOSINIT.c)

You do not have to configure anything in order to get started with embOS. The
start project supplied will execute on your system. Small changes in the con-
figuration will be necessary at a later point for system frequency or for the
UART used for communication with embOSView (optional).
The file RTOSINIT.c is provided in source-code form and can be modified in
order to match your target-hardware needs. You compile and link it with your

application program.

4.1. Routines in RTOSInit.c

Explanation

OS_InitHW()

embOS needs a timer-interrupt to determine
when to activate tasks that wait for the expiration
of a delay, when to call a software-timer and to
keep the time-variable up to date.

The hardware timer that needs to be initialized for
a small program with embOS is initialized in the
function OS_InitHW().

OS_Error()

Is called by embOS when a fatal error has been
detected

OS_lIdle()

The idle loop is always executed whenever no
other task (and no interrupt service routine) is
ready for execution.

OS_GetTime_Cycles()

Reads the timestamp in cycles. Cyclelength
depends on the system. This function is used for
system information sent to embOSView.

OS_ConvertCycles2us()

Converts Cycles into us.
(Used with profiling only)

OS_COM_Init() Initializes communication for embOSView
(Used with embOSView only)

OS_ISR _Tick() The embOS timer interrupt handler. When using
a different timer, always check the specified
interrupt vector

OS_ISR rx() Rx Interrupt service handler for embOSView
(Used with embOSView only)

OS_ISR rx() Tx Interrupt service handler for embOSView

(Used with embOSView only)

OS_COM_Send1(...)

Send 1 byte via UART
(Used with embOSView only, DO NOT call this
function from your application)

4.2. Configuration defines

For most embedded systems, configuration is done by simply changing the

following defines:

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 21/136

define Explanation
OS_FSYS System Frequency (in Hz)
Example: 20000000 for 20MHz
OS_UART Selection of UART to be used for embOSView
-1 will disable communication
OS BAUDRATE | Selection of baudrate for communication with embOSView

4.3. How to change settings

The only file which needs to be changed is RTOSInit.c, This file contains all
hardware specific routines. There is only one exception: Some ports of embOS
require an additional interrupt vector table file.

4.3.1. Setting the system frequency OS_FSYS

Relevant defines
OS FSYS

Relevant routines
OS_ConvertCycles2us() (Only for profiling)

For most systems it should be sufficient to change the OS_FSYS define at the
top of RTOSINIT.c. When using profiling, certain values may require a change
in OS_Convert Cycl es2us() . Please check out the contents of RTOSINIT.c

for more detailed information about in which cases this is necessary and what
needs to be done.

4.3.2. Using a different timer to generate the tick-interrupts for embOS

Relevant routines:
OS_ InitHW()

4.3.3. Using a different UART or baudrate for embOSView

Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_Init()
OS_COM_Send1()
OS_ISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define OS_UART on top of
the RTOSInit.c. Please check out the contents of this file for more detailed in-
formation on which UARTS are supported for your CPU.

4.3.4. Changing the tick frequency

embOS usually generates 1 interrupt per ms. This is done by a timer initialized
inOS I nitHA).

© 1996- 2002 Segger Microcontroller Systeme GmbH

22/136

User's & reference manual for embOS real time OS

OS_FSYS defines the clock frequency of your system in Hz.

The value of OS_FSYS is taken to calculate the desired reload counter value
for the system timer for 1000 interrupts/sec.

The timer itself is initialized in the routine OS_I ni t HA(), which is found in
RTOSI NI T. C. If you have to use a different timer for your application, you
must modify OS_I ni t HA() to initialize the appropriate timer. For details about
initialization, please read the comments in RTOSInit.c.

However, different (lower or higher) interrupt-rates are possible.

If you chose an interrupt-frequency different from 1kHz, the value of the time
variable OS_Time will no longer be equivalent to multiples of 1 ms.

However, if you use a multiple of 1 ms as tick time, the basic time unit can be
made 1 ms by using the (optional) configuration macro OS_CONFIG(..).

The basic time unit does not have to be 1 ms, it might just as well be 100us or
10 ms or any other value. For most applications 1 ms is a convenient value.

For details, refer to - OS_CONFIG.

4.4. OS_CONFIG

OS_CONFIG can be used to configure embOS in situations, where the basic
timer interrupt interval is a multiple of 1ms and the time values for delays still
should use 1 ms as time base.

OS_CONFIG tells embOS how many clock ticks expire per embOS -timer in-
terrupt and what the system-frequency is.

Examples for OS CONFIG

1) The following will lead to increment the time variable OS_Time by 1 per
RTOS-timer-interrupt:

OS_CONFI (8000000, 8000) ; /* Configure OS : Systemfrequency, ticks/int */
As this is the default for embOS, usage of OS_CONFIG is not required.

2) The following will lead to increment the time variable OS_Time by 2 per
embOS -timer-interrupt.

OS_CONFI (8000000, 16000) ; /* Configure OS : Systemfrequency, ticks/int */

If for example the basic timer was initialized to 500Hz, which would result in an
embOS timer interrupt every 2ms, a call of OS_Del ay(10) would result in a
delay of 20ms, because all timing values are interpreted as timer ticks. A call of
OS_CONFIG with the parameter shown in example 2 will then result in a delay
of 10ms when calling OS_Del ay(10) .

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 23/136

5. Task routines

A task that should run under embOS needs a task control block, a stack and
just a normal routine, written in C. The following rules apply to task routines:

The task routine can not take parameters

The task routine is never called directly from your application

The task routine does not return

The task routine should be implemented as endless loop, or has to terminate
itself.

e The task routine is started from the scheduler, after the task was created and
OS_Start() was called.

/* Exanple of a task routine as endl ess |oop */
voi d Taskl(void) {
while(l) {
DoSorret hi ng() /* Do sonething */
OS_Del ay(1); /* G ve other tasks a chance */

/* Exanple of a task routine that term nates */
voi d Task2(void) {
char DoSomeMor e;

do {
DoSonmeMore = DoSonet hi ngEl se() /* Do sonething */
CS _Del ay(1); /* G ve other tasks a chance */
} whil e(DoSoneMore) ;
OS_Terni nate(0); /* Term nate yourself */

}

There are different ways to create a task: embOS offers a simple macro that
makes it easy to create a task and is fully sufficient in most cases. However, if
you are dynamically creating and deleting tasks, a routine is available allowing
"fine-tuning" of all parameters. For most applications, at least initially, using the
macro as in the sample start project works fine.

© 1996- 2002 Segger Microcontroller Systeme GmbH

24/136

User's & reference manual for embOS real time OS

5.1. OS_CREATETASK

Description

Creates a task.

Prototype

void OS_CREATETASK(OS_TASK* pTask,
char * pNaneg,

voi d* pRout i ne,
char Priority,
voi d* pSt ack) ;
Par anet er Meani ng
pTask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.
pNane Pointer to the Name of the task. Can be NULL (or 0) if not
used.
pRouti ne Pointer to a routine that should run as task
Priority Priority of the task.

Has to be in the range :
0< Priority <=255
Higher values indicate higher priorities.

pSt ack Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack-area for this task.

Return value

Add.

Void.

information

OS_CREATETASK is a macro calling an OS -library function.

It creates a task and makes it ready for execution by putting it in the READY
state.

The newly created task will be activated by the scheduler as soon as there is no
other task with higher priority in READY state. (—Scheduler)

If there is an other task with the same priority, the new task will be put right be-
fore that.

OS_CREATETASK can be called at any time, either from main during initializa-
tion, or from any other task.

The recommended strategy is to create all tasks during initialization in main in
order to keep the structure of your tasks easy to understand.

This macro is normally used to create a task instead of the function call below,
because it has less parameters and is therefore easier to use.

The absolute value of the Priority is of no importance, only the value in
comparison to the priorities of other tasks.

The macro OS_CREATETASK determines the size of the stack automatically
using sizeof. This is possible only if the memory area has been defined at com-
pile-time.

Important:

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 25/136

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack, since the CPU can not use the entire memory-area as
stack.

Example

char User St ack[150] ; /* Stack-space */
OS_TASK User TCB; /* Task-control -bl ocks */

voi d User Task(void) {
while (1) {
Del ay (100);

}

voi d I nitTask(void) {
OS_CREATETASK(&User TCB, "User Task", User Task, 100, UserStack); /* Create
Task0 */

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

26/136 User's & reference manual for embOS real time OS

5.2. OS_CreateTask

Description
Creates a task.
Prototype
void OS CreateTask (OS_TASK* pTask,
char * pNaneg,
unsi gned char Priority,
voi dRout i ne* pRouti ne,
voi d* pSt ack,
unsi gned St ackSi ze,
unsi gned Ti meSl i ce);
Par anet er Meani ng
pTask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.
pName Pointer to the Name of the task. Can be NULL if not used.
Priority Priority of the task.
Has to be in the range :
0< Priority <=255
Higher values indicate higher priorities.
pRout i ne Pointer to a routine that should run as task
pSt ack Pointer to an area of memory in RAM that will serve as stack

area for the task. The size of this block of memory deter-
mines the size of the stack-area for this task.

St ackSi ze Size of the stack

TimeSlice Time slice value for round robin scheduling. Has an effect
only if other tasks are running at the same priority.

TimeSlice denotes the time in timer ticks, that the task will
run until it suspends; thus enabling an other task with the
same priority.

This parameter has no effect for some ports of embOS for
efficiency reasons.

Return value
Void.

Add. information

Creates a task. All parameters of the task can be specified. The task can be
dynamically created because the stack size is not calculated automatically.
Works the same way as described under OS_CREATETASK.

Important:

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs can not use the entire memory-area as
stack.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

27/136

Example

/*

* denp-programto illustrate the use of OS_CreateTask
*/

char StackMi n[100], Stackd ock[50];

OS_TASK TaskMai n, Taskd ock;

OS_SEMA SenalCD;

voi d O ock(void) {
while(l) {
/* code to update the clock */
}
}

voi d Main(void) {
while (1) {
/* your code */
}
}

voi d I nitTask(void) {
OS_Creat eTask(&TaskMai n, NULL, 50, Main, StackMin,

}

si zeof (StackMain), 2);

OS_Creat eTask(&Taskd ock, NULL, 100, C ock, Stackd ock, si zeof (Stackd ock), 2);

© 1996- 2002 Segger Microcontroller Systeme GmbH

28/136

User's & reference manual for embOS real time OS

5.3. OS_Delay: Suspend for fixed time

Description

The calling task will be put to the TS_DELAY-state for a period of time.

Prototype

void OS Delay(int ns);

Par anet er Meani ng

s Time interval to delay.

Has to be in the following range :

0 < ms < 2'°-1 = Ox7FFF = 32767 for 8/16 bit CPUs
0 < ms < 2°'-1 = Ox7FFFFFFF for 32 bit CPUs

Return value

Add.

Void.

information

By calling the delay-routine, the task will stay in this state until the time speci-
fied has expired.

nms specifies the precise interval during which the task has to be suspended
given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range :

ms-1 <= Delay <= ms
depending on when the Interrupt for the Scheduler will occur.

After the expiration of a delay, the task is made ready again and activated ac-
cording to the rules of the scheduler.

A delay can be ended prematurely by an other task or an interrupt-handler call-
ing OS_WakeTask.

Example

void Hello() {
printf("Hello");
printf("The next line will be executed in 5 seconds");
OS_Del ay (5000);
printf("Delay is over");

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

29/136

5.4. OS_DelayUntil: Suspend until

Description
Similar to the Del ay-routine.

Prototype
void OS Delayuntil (int t);
Par amet er Meani ng
t Time to delay until.

Has to be in the following range :

0 <t-OS_Time < 2*'-1 Ox7FFFFFFF

0 < t-OS_Time < 2'°-1 0x7FFF = 32767 for 8/16 bit CPUs

for 32 bit CPUs

Return value
Void.

Add. information
OS _Del ayUnti |

delays until the value of the time-variable OS_Ti ne has

reached a certain value. It is very useful if you have to avoid accumulating de-

lays.

Example

int sec,mn;

voi d TaskShowTi ne() {
int t0 = Ti mneMs;
while (1) {
ShowTi ne() ;
OS_Del ayuntil (t0+=1000);
if (sec<b9) sec++;
el se {
sec=0;
m n++;
}
}
}

/* Routine to display time */

In the example above, the use of OS_Del ay could lead to accumulating delays

and would cause the simple "clock" to be slow.

© 1996- 2002 Segger Microcontroller Systeme GmbH

30/136 User's & reference manual for embOS real time OS

5.5. OS_SetPriority: Change priority of a task

Description
Assigns the Priority specified by Pri ori ty to the specified task.

Prototype
void OS SetPriority(OS TASK * pt, char Priority);

Par anet er Meani ng

Pt Pointer to a data structure of type OS TASK
Priority Priority of the task.

Has to be in the range :

0< Priority <=255

Return value
Void.

Add. information

Can be called at anytime from any task or software-timer. Calling this function
might lead to an immediate task-switch.

Important:
This function may not be called from within an interrupt-handler.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 31/136

5.6. OS_GetPriority: Retrieve priority of a task

Description
Returns the priority of a specified task.

Prototype
unsi gned char OS GetPriority(OS_TASK* pt);

Par anet er Meani ng

pt Pointer to a data structure of type OS_TASK

If pt is the NULL pointer, the function returns the priority of the
current running task.

Return value

Priority of specified task as unsigned char.
range 1 .. 255

Add. information

If pt does not specify a valid task, the debug version of embOS calls
OS Error().

The release version of embOS can not check validity of pt and may therefore
return invalid values if pt does not specify a valid task.

© 1996- 2002 Segger Microcontroller Systeme GmbH

32/136 User's & reference manual for embOS real time OS

5.7. OS_SetTimeSlice: Change timeslice of a task

Description
Assigns the Timeslice value specified by Ti meSl i ce to the specified task.

Prototype

unsi gned char OS SetTi neSlice(0OS _TASK * pt,
unsi gned char TineSlice);

Par anet er Meani ng

pt Pointer to a data structure of type OS TASK
TimeSlice New timeslice value for the task

Has to be in the range :

1<= TimeSlice <=255

Return value
unsigned char: Previous timeslice value of the task.

Add. information

Can be called at any time from any task or software timer. Setting the timeslice
value only affects on the tasks running in round robin mode. This means, an
other task with the same priority must exist. The new timeslice value is inter-
preted as reload value. It is used after the next activation of the task. It does not
affect the remaining timeslice of a running task.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 33/136

5.8. OS_Terminate: Terminate a task

Description
Ends a task.

Prototype
voi d OS _Term nat e(OS_TASK* pTask);

Par anet er Meani ng

pTask Pointer to a data structure of type OS_TASK used for the
task that shall be terminated. If pTask is the NULL pointer,
the current task terminates.

Return value
Void.

Add. information

It should be made sure that the task does not use any resources at that point.
The specified task will terminate immediately; the memory used for stack and
task-control-block can be reassigned.

Important:
This function may not be called from within an interrupt-handler.

© 1996- 2002 Segger Microcontroller Systeme GmbH

34/136

User's & reference manual for embOS real time OS

5.9. OS_WakeTask

Description

End Delay of a task immediately.

Prototype
voi d OS WakeTask(OS_TASK* pTask);

Par anet er

Meani ng

pTask

Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.

Return value

Add.

Void.

information

Puts the specified task, that has been suspended for a certain amount of time
with OS_Del ay or OS_Del ayUnti | and is therefore in the state TS _DELAY,
back to the state TS_READY (ready for execution). The specified task will be
activated immediately if it has a higher priority than the priority of the task that
had the highest priority before. If the specified task is not in the state
TS DELAY (because it has already been activated or the delay has already
expired or for some other reason), the command is ignored.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 35/136

5.10. OS_IsTask

Description
Checks whether a task control block actually belongs to a valid task.

Prototype
char OS | sTask(OS_TASK* pTask);
Par anet er Meani ng
pTask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for a task.

Return value

character value
0: TCB actually not used by any task
1: TCB is used by a task.

Add. information

This function checks, if the requested task is still in the internal task list. If the
task was terminated, it is removed from the internal task list. This function may
be useful to check, whether the task control block and stack for the task may be
reused for an other task in applications that create and terminate tasks dynami-
cally.

© 1996- 2002 Segger Microcontroller Systeme GmbH

36/136 User's & reference manual for embOS real time OS

5.11. OS_GetTaskID

Description
Returns the ID of the task that is actually running.

Prototype
OS_TASKI D OS_Cet Taskl D(voi d) ;

Return value

OS_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates,
that no task is executing.

Add. information

This function may be used to check, which task is executing. This may be help-
ful, if reaction of any function depends on actual running task.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 37/136

5.12. OS_GetpCurrentTask

Description
Returns a pointer of the task control block structure of the running task.

Prototype
OS_TASK* OS_Get pCurrent Task(voi d);

Return value
OS_TASK?™*: A pointer to the task control block of the running task.

Add. information

This function may be used to check which task is executing. This may be help-
ful, if reaction of any function depends on actual running task.

© 1996- 2002 Segger Microcontroller Systeme GmbH

38/136 User's & reference manual for embOS real time OS

6. Software Timer

A basically unlimited number of software-timers can be defined. A software-
timer is an object defined with OS_CREATETIMER. A timer calls a user-
specified routine after a specified delay.

Timers can be stopped, started and retriggered very similar to hardware timers.
When defining the timer, you specify any routine that is to be called after the
expiration of the delay that you specify. Timer routines are similar to interrupt
routines; they have a priority higher than the priority of all tasks. For that reason
they should be kept short just like interrupt routines.

Software-timers are called by embOS with interrupts enabled, so they can be
interrupted by any hardware interrupt.

Generally timers run in single-shot-mode, which means, they expire only once
and call their callback routine only once. By calling OS_Ret ri gger Ti mer ()
from within the callback-routine, the timer is restarted with its initial delay time
and therefore works just as a free running timer.

The state of timers can be checked by the functions OS_Get Ti ner St at us(),
OS_Get Ti ner Val ue() and OS_Get Ti ner Peri od()

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 39/136

6.1. OS_CREATETIMER

Description
A macro that creates and starts a software-timer.

Prototype

voi d OS_CREATETI MER(CS_TI MER* pTi ner,
OS_TI MERRQUTI NE* Cal | back,
unsi gned int Tinmeout);

Par anet er Meaning

pTi ner Pointer to the OS_TI MER data structure containing the data of
the timer

Cal | back Pointer to the callback routine to be called from RTOS after
expiration of the delay

Ti neout Initial timeout in basic embOS time units (hominal ms).
Minimum 1
Maximum 32767

Return value
Void.

Add. information

The timers are being kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).

This macro uses the functions OS_CreateTiner() and OS_Start Ti ner ().
It is supplied for backward compatibility; In newer programs these routines
should be called directly instead.

OS_TI MERRQUTI NE is defined in Rtos.h:

t ypedef void OS_TI MERROUTI NE(voi d); I

Source of the macro (in RTOS.h)

#defi ne OS_CREATETI MER(pTi ner,c,d) \
OS_CreateTinmer(pTinmer,c,d); \
Os_Start Ti mer (pTimer);

Example
OS_TI MER TI MERLOO;

voi d Timer100(void) {
LED = LED ? 0 : 1; /* toggle LED */
OS_Retrigger Ti mer (&TI MER10OO); /* nmke tiner periodical */
}

voi d I nitTask(void) {
/* Create and start Tinmerl00 */
OS_CREATETI MER(&T1 MER100, Ti ner 100, 100);

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

40/136 User's & reference manual for embOS real time OS

6.2. OS_ CreateTimer

Description
Creates a software-timer. (But does not start it)

Prototype

void OS CreateTi mer (OS_TI MER* pTi mer,
OS_TI MERROUTI NE* Cal | back,
unsi gned int Timeout);

Par anmet er Meaning

pTi mer Pointer to the OS_TI MER data structure containing the data of
the timer

Cal | back Pointer to the callback routine to be called from RTOS after
expiration of the delay

Ti meout Initial Timeout in basic embOS time units (nominal ms).
Minimum 1
Maximum 32767

Return value
Void.

Add. information

The timers are being kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).

The timer is not automatically started. This has to be done explicitly by a call of
CS StartTinmer() orOS RetriggerTinmer().

OS_TI MERRQUTI NE is defined in Rtos.h:

typedef void OS_TI MERROUTI NE(voi d); I

Example
OS_TI MER TI MERL0O;

voi d Tiner100(void) {
LED = LED ? 0 : 1; /* toggle LED */
OS_RetriggerTi mer (&TI MER10O); /* nake tiner periodical */
}

voi d | nitTask(void) {
/* Create Tinerl100, start it el sewhere */
OS_Creat eTi ner (&TI MER100, Ti mer 100, 100);

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 41/136

6.3. OS_StartTimer

Description

Starts the specified timer.

Prototype

void OS StartTi mer (OS_TI MER* pTimer);

Par anet er

Meaning

pTi mer

Pointer to the OS_TI MER data structure containing the data of
the timer

Return value
Void.

Add. information

OS _Start Ti ner () is used for the following reasons:

e Start a timer which was created by OS_Cr eat eTi mer (). The timer will start
with its initial timer value.

e Restart a timer which was stopped by calling OS_St opTi ner () . In this
case, the timer will continue with the remaining time value, which was pre-
served by stopping the timer.

This function has no affect on running timers.

Also this function has no effect on timers that are not running, but are ex-

pired. Use OS_RetriggerTimer() to rerstart those timers.

© 1996- 2002 Segger Microcontroller Systeme GmbH

42/136 User's & reference manual for embOS real time OS

6.4. OS_StopTimer

Description
Stops the specified timer.

Prototype :
void OS_StopTi mer (OS_TI MER* pTi ner) ;

Par anmet er Meaning

pTi mer Pointer to the OS_TI MER data structure containing the data of
the timer

Return Value
Void

Add. information

The actual value of the timer (the time until expiration) is kept until
OS_StartTi mer () lets the timer continue.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 43/136

6.5. OS_RetriggerTimer

Description
Restarts the specified timer with its initial time value.

Prototype
void OS RetriggerTimer(OS Tl MER* pTiner);

Par anet er Meaning

pTi ner Pointer to the OS_TI MER data structure containing the data of
the timer

Return value
Void.

Add. information

OS _RetriggerTinmer() restarts the timer using the initial time value pro-
grammed at creation of the timer.

Example

OS_TI MER TI MERCur sor ;
BOCL Cursor On;

voi d Timer Cursor(void) {
if (CursorOn) Toggl eCursor(); /* invert character at cursor-position */
OS_Retri gger Ti mer (&TI MERCursor); /* make tinmer periodical */

}

voi d I nitTask(void) {
/* Create and start TinmerCursor */
OS_CREATETI MER(&T1 MERCur sor, Ti ner Cursor, 500);

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

44/136 User's & reference manual for embOS real time OS

6.6. OS_SetTimerPeriod

Description
Sets a new timer reload value for the specified timer.

Prototype

voi d OS_Set Ti ner Peri od(OS_TI MER* pTi ner,
unsi gned int Period);

Par anet er Meaning

pTi mer Pointer to the OS_TI MER data structure containing the data of
the timer
Peri od Timer period in basic embOS time units (nominal ms).

(1 <= Delay <= 32767)

Return value
Void.

Add. information

OS_Set Ti mer Peri od() sets the initial time value of the specified timer. The
period is the reload value of the timer, which is set as initial value, when the
timer is retriggered by OS_RetriggerTimer().

Example

OS_TI MER Tl MERPuUI se;
BOOL Cursor On;

voi d TimerPul se(void) {
i f Toggl ePul seQut put () ; /* Toggl e output */
OS_RetriggerTi mer (&TI MERCursor); /* make tiner periodical */
}

voi d | nitTask(void) {
/* Create and start Pulse Timer with first pulse = 500ns */
OS_CREATETI MER(&Tl MERPul se, Ti nerPul se, 500);
/* Set timer period to 200 ns for further pulses */
OS_Set Ti ner Peri od(&TI MERPul se, 200);
}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 45/136

6.7. OS_DeleteTimer

Description
Stops and deletes the specified timer.

Prototype :
voi d OS Del eteTi mer (OS_TI MER* pTi ner) ;

Par anet er Meaning

pTi ner Pointer to the OS_TI MER data structure containing the data of
the timer

Return Value
Void

Add. information

The timer is stopped and therefore removed out of the linked list of running tim-
ers. In debug builds of embOS the timer is also marked as invalid.

© 1996- 2002 Segger Microcontroller Systeme GmbH

46/136

User's & reference manual for embOS real time OS

6.8. OS_GetTimerPeriod

Description

Returns the actual reload value of the specified timer.

Prototype

unsigned int OS GetTinerPeriod(OS Tl MER* pTiner);

Par anmet er

Meaning

pTi mer

Pointer to the OS_TI MER data structure containing the data of
the timer

Return value

Unsigned integer between 1 and 32767, which is the allowed range of timer val-

ues.

Add. information

The period is the reload value of the timer, which is used as initial value, when
the timer is retriggered by OS_Ret ri gger Ti mer () .

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 47/136

6.9. OS_GetTimerValue

Description
Returns the actual remaining timer value of the specified timer.

Prototype
unsi gned int OS_GetTinmerVal ue(OS_TI MER* pTi ner);

Par anet er Meaning

pTi ner Pointer to the OS_TI MER data structure containing the data of
the timer

Return value

Unsigned integer between 1 and 32767, which is the allowed range of timer val-
ues.

Add. information

The timer value is the remaining time until the timer expires and calls its call-
back function.

© 1996- 2002 Segger Microcontroller Systeme GmbH

48/136 User's & reference manual for embOS real time OS

6.10. OS_GetTimerStatus

Description
Returns the actual timer status of the specified timer.

Prototype
unsi gned char OS Get Ti ner St at us(OS_TI MER* pTi ner) ;

Par anet er Meaning

pTi mer Pointer to the OS_TI MER data structure containing the data of
the timer

Return value

Unsigned char, denoting whether the specified timer is running or not.
0: Timer is stopped
1=0: Timer is running

Add. information

None.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 49/136

6.11. OS_GetpCurrentTimer

Description
Returns a pointer to the timer structure of the timer that actually expired.

Prototype
OS TI MER* OS_CGetpCurrentTi mer(void);

Return value
OS_TIMER* points to the control structure of a timer.

Add. information

The return value of OS_Get pCurrent Ti ner () is valid during execution of a
timer callback function, otherwise it is undetermined.

If only one callback function should be used for multiple timers, this function
can be used to examine the timer that expired.

#i ncl ude "RTGCS. H'

/**
*

* Types
*/
typedef struct { Ti mer object with own user data

OS _TI MER Ti ner;
voi d* pUser;
} TI MER_EX;

/**
*

* Vari abl es
*/

TI MER_EX Ti mer _User;

int a;
/**
*

* Local Functions
*/

void CreateTimer(TI MER EX* tiner, OS_TIMERROUTI NE* Cal | back, OS_ Ul NT Ti neout,
voi d* pUser) {
timer->pUser = pUser;
OS CreateTimer((OS_TIMERY) tinmer, Callback, Tineout);
}
void cb(void) { /* tinmer callback function for nultiple tinmers */
TIMER EX* p = (TI MER_EX*) OS_Get pCurrent Ti ner () ;
voi d* pUser = p->pUser; /* Exam ne user data */

OS_Retri gger Ti mer (&p->Ti ner); /* retrigger tinmer */

}
/**
*
* mai n
*/
int main(void) ({
CS_InitKern(); /* initialize OS */
CS_ InitHW); /* initialize Hardware for OS */
Creat eTi mer (&Ti mer _User, cb, 100, &a);
Cs Start(); /* Start nmultitasking */
return O;

© 1996- 2002 Segger Microcontroller Systeme GmbH

50/136 User's & reference manual for embOS real time OS

/. Resource semaphores

Resource semaphores are the type of semaphores that are most widely used.
Resource semaphores are used to manage resources by avoiding conflicts
caused by simultaneous use of a resource. The resource managed can be of
any kind: a part of the program that is not reentrant, a piece of hardware like
the display, a flash prom that can only be written to by a single task at a time, a
motor in a CNC-control that can only be controlled by one task at a time and a
lots more.

The basic procedure is the following:

Any task that uses the resource, first claims it calling the OS _Use or
OS_Request routines of embOS. If the resource is available, the program exe-
cution of the task continues, but the resource is blocked for other tasks. When
the task releases the resource, it does that by calling the OS_Unuse routine of
embOS. If a second task tries to use the same resource while it is used by the
first task, this task is suspended until the first task releases the resource.
However, if the first task that uses the resource calls OS_Use again for that re-
source, it is not suspended because the resource is blocked only for other
tasks.

The following little diagram illustrates the process of using a resource:

OS_Use()
v

Access resource

v

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times
the resource has been claimed by calling OS_Request or OS_Use by that task.
It is released when that counter reaches 0, which means the OS_Unuse routine
has to be called exactly the same number of times as the OS_Use routine. If
OS_Unuse is not called as many times as OS_Use / OS_Request, the re-
source remains blocked for other tasks.

On the other side a task can not release a resource that it does not own by call-
ing OS_Unuse. In the debug version, a call of OS_Unuse for a semaphore that
is not owned by this task will result in a call to the error handler OS_Er r or .

(— Debugging)

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 51/136

7.1. Example for use of Resource semaphore

Here 2 tasks access an LC display completely independent from each other.
The problem is that one task may not interrupt the other task while it is writing
to the LCD because in this case the first task would position the cursor, could
get interrupted, the second task repositions the cursor and the first task writes
to the wrong place in the LCD' s memory. So every time before the LCD is ac-
cessed by a task, the resource (the LCD) is claimed by calling OS_Use (and is
automatically waited for if the resource is blocked). After the LCD has been writ-
ten to, the resource is released by a call to OS_Unuse.

/*

* denp programto illustrate the use of resource semaphores
*/

char StackMain[100], Stackd ock[50];

OS_TASK TaskMai n, Taskd ock;

OS_SEMVA Senmal CD;

void C ock(void) {
char t=-1;
char s[] = "00:00";
while(l) {
while (Ti meSec==t) Del ay(10);
t= Ti neSec;

s[4] = TimeSec%0+' 0';

s[3] = TimeSec/ 10+ 0';

s[1] = TimeM n%0+' 0';

s[0] = TimeMn/ 10+ 0';

OS_Use(&SenalLCD); /* make sure nobody el se uses LCD */
LCD Wite(10,0,s);

OS_Unuse(&SenmalLCD) ; /* release LCD */

}
}

void Main(void) {
signed char pos ;

LCD Wite(0,0,"Software tools by Segger ! ")
OS_Del ay(2000);
while (1) {
for (pos=14 ; pos >=0 ; pos--) {
OS_Use(&SenalLCD); /* make sure nobody el se uses LCD */
LCD Wite(pos,1,"train "); /* draw train */
OS_Unuse(&Senmal CD) ; /* release LCD */
OS_Del ay(500);
OS_Use(&SenalLCD); /* make sure nobody el se uses LCD */
LCD Wite(0,1," ")
OS_Unuse(&SenmalL CD) ; /* release LCD */

}
}

voi d | nitTask(void) {
OS_CREATETASK(&TaskMai n, 0, Main, 50, StackMain);
OS_CREATETASK(&TaskC ock, 0, C ock, 100, Stackd ock);
OS_CREATERSEMA(&SemalLCD); /* Creates resource semaphore */

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

52/136

User's & reference manual for embOS real time OS

In most applications, the routines that access a resource should automatically
call OS_Use and OS_Unuse so when using the resource you do not have to
worry about it and can use it just like in a single task system. The following is an
example for how to implement the resource semaphore usage into the routines
that actually access the display:

/*
* sinple exanpl e when accessing single line dot natrix LCD
*/

OS_RSEMA RDi sp; /* define resource senmaphore */

voi d UseDisp() { /* sinmple routine to be called before using display */
0S_Use(&RDi sp) ;
}

voi d UnuseDisp() { /* sinmple routine to be called after using display */
0S_Unuse(&RDi sp) ;
}

voi d Di spChar At (char ¢, char x) {
UseDi sp() ;
LCDGot o(X, Y);
LCDW itel(ASCI | 2LCD(c));
UnuseDi sp();
}

void DI SPInit(void) {
OS_CREATERSEMA(&RDi sp) ;
}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

53/136

7.2. OS_CREATERSEMA

Description

Creates a resource semaphore.

Prototype

voi d OS_CREATERSEMA(OS_RSEMA* pRSens) ;

Par anet er

Meani ng

pRSenma

Pointer to the data structure for a resource semaphore

Return value
Void

Add. information

After creation, the resource is not blocked; the value of the counter is O.

© 1996- 2002 Segger Microcontroller Systeme GmbH

54/136

User's & reference manual for embOS real time OS

7.3. OS_Use: Using a Resource

Description

Claims the resource and blocks it for other tasks.

Prototype

int OS Use(OS_RSEMA* pRSemm) ;

Par anmet er |Meani ng

pRSema Pointer to the data structure for a resource semaphore

Return value

Add.

Returns the counter value of the semaphore.
A return value larger than 1 means, the resource was already locked by the
calling task.

information

If a resource is already blocked by an other task, the task is suspended until the
resource is available again.

The following happens:

Case a)

e The resource is not in use:
If the resource is not used by a task, which means the counter of the sema-
phore is 0, the resource will be blocked for other tasks by incrementing the
counter and writing a unique code for the task that uses it into the sema-
phore.

Case b)

e The resource is used by this task:
The counter of the semaphore is simply incremented. The program contin-
ues without a break.

Case ¢)

e The resource is already used by an other task:
The execution of this task is halted until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher
priority than the task blocking the semaphore the blocking task is assigned
the priority of the task requesting the resource semaphore. This is called pri-
ority inversion. Priority inversion can only temporarily increase the priority of
a task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to
the rules of the scheduler, of all the tasks waiting for the resource, the task with
the highest priority will get access to the resource and can continue program
execution.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 55/136

The following diagram illustrates the function of the OS Use routine

OS_Use(...)

Resource

Yes, by Wait for resource
in use? g

other task to be released

Yes, by this task

Mark current task
as owner

v v

Increase Usage
counter

Usage counter = 1

return return

© 1996- 2002 Segger Microcontroller Systeme GmbH

56/136

User's & reference manual for embOS real time OS

7.4. OS_Unuse: Release Resource

Description

Releases the semaphore currently in use by the task.

Prototype

voi d OS Unuse(OS_RSEMA * pRSemm) ;

Par anet er

Meani ng

pRSema

Pointer to the data structure for a resource semaphore

Return value
Void.

Add, information

OS _Unuse() may be used on a resource semaphore only after that sema-
phore has been used by calling OS_Use() or OS_Request (). OS_Unuse()
decrements the usage counter of the semaphore which may never become
negative. If this counter becomes negative, the debug version will call the
embOS error handler.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

7.5. OS_Request

Description

Requests the specified semaphore, blocks it for other tasks if it is available.

Continues execution in any case.

Prototype
char OS_Request (OS_RSEMA* pRSemm) ;

Paranet er |Meani ng

pRSema Pointer to the data structure for a resource semaphore

Return value

1 Resource available, in use now
0 Resource was not available

Add. Information

The following diagram illustrates how OS_Request works:

OS_Request (RSEMA*ps)

Resource in use by other task ?

No

Mark current task
as owner

In use by this task ? No —»

Yes

v

Inc Usage counter Usage counter = 1

Example
if (!OS_Request (&RSEMA LCD)) {
LED LCDBUSY = 1; /* indicate that task is waiting for
/* resource
OS_Use(&RSEVA_LCD) ; /* wait for resource
LED_LCDBUSY = O0; /* indicate task is no | onger waiting*/
Di spTi ne(); /* Access the resource LCD
OS_Unuse(&RSEMVA_LCD) ; /* resource LCD is no | onger needed

© 1996- 2002 Segger Microcontroller Systeme GmbH

58/136 User's & reference manual for embOS real time OS

7.6. OS_GetSemaValue

Description
Returns the value of the usage counter of the specified resource semaphore.

Prototype
i nt OS_Get SemaVal ue(OS_SEMA* pSemm) ;

Par anmet er |Meani ng
pSerma Pointer to the data structure for a resource semaphore

Return value

Returns the counter of the semaphore. 0 means the resource is available.

Add. information

None.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

59/136

7.7. OS_GetResourceOwner

Description

Returns a pointer to the task that is currently using (blocking) the resource.

Prototype

TASK* OS_Cet Resour ceOmner (OS_RSEVA* pSenm) ;

Par anet er

Meani ng

pSema

Pointer to the data structure for a resource semaphore

Return value

If the resource is available, the NULL pointer is returned.

Add. information

None.

© 1996- 2002 Segger Microcontroller Systeme GmbH

60/136 User's & reference manual for embOS real time OS

8. Counting Semaphores

Counting semaphores are counters that are managed by embOS. They are not
as widely used as resource semaphores, events or mailboxes, but they can be
very useful some times. They are used in situations where a task needs to wait
for something that can be signaled one or more times. The semaphores can be
accessed from any point, any task, any interrupt in any way.

8.1. Example for OS_SignalCSema and OS_WaitCSema

char Stack0[96], Stackl[64]; /* stack-space */
OS_TASK TCBO, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

voi d TaskO(void) ({
Loop:
Di sp("TaskO will wait for task 1 to signal");
OS_Wi t CSema(&SEMALCD) ;
Di sp("Taskl has signaled !'!");
OS_Del ay(100);
goto Loop;
}

voi d Taskl(void) ({
Loop:
OS_Del ay(5000) ;
OS_Si gnal CSena(&SEMVALCD) ;

goto Loop;

}

voi d | nitTask(void) {
OS_CREATETASK(&TCBO, Nul | TaskO, 100, Stack0); /* Create TaskO */
OS_CREATETASK(&TCB1, Nul | Taskl, 50, Stackl); /* Create Taskl */
OS_CREATECSEMA(&SENVALCD) ; /* Create Senaphore */

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 61/136

8.2. OS_CREATECSEMA

Description
Creates a counting semaphore with an initial count value of zero.

Prototype
voi d OS_CREATECSEMA (OS_CSEMA* pCSenmm) ;

Par anet er |Meani ng
pCSema Pointer to a data structure of type OS CSEMA

Return value

void.

Add. information

In order to create a counting Semaphore, a data structure of the type CSEMA
has to be defined in memory and initialized using OS_CREATECSEMA().

The value of a semaphore after creation using this macro is always zero.

If for any reason you have to create a semaphore with an initial counting value
above zero, you have to use the function OS_CreateCSema().

© 1996- 2002 Segger Microcontroller Systeme GmbH

62/136

User's & reference manual for embOS real time OS

8.3. OS_ CreateCSema

Description

Creates a counting semaphore with a specified initial count value.

Prototype

int OS_CreateCSema((OS_CSEMA* pCSenm,

unsi gned char | nitVal ue);

Paranmeter |Meani ng
pCSema Pointer to the data structure of a counting semaphore
I ni tVal ue |Initial count value of the semaphore

0 <= InitValue <= 255

Return value
void.

Add. information

In order to create a counting Semaphore, a data structure of the type CSEMA
has to be defined in memory and initialized using OS_CreateCSema().

If the value of the semaphore after creation should be zero, the macro
OS_CREATECSEMA() should be used.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

63/136

8.4. OS_SignalCSema: Incrementing

Description

Increments the counter of the semaphore

Prototype

voi d OS_Si gnal CSena(OS_CSEVA * pCSenmm) ;

Par anet er

Meani ng

pCSena

Pointer to the data structure of a counting semaphore

Return value
Void.

Add. information

OS_SignalCSema() signals an event to a semaphore by incrementing the
counter of the semaphore. If one or more tasks are waiting for an event to be
signaled to this semaphore, the task that has the highest priority will become

the active task.

The counter can have a maximum value of 255. The application should make
sure that this limit will not be exceeded.

© 1996- 2002 Segger Microcontroller Systeme GmbH

64/136 User's & reference manual for embOS real time OS

8.5. OS_WaitCSema: Decrementing

Description
Decrementing the semaphore counter

Prototype
voi d OS Wit CSema(OS_CSEMA* pCSenm) ;

Par anmet er |Meani ng
pCSenma Pointer to the data structure of a counting semaphore

Return value
Void

Add. information

If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues. If the counter is 0, WaitCSema waits until the
counter is incremented by an other task, a timer or an interrupt-handler via a
call to OS_SignalCSema(). The counter is then decremented and program exe-
cution continues.

An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program-execution.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

65/136

8.6. OS_WaitCSemaTimed: Decrementing with timeout

Description

Decrementing the semaphore counter, if semaphore is available within the

specified time.

Prototype
int OS Wit CSemaTi ned(OS_CSEMA* pCSens,
int TinmeQut);
Par anet er Meani ng
pCSena Pointer to the data structure of a counting semaphore
Ti meQut Maximum time until semaphore should be available

Return value
int

0: Failed, semaphore not available within timeout time
1: OK, semaphore is available

Add. information

If the counter of the semaphore is not 0, the counter is decremented and pro-
gram execution continues. If the counter is 0, OS_WaitCSemaTimed() waits un-
til the semaphore is signaled by an other task, a timer or an interrupt-handler
via a call to OS_SignalCSema() within the specified timeout time.

The counter is then decremented and program execution continues.
If the semaphore was not signaled within the specified time, the program exe-
cution continues, but receives a return value of zero.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program-execution.

© 1996- 2002 Segger Microcontroller Systeme GmbH

66/136 User's & reference manual for embOS real time OS

8.7. OS_GetCSemaValue

Description
Returns count-value

Prototype
i nt OS_Get CSenaVal ue(OS_SEMA* pCSemm) ;

Return value

Count-value of the semaphore.

Add. information

None

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 67/136

8.8. OS_DeleteCSema

Description

Deletes the specified semaphore. The memory of that semaphore can be re-
used for other purposes.

Prototype
voi d OS _Del et eCSema(OS_CSEMA* pCSenm) ;

Paranet er |Meani ng
pCSena Pointer to the data structure of a counting semaphore

Return value
Void

Add. information

Before deleting a semaphore, make sure that no task is waiting at that sema-
phore and no task will signal that semaphore later.
The debug version will reflect an error, if a deleted semaphore is signaled.

© 1996- 2002 Segger Microcontroller Systeme GmbH

68/136 User's & reference manual for embOS real time OS

9. Mailboxes

9.1. Why mailboxes ?

In the preceding chapter the task synchronization by use of semaphores has
been described. Unfortunately, semaphores can not transfer data from one task
to an other. If we need to transfer data from one task to an other via a buffer for
example, we could use a resource semaphore every time before we access the
buffer. This would make the program less efficient. An other major disadvan-
tage would be that we can not access this buffer from an interrupt handler since
the interrupt handler is not allowed to wait for the resource semaphore. One
way out would be the usage of global variables. In this case we have to disable
interrupts every time and everywhere we access these variables. This is possi-
ble, but it is a path full of pitfalls. Most of all, we have one disadvantage: It is not
easy for a task to wait for a character to be placed in the buffer without polling
the global variable that contains the number of characters in the buffer. Again,
there is a way: The task could be notified by an event signaled to the task every
time a character is placed in the buffer.

Complicated you think ?

That is why there is an easier way to do this with a real time OS:

The use of mailboxes.

9.2. Basics

A mailbox is a buffer that is managed by the real time operating system. The
buffer behaves like a normal buffer: you can put something (called a message)
in and retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a
message that is put in first will usually be retrieved first. Message might sound
abstract. But really message means just "item of data". It will become clear in
the following typical applications explained in the following chapter.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 69/136

9.3. Typical applications

A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt han-
dler to check the keyboard. When you detect that a key has been pressed, you
put that key in a mailbox that is used as keyboard buffer. The message is then
retrieved by the task that handles keyboard input. The message in this case will
be typically a single byte that holds the key code, the message size is 1 byte.
The advantages: The management of the keyboard buffer is very efficient, you
do not have to worry about it since it is reliable, proven code and you have a
type ahead buffer at no extra cost. On top of that, a task can easily wait for a
key to be pressed without having to poll the buffer. It simply calls the
OS_Cet Mai | routine for that mailbox. The number of keys that can be stored in
the type ahead buffer depends on the size of the mailbox buffer only, which you
define when creating the mailbox.

A buffer for serial I/O

In most cases, serial /O is done with the help of interrupt handlers. The com-
munication to these interrupt handlers is very easy using mailboxes. Both your
task programs and your interrupt handlers store or retrieve data to/from the
same mailboxes.

For interrupt driven sending: The task places character(s) in the mailbox using
OS _Put Mai | or OS_Put Mai | Cond, the interrupt handler that is activated when
a new character can be send retrieves this character with OS_Get Mai | Cond.
For interrupt driven receiving: The interrupt handler that is activated when a
new character is received puts it into the mailbox using OS_Put Mai | Cond, the
task receives it using OS_Get Mai | or OS_Get Mai | Cond.

Again, the message size will be 1 character.

A buffer for commands sent to a task

Assume you have one task that controls a motor as you might have in applica-
tions that control a machine. An easy way to give commands to this task on
how to control the motor would be to define a structure for commands. The
message size will then be the size of this structure.

© 1996- 2002 Segger Microcontroller Systeme GmbH

70/136 User's & reference manual for embOS real time OS

9.4. Number of and size of mailboxes, type of mail
The number of mailboxes is limited by the amount of available memory only.

Message size: 1 <= x <= 127 byte.
Number of messages 1 <= x<=32767.

These limitations have been placed on mailboxes in order to guarantee efficient
coding and to keep the management very efficient.

However, these limitations normally are not a problem. If they are in your case,
please give us feedback and we will try to find a solution.

To handle message sizes above 127 bytes you might use queues.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 71/136

9.5. OS_CREATEMB: Creating a mailbox

Description
Creates a new mailbox.

Prototype
voi d OS_CREATEMB(OS_MAI LBOX* pMB,
char si zeof Msg,
char maxnof Msg,
voi d* pMsQ) ;

Paranet er |Meani ng

pMVB Pointer to a data structure of type OS_MAILBOX reserved for
the management of the mailbox

si zeof Msg |[Size of a message in bytes

maxnof Msg |Max. no. of messages

pMsg Pointer to a memory area used as buffer. The buffer has to be
big enough to hold the given number of messages of the given
size: si zeof Msg *maxnof Msg bytes

Return value
Void.

Examples

Mailbox used as keyboard buffer:

CS_MAI LBOX MBKey;
char MBKeyBuffer[6];

voi d | nitKeyMan(void) ({
/* create mail box functioning as type ahead buffer */
OS_CREATEMB(&VBKey, 1, sizeof (MBKeyBuffer), &VBKeyBuffer);

}

Mailbox used to transfer complex commands from one task to an other:
/*

* exanple for mail box used to transfer conmands to a task

* that controls 2 notors

*

/

typedef struct {
char Cnd;
i nt Speed[2];
int Position[2];
} MOTORCMD ;

OS_MAI LBOX MBMWbt or ;

#def i ne MOTORCMD_SI ZE 4
char Buf f er Mot or [si zeof (MOTORCIVD) * MOTORCMVD_SI ZE] ;

void MOTOR I nit(void) {
/* create mail box that hol ds commands nessages */
OS_CREATEMB(&vBMot or, si zeof (MOTORCMD), MOTORCMD_SI ZE, &Buf f er Mot or) ;

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

72/136 User's & reference manual for embOS real time OS

9.6. Single byte mailbox functions

In a lot (if not the most) situations, mailboxes are used to just hold and transfer
single byte messages. This is for example the case for a mailbox that takes the
character received or sent via serial interface or normally for a mailbox used as
keyboard buffer. In some of these case time is very critical, especially if a lot of
data is transferred in short periods of time. In order to minimize the overhead
caused by the mailbox management of embOS, there are all of the functions
described above available for single byte mailboxes. The general functions
OS_Put Mai |, OS_Put Mai | Cond, OS_Get Mai | , OS_Get Mai | Cond can trans-
fer messages of sizes between 1 and 127 bytes each. Their single byte equiva-
lents OS_Put Mai | 1, OS_Put Mai | Condl, OS_Get Mai | 1, OS_Get Mai | Cond1l
function exactly the same way with the exception that they execute a lot faster
since the management is easier. It is recommended you use the single byte
versions if you transfer a lot of single byte data via mailboxes.

CS Put Mai | 1, OGS Put Mai | Cond1, CS Get Mai | 1, OS_Get Mai | Cond1 func-
tion exactly the same way as their more universal equivalents and are therefore
not described in detail. The only difference is that they can only be used for sin-
gle byte mailboxes.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 73/136

9.7. OS_PutMail / OS_PutMail1: Store message

Description
Stores a new message of the predefined size in the mailbox.

Prototype
void OS PutMail (OS_MAILBOX * pMB, void* pMail);
void OS PutMail1 (OS_MAILBOX * pMB, const char* pMil);

Par amet er Meani ng
pMB Pointer to the mailbox
pMai | Pointer to the message to store

Return value
Void.

Add. information

If the mailbox is full, the task is suspended.
Since this routine might require a suspension, it must not be called from an in-
terrupt routine. Use —-0OS_Put Mai | Cond —0OS_Put Mai | Cond1 instead.

Example

Single byte mailbox as keyboard buffer:

CS_MAI LBOX MBKey;
char MBKeyBuffer[6];

voi d KEYMAN_St or eKey(char k) {
OS_Put Mai | 1(&vBKey, &k); /* store key, wait if no space in buffer */
}

void KEYMAN | nit(void) {
/* create mail box functioning as type ahead buffer */
OS_CREATEMB(&VBKey, 1, sizeof (MBKeyBuffer), &VBKeyBuffer);

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

74/136 User's & reference manual for embOS real time OS

9.8. OS_PutMailCond / OS_PutMailCond1: Store Message if possi-
ble

Description

Stores a new message of the predefined size in the mailbox, if the mailbox is
able to accept one more message. This routine will never suspend the calling
task.

Prototype

char OS_Put Mai | Cond (OS_MAILBOX * pMB, void* pMil);
char OS_Put Mai | Condl (OS_MAILBOX * pMB, const char* pMail);

Par anet er Meani ng
pMB Pointer to the mailbox
pMai | Pointer to the message to store

Return value

Returns 0 if message could be stored (success) , otherwise 1.

Add. information

If the mailbox is full, the message is not stored.
This routine can be called from an interrupt routine.

Example

OS_MAI LBOX MBKey,
char MBKeyBuf fer[6];

char KEYMAN_St or eCond(char k) {
return OS_Put Mai | Cond1(&VBKey, &k); /* store key if space in buffer */
}

This example can be used with the sample program shown earlier to create a
mailbox as keyboard buffer.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 75/136

9.9. OS_GetMail / OS_GetMail1

Description

Retrieves a new mail of the predefined size from a mailbox and will suspend the
calling task until a message is available.

Prototype
void OS GetMail (OS_MAILBOX * pMB, void* pDest);
void OS GetMail 1(OS_MAI LBOX * pMB, char* pDest);

Par anet er |Meani ng

pMB Pointer to the mailbox

pDest Pointer to the memory area that the message should be stored
at. You have to make sure that this pointer points to a valid
memory area and that there is sufficient space for an entire
message. The message size (in bytes) has been defined upon
creation of the mailbox

Return value
Void.

Add. information

If the mailbox is empty, the task is suspended until the mailbox receives a new
message.

Since this routine might require a suspension, it may not be called from an in-
terrupt routine. Use -0OS_Get Mai | Cond / -0S_Get Mai | Cond1 instead if you
have to retrieve data from a mailbox from within an ISR.

Example

CS_MAI LBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
char c;
OS_Get Mai | 1(&VBKey, &c);
return c;

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

76/136 User's & reference manual for embOS real time OS

9.10. OS_GetMailCond / OS_GetMailCond1

Description

Retrieves a new mail of the predefined size from a mailbox, if a message is
available. This function never suspends the calling task.

Prototype

char OS_Get Mai | Cond (OS_MAI LBOX * pMB, void* pDest);
char OS_Get Mai | Cond1(OS_MAI LBOX * pMB, char* pDest);

Par anet er Meani ng

pm Pointer to the mailbox

pDest Pointer to the memory area that the message should be
stored at. You have to make sure that this pointer points to a
valid memory area and that there is sufficient space for an
entire message. The message size (in bytes) has been de-
fined upon creation of the mailbox

Add. information

If the mailbox is empty, no message is retrieved, but the program execution
continues.
Can be called from an interrupt routine.

Return value

0 on success: message retrieved
1 no message could be retrieved (mailbox is empty !), destination remains un-
changed

Example

OS_MAI LBOX MBKey;
char MBKeyBuf fer[6];

/*
* |f a key has been pressed, it is taken out of the mail box and returned to
* caller.
* Oherwise, 0 is returned.
*/
char Get Key(void) {
char c¢ =0;
OS_Get Mai | Cond1(&VBKey, &c)
return c;

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

77/136

9.11. OS_ClearMB: Empty a Mailbox

Description
Clears all messages in the specified mailbox.
Prototype
void OS_C ear MB(OS_MAI LBOX * pMB);
Par anet er Meani ng
pMB Pointer to the mailbox

Return value
Void.

Add. information

None.

Example

| *
*/

}

OS_MAI LBOX MBKey;
char MBKeyBuffer][6];

* Clear keyboard type ahead buffer

voi d C ear KeyBuf fer(void) {
0S_d ear MB(&VBKey) ;

© 1996- 2002 Segger Microcontroller Systeme GmbH

78/136 User's & reference manual for embOS real time OS

9.12. OS_GetMessageCnt

Description
Return no. of messages.

Prototype
char OS_Get MessageCnt (OS_MAI LBOX * pMB);

Par anet er Meani ng
pMB Pointer to the mailbox

Return value

Returns the number of messages currently in the mailbox.

Add. information

None.

Example

char GetKey(void) {
if (OS_Get MessageCnt (&VBKey)) return WaitKey();
return O;

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 79/136

9.13. OS_DeleteMB

Description
Deletes the specified mailbox.

Prototype
void OS Del et eMB(OS_NAI LBOX * pMB);

Par anet er |Meani ng
pMB Pointer to the mailbox

Return value
Void.

Add. information

In order to keep the system fully dynamic, it is essential that mailboxes can be

created dynamically. This also means there has to be a way to delete the mail-

box when it is no longer needed. The memory that has been used by the mail-

box for the control structure and the buffer can then be reused or reallocated.

It is the programmers responsibility to:

1. make sure that the program does not use the mailbox any more

2. make sure that the mailbox that shall be deleted does actually exist, i.e. has
been created first before deleting the mailbox.

Example

OS_MAI LBOX MBSer | n;
char MBSer | nBuffer[6];

voi d C eanup(void) ({
OS_Del et eB(MBSer | n) ;
return O;

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

80/136 User's & reference manual for embOS real time OS

10. Queues

10.1. Why Queues ?

In the preceding chapter inter task communication using mailboxes was de-
scribed. Mailboxes can handle small messages with fixed data size only.
Queues enable inter task communication with large messages or messages of
various size.

10.2. Basics

A queue consists of a data buffer and a control structure that is managed by the
real time operating system. The queue behaves like a normal buffer: you can
put something (called a message) in and retrieve it later. Queues work as FIFO:
firstin, first out. So a message that is put in first will be retrieved first.

There are two major differences to mailboxes:

1. Queues accept messages of various size. When putting a message into a
queue, the message size has to be passed as additional parameter.

2. Retrieving a message from the queue does not copy the message but gives
a pointer to the message and the size of the message. This enhances per-
formance, because the data is copied only once, when the message is writ-
ten into the queue.

3. The retrieving function has to delete every message after processing it.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 81/136

10.3. Number of and size of queues, type of messages

The number of queues is limited by the amount of available memory only.
The size of a queue is limited by the amount of available memory only.
Any data structure can be written into a queue. The message size is not fixed.

© 1996- 2002 Segger Microcontroller Systeme GmbH

82/136 User's & reference manual for embOS real time OS

10.4. OS_Q_Create: Creating a message queue

Description
Creates and initializes a message queue.
Prototype
void OS Q Create(0s_ Q@ pQ
voi d* pDat a,
OS_UI NT Si ze)
Par anet er |Meani ng
pQ Pointer to a data structure of type OS_Q reserved for the man-
agement of the message queue
pDat a Pointer to a memory area used as data buffer for the queue.
Size Size of the data buffer in bytes

Return value
Void.

Examples
Queue used to transfer data to memory:

defi ne MEMORY_QSI ZE 10000;
static OS5 Q _MenoryQ
static char _acMemQBuf f er [MEMORY_QSI ZE] ;

void MEMORY_Init(void) {
OS Q Create(& MenoryQ & acMemBuffer, sizeof (_acMemBuffer));
}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 83/136

10.5. OS_Q_Put: Store message

Description
Stores a new message of given size in a queue.

Prototype
int OGS QPut (0SS @ pQ const void* pSrc, OS U NT Size)

Par anet er Meani ng

pQ Pointer to the queue

pSrc Pointer to the message to store
Size Size of the actual message to store

Return value
Returns 0 if message could be stored (success) , otherwise 1.

Add. information

If the queue is full, the task is not suspended, the function returns a value un-
equal to zero.

Since this routine never suspends a task, it may also be called from an interrupt
routine.

Example

char MEMORY_Wite(char* pData, int Len) {
return OS_Q Put (& MenmoryQ pData, Len));

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

84/136

User's & reference manual for embOS real time OS

10.6. OS_Q_GetPtr: Retrieve message

Description

Retrieves a message from the queue, if one message is available.
This routine will suspend the calling task, as long as no message is available in

the queue.

Prototype

int OS5 QGetPtr(0OS @ pQ void**ppData)

Par anet er Meani ng
pQ Pointer to the queue
ppDat a Address of pointer to the message to be retrieved from queue.

Return value

Returns the message size of the retrieved message.
Sets the pointer to the actual message that should be retrieved.

Add. information

If the queue is empty, the calling task is suspended.

Therefore this routine must not be called from within an interrupt routine.

The retrieved message is not removed from the queue. This has to be done by
acallof OS_Q Purge() aft er the message wass processed.

Example

}

}

static void MenoryTask(void) {
char MenoryEvent;

int Len;

char* pDat a;

while (1) {
Len = OS_Q GethPtr(& MenoryQ &pbData); /* Get nessage */
Menmory Wit ePacket (*(U32*)pData, pData+4, Len); /* Process nessage */
OS_Q Purge(& MenoryQ) ; /* Del ete nessage */

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 85/136

10.7. OS_Q_GetPtrCond: Retrieve message if available

Description

Retrieves a message from the queue, if one message is available and delivers
the size of the message as return value.

If no message is available, the functions returns with a size of zero, indicating,
that there was no message in the queue. This routine will never suspend the
calling task.

Prototype
int OS Q GetPtrCond(0Os_Q pQ void**ppDat a)

Par anet er Meani ng
pQ Pointer to the queue
ppDat a Address of pointer to the message to be retrieved from queue.

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.

Add. information

If the queue is empty, the calling task is not suspended, the function returns
with zero. The value of ppData is undefined.

If one message could be retrieved, this message is not removed from the
queue. This has to be done by a call of OS_Q Pur ge() after the message was
processed.

Example

static void MenoryTask(void) {
char MenoryEvent;
int Len;
char* pDat a;
while (1) {
Len = OS_Q GetPtrCond(& MenoryQ, &pDat a); /* Check message */
if (Len > 0) {
Mermory_W it ePacket (*(U32*) pData, pData+4, Len); [/* Process nessage */
OS_Q Purge(& MenoryQ; /* Del ete message */
} else {
DoSormet hi ngEl se() ;
}
}
}

© 1996- 2002 Segger Microcontroller Systeme GmbH

86/136 User's & reference manual for embOS real time OS

10.8. OS_Q_Purge: Delete message in queue

Description
Deletes the last message in queue.

Prototype
void OGS Q Purge(0S @ pQ

Par anmet er |Meani ng
pQ Pointer to the queue

Return value
Void.

Add. information

This routine should be called by the task that retrieved the last message from
queue, after the message is processed.

Example

static void MenoryTask(void) {
char MenoryEvent;

int Len;

char* pDat a;

while (1) {
Len = OS_ Q GetPtr(& MenoryQ &pData); /* Cet nessage */
Menmory_ W itePacket (*(U32*)pData, pData+4, Len); /* Process nmessage */
OS_Q Purge(& MenoryQ); /* Del ete message */

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

87/136

10.9. OS_Q_GetMessageCnt: Get number of messages in queue

Description
Deletes the last message in queue.

Prototype
void OS Q Purge(0s Q@ pQ

Par anet er |Meani ng

pQ Pointer to the queue

Return value
Void.

Add. information

This routine should be called by the task that retrieved the last message from

queue, after the message is processed.

Example

static void MenoryTask(void) {
char MenoryEvent;
int Len;
char* pDat a;
while (1) {
Len = OS_Q GetPtr(& MenmoryQ &pbData); [* CGet message

OS_Q Purge(& MenoryQ; /* Del ete nmessage

*/
Mermory_ Wit ePacket (*(U32*) pData, pData+4, Len); /* Process nessage */
*/

© 1996- 2002 Segger Microcontroller Systeme GmbH

88/136 User's & reference manual for embOS real time OS

11. Events

Events are another means of communication between tasks. In contrast to
semaphores and mailboxes, events are messages to a single, specified recipi-
ent. In other words: An event is send to a specified task.

The purpose of an event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is
signaled by an other task, a S/W timer or an interrupt handler. The event can
be anything that the software is made aware of in any way. Examples are the
change of an input signal, the expiration of a timer, a key press, the reception of
a character or a complete command.

Every task has an 1 byte (8 bits) mask, which means that 8 different events can
be signaled to and distinguished by every task.

By calling OS_ Wi t Event, a task waits for one of the events specified as bit-
mask.

As soon as one of the events actually occurs, it has to be signaled to this task
by calling OS_Si gnal Event .

The waiting task will then be put in the ready state immediately and activated
according to the rules of the scheduler as soon as it becomes the task with the
highest priority of all the tasks in the READY state.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 89/136

11.1. OS_WaitEvent

Description

Waits for the specified event and clears the event memory after the event oc-
curs.

Prototype
char OS Wit Event (char Event Mask) ;

Par anmet er Meani ng
Event Mask The events that the task will be waiting for.

Return value
Returns all events that have actually occurred.

Add. information

Lets the task wait for the occurrence of one of the specified events and then
clears the event memory. If none of the specified events is signaled, the task is
suspended. The first of the specified events will wake the task. These events
have to be signaled by an other task, a S/W timer or an interrupt handler.

Every 1 bit in the event mask enables the according event.

Example

OS_Wit Event (3); /* Wait for event 1 or 2 to be signaled */ I

Further example: — OS_Si gnal Event

© 1996- 2002 Segger Microcontroller Systeme GmbH

90/136 User's & reference manual for embOS real time OS

11.2. OS_WaitSingleEvent

Description
Waits for the specified event and clears only those event after the event occurs.

Prototype
char OS Wit Si ngl eEvent (char Event Mask) ;
Par anet er Meani ng
Event Mask The events that the task will be waiting for.

Return value
Returns all masked events that have actually occurred.

Add. information

Lets the task wait for the occurrence of one of the specified events and then
clears the masked events only. If none of the specified events is signaled, the
task is suspended. The first of the specified events will wake the task. These
events have to be signaled by an other task, a S/W timer or an interrupt han-
dler.

Every 1 bit in the event mask enables the according event.

All unmasked events remain unchanged.

Example

OS_Wii t Si ngl eEvent (3) ; /* Wait for event 1 or 2 to be signaled */ I

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 91/136

11.3. OS_WaitEventTimed

Description
Waits for the specified events for a given time.

Prototype
char OS Wit Event Ti ned(char Event Mask, int TineQut);
Par anet er Meani ng
Event Mask The events that the task will be waiting for.
Ti meCut Maximum time in timer ticks, until the events have to be
signaled.

Return value

Returns the events that have actually occurred within the specified time.
Returns 0, if no events were signaled in time

Add. information

Lets the task wait for the occurrence of one of the specified events and then
clears the event memory. If none of the specified events is available, the task is
suspended for the given time. The first of the specified events will wake the
task, if the event has been signaled by an other task, a S/W timer or an inter-
rupt handler within the specified TimeOut time.

If no event was signaled, the Task is activated after the specified TimeOut time,
all actual events are returned and then cleared.

Every 1 bit in the event mask enables the according event.

Example

OS Wit Event Ti med(3, 10); /* Wait for event 1/2 to be signaled within 10 nms */

© 1996- 2002 Segger Microcontroller Systeme GmbH

92/136 User's & reference manual for embOS real time OS

11.4. OS_WaitSingleEventTimed

Description
Waits for the specified events for a given time.

Prototype
char OS_Wait Si ngl eEvent Ti ned(char Event Mask, int TineQut);
Par anet er Meani ng
Event Mask The events that the task will be waiting for.
Ti meCut Maximum time in timer ticks, until the events have to be
signaled.

Return value

Returns the masked events that have occurred within the specified time.
Returns 0, if none of the masked events were signaled in time

Add. information

Lets the task wait for the occurrence of one of the specified events and then
clears the masked events.

Unmasked events remain unchanged.

If none of the specified events is available, the task is suspended for the given
time. The first of the specified events will wake the task, if the event has been
signaled by an other task, a S/W timer or an interrupt handler within the speci-
fied TimeOut time.

If no event was signaled, the task is activated after the specified TimeOut time
and the function returns zero.

Every 1 bit in the event mask enables the according event.

Example

OS_Wiit Singl eEvent Ti ned(3, 10); /* Wait for event 1/2 to be signaled within 10
ms */

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 93/136

11.5. OS_SignalEvent

Description
Signals the event(s) specified to the task specified.
Prototype
voi d OS_Si gnal Event (char Event, OS TASK* pTask);
Par anet er Meani ng
Event The event(s) to signal
1 means event 1
2 means event 2
4 means event 3

128 means event 8

multiple events can be signaled as the sum of the single
events, e.g. 6 will signal event 2 & 3

pTask the task that the events are sent to

Return value
Void.

Add. information

If the specified task is waiting for one of these events, it will be put in the ready
state and activated according to the rules of the scheduler.

Usually it is sufficient to just signal 1 to the task since it can find out itself which
event has occurred.

© 1996- 2002 Segger Microcontroller Systeme GmbH

94/136 User's & reference manual for embOS real time OS

Example
Task is waiting for serial reception or keyboard

The task that handles the serial input and the keyboard, waits for a character to
be received either via keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN).

/*

* just a small denpb for events
*/

#def i ne EVENT_KEYPRESSED (1)
#defi ne EVENT_SERI N (2)

char StackO0[96], Stackl[64]; /* stack space */

OS_TASK TCBO, TCB1; /* Data area for tasks (task control blocks) */
voi d TaskO(void) {
whi | e(1)
OS_Wai t Event (EVENT_KEYPRESSED | EVENT_SERI N)
/* check & handl e key press */

/* check & handle serial reception */

}
}

voi d TinerKey(void) {
/* nore code to find out if key has been pressed */
OS_Si gnal Event (EVENT_SERI N, &TCBO); /* notify Task that key was pressed */

}

voi d | nitTask(void) {
OS_CREATETASK(&TCBO, 0, TaskO, 100, StackO); /* Create TaskO */
}

If the task would wait for a key to be pressed only, OS_Get Mai | could simply
be called. The task would then be deactivated until a key is pressed. If the task
has to handle multiple mailboxes as in this case, events are a good option.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 95/136

11.6. OS_GetEventsOccured

Description
Get List of events

Prototype
char OS_Get Event sCccur ed(OS_TASK* pTask) ;
Par anet er Meani ng
pTask The task who's event mask is to be returned

NULL means current task

Return value

Returns the bit mask of the events that have actually occurred.

Add. information

This is one way for a task to find out which events have been signaled. The
task is not suspended, if no events are available. By calling this function, the
actual events remain signaled, the event memory is not cleared.

© 1996- 2002 Segger Microcontroller Systeme GmbH

96/136 User's & reference manual for embOS real time OS

11.7. OS_ClearEvents: Clear List of Events

Description

Returns the actual state of events and then clears the events of the specified
task.

Prototype
char OS O ear Event s(OS_TASK* pTask);

Par anet er Meani ng

pTask The task who's event mask is to be cleared
NULL means current task

Return value
Returns the bit mask of the events that were actually signaled before clearing.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 97/136

12. Stacks

12.1.Some basics

The stack is the memory-area used to store the return-address of function calls,
parameters, and local variables and for temporary storage. Interrupt-routines
also use the stack to save the return address and flag register, except in case
the CPU does have a separate stack for interrupt functions. Please check out
the CPU & Compiler Specifics manual of embOS documentation for details on
your processor's stack. A "normal" single-task program needs exactly one
stack. In a multitasking system, every task has to have its own stack.

The stack has to have a minimum size, which is determined by the sum of the
stack-usage of the routines in the worst-case nesting. If the stack is to small, a
section of the memory that is not reserved for the stack will be overwritten, a
serious program-failure is most likely to occur.

embOS monitors the stack size and if available also interrupt stack size in the
debug version and calls the failure-routine OS_Error if it detects a stack-
overflow. However, embOS cannot reliably detect a stack overflow.

A stack that has been defined bigger than necessary does not hurt; it is only a
waist of memory.

The debug and stack check builds of embOS fill the Stack with control charac-
ters when it is created and check these control-characters every time the task is
deactivated in order to detect a stack-overflow.

In case a stack overflow is detected, OS_Er r or will be called.

12.2.System stack

Before embOS takes over control (before call to OS _Start()), a program
does use the so-called system stack. This is the same stack, as a non-embOS
program for this CPU would use. After transferring control to embOS scheduler
by calling OS_St art (), system stack is used only when no task is executed for
the following:

e embOS Scheduler
e embOS Software timers (and the callback)

For details regarding required size of your system stack, please refer the CPU
& Compiler Specifics manual of embOS documentation.

12.3.Task stack

Each embOS task does have a separate stack. Location and size of this stack
is defined when creating a task. Minimum size of a task stack depends pretty
much on the CPU and compiler. For details, please see CPU & Compiler Spe-
cifics manual of embOS documentation.

© 1996- 2002 Segger Microcontroller Systeme GmbH

98/136 User's & reference manual for embOS real time OS

12.4.Interrupt stack

For reduction of stack size in a multi-tasking environment, some processors use
a specific stack area for interrupt service routines (hardware interrupt stack). If
there is no interrupt stack, you will have to add stack requirements of your inter-
rupt service routines to each task stack.

Even if the CPU does not support an interrupt stack by hardware, embOS may
support a separate stack for interrupts by calling function
OS EnterlntStack() at beginning of an interrupt service routine and
OS Leavel nt St ack() at its very end. In case the CPU does already support
hardware interrupt stack or a separate interrupt stack is not supported at all,
these function calls are implemented as empty macros.

We recommend using OS _Enterlnt Stack() and OS _Leavel nt Stack()
even if there is currently no additional benefit for your specific CPU, because
code using them might reduce stack size on another CPU or a new version of
embOS with support for an interrupt stack for your CPU.

For details about interrupt stack, please check out the CPU & Compiler Specif-
ics manual of embOS documentation.

12.5. OS_GetStackSpace

Description
Returns the unused portion of the stack.
Prototype
int OS _Get StackSpace(OS_TCB* pTask);
Par anet er Meani ng
pTask The task who's stack space is to be checked

NULL means current task

Return value
Returns the unused portion of the stack in bytes.

Add. information

In most cases, the stack size required by a task can not be easily calculated,
since it takes quite some time to calculate the worst case nesting and the calcu-
lation itself is difficult.

There is an other approach:

The required stack size can be figured out using the function
OS_Get St ackSpace. OS_Get St ackSpace returns the number of unused
bytes on the stack. If there is a lot of space left, you can reduce the size of this
stack and vice versa.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 99/136

This function is available in the debug and stack check builds of embOS
only, since only these initialize the stack space used for the tasks.

Example

voi d CheckSpace(void) {
printf("Unused Stack[0] %", OS_Get StackSpace(&TCB[O0]);
CS_Del ay(1000);
printf("Unused Stack[1l] %", OS_Get StackSpace(&TCB[1]);
CS_Del ay(1000);

Attention

This routine does not reliably detect the amount of stack space left. (This
is because it can only detect modified bytes on the stack. Unfortunately,
space used for register storage or local variables is not always modified.
However, in most cases this routine will detect the correct amount of
stack bytes.)

In case of doubt, be generous with your stack-space or use other means
to verify that the allocated stack space is sufficient.

© 1996- 2002 Segger Microcontroller Systeme GmbH

100/136 User's & reference manual for embOS real time OS

13. Interrupts

In this chapter, you will find a very basic description about using interrupt ser-
vice routines in cooperation with embOS. Details for your CPU and compiler
can be found in the manual “CPU & Compiler Specifics” of embOS documenta-
tion.

Interrupts are interruptions of a program caused by hardware. Normal interrupts
are maskable and can occur at any time unless they are disabled with the
CPU's disable-interrupt-instruction.

There are several good reasons for using interrupt-routines. They can respond
very fast to external events like the status change on an input, the expiration of
a hardware timer, reception or completion of transmission of a character via se-
rial interface or other events.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 101/136

13.1. Rules for interrupt handlers

General rules

There are some general rules for interrupt handlers. These rules apply to both
"single task programming" as well as to multi task programming using embOS.

¢ Interrupt handlers preserve all registers
Interrupt handlers have to restore the environment of a task completely. This
environment normally consists of the registers only, so the interrupt routine
has to make sure that all registers that are modified during interrupt execu-
tion have to be saved at the start and restored at the end of the interrupt rou-
tine.

¢ Interrupt handler have to be finished quickly.
Calculation intensive parts of the program should be kept out of the interrupt
handler. The interrupt handler should only be used to store a received value
or to trigger an operation in the regular program (a task). It should not wait in
any form or perform a polling operation.

Additional rules

A preemptive multitasking system like embOS needs to know if the program it
is interrupting is part of the current task or an interrupt handler. This is so be-
cause embOS can not perform a task switch during the execution of an inter-
rupt handler. However, it can perform the task switch at the end of the interrupt
routine.
If it would interrupt the interrupt routine; the interrupt routine would be continued
as soon as the interrupted task becomes the current task again. This is not a
problem for interrupt handlers that do not allow further interruptions, (which do
not enable interrupts) and that do not call any embOS function.
This leads us to the following rule:
¢ Interrupt functions that re-enable interrupts or use any embOS functions

need to use OS _EnterInterrupt () as first and

OS Leavelnterrupt() or

OS_Leavel nterrupt NoSwi tch() aslastline.
The task switch then occurs in the routine OS_Leavel nterrupt (). The end
of the interrupt service routine is executed at a later point, when the interrupted
task is made ready again. If you debug an interrupt routine, do not be confused.
This has proven to be the most efficient way of initiating a task switch from
within an interrupt service routine.
If fast task-activation is not required, OS_Leavel nt errupt NoSwi t ch() can
be used instead.

© 1996- 2002 Segger Microcontroller Systeme GmbH

102/136 User's & reference manual for embOS real time OS

13.2. Calling embOS routines from within an ISR

OS_Enterinterrupt(), OS_Leavelnterrupt(), OS_LeavelnterruptNoSwitch().

The use of OS_Enterlnterrupt() informs embOS that interrupt code is
executing and has the following effects:

o disables task-switches

¢ Kkeeps interrupts in internal routines disabled

If OS_Enterlnterrupt () isused, it should be the first function to be called in
the interrupt handler.

If OS_Enterlnterrupt() is used, OS Leavelnterrupt() or
OS_Leavel nterrupt NoSwi t ch() should be the last function to be called in
the interrupt handler.

OS Leavel nterrupt () informs embOS that the end of the interrupt routine
is reached. If the interrupt has caused a task switch, it is executed now -unless
the program which was interrupted was in a critical region.

OS_Leavel nterrupt NoSwi t ch() informs embOS that the end of the inter-
rupt routine is reached, but does not execute the task switch from within the
ISR, but at the next possible occasion. This will be the next call of an embOS
function or the Scheduler Interrupt if the program is not in a critical region.

Examples
Interrupt routine using OS_Enterlinterrupt () /OS_Leavelnterrupt():

__interrupt void I SR Tiner(void) {
OS_Enterlnterrupt();
OS_Si gnal Event (1, &Task) ; /* any functionality could be here */
OS_Leavelnterrupt();

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 103/136

13.3. Enabling / Disabling interrupts from "C"

During the execution of a task, maskable interrupts are normally enabled. In
certain sections of the program however, it can be necessary to disable inter-
rupts for short periods of time to make a section of the program an atomic op-
eration that can not be interrupted. An example would be the access to a global
volatile variable of type long on an 8/16 bit CPU:

Bad example

volatile long |var;

void routine (void) {
| var ++;

}

In order to make sure that the value does not change between the two or more
accesses that are needed, the interrupts have to be temporarily disabled.

The problem with disabling and re-enabling interrupts is the following: Functions
that disable/enable the interrupt can not be nested.

Your C-compiler offers 2 intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended you use the functions
that embOS offers (To be precise, they only look like functions, but are macros
in reality).

If you do not use this recommended embOS functions, you may run into a
problem if routines which require a portion of the code to run with disabled inter-
rupts are nested or call an OS-routine. We recommend to disable the interrupt
only for short periods of time, if possible. Also you should not call routines when
interrupts are disabled, because this could lead to long interrupt latency times.
If you do this, you may also safely use the compiler provided intrinsics to dis-
able interrupts.

© 1996- 2002 Segger Microcontroller Systeme GmbH

104/136 User's & reference manual for embOS real time OS

OS_IncDI()

Short for: Increment and disable interrupts
Increments the Interrupt disable counter (OS_DICnt) and disables interrupts.
Defined in RTOS.h:

OS_DecRI()

Short for: Decrement and restore interrupts
Decrements the counter and enables interrupts if the counter reaches 0.

The functions mentioned above are in reality macros, so they use very little
space only and execute very fast. It is important that they are used as a pair:
OS_I ncDl () first, then OS_DecRI () .

Example

volatile long |var;

void routine (void) {
OS_IncDl();
| var ++;
0S_DecRI ();

OS_I ncDl () increments the interrupt disable counter which is used for the en-
tire OS and is therefore consistent with the rest of the program: Any routine can
be called, and the interrupts will not be switched on before the matching
OS _DecRI () has been executed. These 2 functions are actually macros de-
fined in RTOS. H. They are very efficient and use no more than a few bytes.
However, if you need to disable the interrupts for a short moment only where no
routine is called as in the example above, you could also use the pair OS_Dl ()
and OS_Restorel (). These are a tiny little bit more efficient because the in-
terrupt disable counter OS_DI Cnt is not modified twice, but only checked once.
They do have the disadvantage that they do not work with routines because the
status of OS_DI Cnt is not actually changed and should be used with great
care. In case of doubt, use OS I ncDl () and OS_DecRI ().

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 105/136

0S_DI()

Short for Disable Interrupts
Disables interrupts. Does not change the interrupt disable counter.

0S_EI()

Short for Enable Interrupts

Please refrain from using it directly unless you are sure that the interrupt enable
count has the value zero. (Because it does not take the interrupt-disable
counter into account)

OS_Restorel()

Short for Restore Interrupts
Restores the status of the interrupt flag, based on the interrupt disable counter.

Example

volatile long |var;

void routine (void) {
06_Dl();
| var ++;
CS _Restorel ();

}

Definitions of interrupt control macros (in RTOS.h)

#define OS_IncDl() { OS_ASSERT_DICnt(); OS_Di(); OS_DICnt++; }
#define OS_DecRI () { OS_ASSERT DICnt(); i --0S_DICnt==0) OS_E

if(()
#define OS_Restorel () { OS_ASSERT_DICnt(); if (Os_DlCnt==0) Cs EI(); }

© 1996- 2002 Segger Microcontroller Systeme GmbH

106/136 User's & reference manual for embOS real time OS

13.4. Nesting interrupt routines

For applications requiring short interrupt latency, you may re-enable interrupts
inside an interrupt handler. Therefore use OS_Ent er Nest abl el nt er r upt ()
and OS_LeaveNest abl el nt er r upt () within your interrupt handler.

Per default, interrupts are disabled in an interrupt handler (ISR) because the
CPU disables interrupts with the execution of the interrupt handler. Re-enabling
interrupts in an interrupt handler allows the execution of further interrupts with
equal or higher priority than that of the current interrupt. (nesting interrupts)
Nested interrupts can lead to problems that are difficult to track; therefore it is
not really recommended to enable the execution of interrupts form within an in-
terrupt handler. As it is important, that embOS keeps track of the status of the
interrupt enable / disable flag, disabling of the interrupt has to be done using
the functions that embOS offers for this purpose. To enable the interrupt in an
interrupt handler, use OS_Ent er Nest abl el nterrupt(); you need to use
OS _LeaveNest abl el nterrupt () to disable the interrupts right before end-
ing the interrupt routine again in order to restore the default condition. The call
of OS_EnterNestabl el nterrupt () prevents further task switches. Re-
enabling interrupts will make it possible that an embOS-Scheduler interrupt
shortly interrupts this ISR. In this case, embOS needs to know that an other
ISR is still active and it may not perform a task switch.

OS_EnterNestablelnterrupt()

Re-enables interrupts and increments the embOS internal critical region
counter, thus disabling further task switches. This function should be the first
call inside an interrupt handler, when nested interrupts are required. The func-
tion is implemented as a macro and offers the same functionality, as the former
OS Enterlinterrupt() and OS DecRI(), but is more efficient, which
means, it results in smaller and faster code.

OS_LeaveNestablelnterrupt()

This function disables further interrupts, then decrements the embOS internal
critical region count, thus re-enabling task switches, if the critical region count
reached zero again.

This function is the counterpart of OS_Ent er Nest abl el nt errupt () and has
to be the last function call inside an interrupt handler, when nested interrupts
where enabled before by calling OS_Ent er Nest abl el nterrupt (). The
function OS_LeaveNestablelnterrupt() is implemented as a macro and offers
the same functionality, as the former OS | ncDl ()in combination with
OS Leavelnterrupt (), but is more efficient, which means, it results in
smaller and faster code.

__interrupt void ISR Timer(void) {
OS_EnterNestabl el nterrupt(); /* Enable interrupts, but disable task swtch*/
/*
* any code |legal for interrupt-routines can be placed here
*/
I nt Handl er () ;
OS_LeaveNest abl el nterrupt(); /* Disable interrupts, allow task switch */

}

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 107/136

13.5. Non maskable interrupts (NMls)

embOS performs atomic operations by disabling interrupts. Since NMIs can not
be masked, they can interrupt these atomic operations. Therefore NMIs should
be used with great care and may under no circumstances call any embOS -
routines.

© 1996- 2002 Segger Microcontroller Systeme GmbH

108/136 User's & reference manual for embOS real time OS

14. Critical Regions

Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of a software-timer is allowed ex-
cept for a situation in which the active task has to wait. Effectively preemptions
are switched off.

A typical example for a critical region would be the execution of a program sec-
tion that handles a time critical hardware access, e.g. writing multiple bytes into
a EEPROM, where the bytes have to be written in a certain amount of time or a
section that writes data into global variables used by a different task and there-
fore needs to make sure the data is consistent.

A "critical region" can be defined anywhere during the execution of a task. S/W
timers and interrupts are executed as critical regions anyhow, so it does not
hurt but it does not do any good either to declare a critical region there.

If a task switch becomes due during the execution of a critical region, it will be
performed right after the critical region is left.

Critical regions can be nested; the scheduler will be switched on again after the
outermost loop is left. Interrupts are still legal in a critical region. However, soft-
ware-timer will not be executed during a critical region but right after it is left.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 109/136

14.1. OS_EnterRegion

Description
Indicates to the OS the beginning of a critical region.

Prototype
voi d OS_Ent er Regi on(voi d);

Return value
Void.

Add. information

CE_Ent er Regi on is not actually a function but a macro. However, it behaves
very much like a function with the difference that is a lot more efficient.

Usage of the macro indicates to embOS the beginning of a critical region. A
critical region counter (OS_Regi onCnt), which is 0 by default, is incremented,
so that the routine can be nested. The counter will be decremented by a call to
the routine OS_LeaveRegi on. If this counter reaches 0 again, the critical re-
gion ends.

Interrupts are not disabled using OS_Ent er Regi on; disabling the interrupts will
on the other side disable preemptive task switches.

Example

voi d SubRoutine(void) ({
OS_Enter Regi on() ;
/* this code will not be interrupted by the GS */
OS_LeaveRegi on();

}

© 1996- 2002 Segger Microcontroller Systeme GmbH

110/136 User's & reference manual for embOS real time OS

14.2. OS_LeaveRegion

Description
Indicates to the OS the end of a critical region.

Prototype:
voi d OS LeaveRegi on(voi d);

Return value
Void.

Add. information

OS_LeaveRegi on is not actually a function but a macro. However, it behaves
very much like a function with the difference that is a lot more efficient.

Usage of the macro indicates to embOS the end of a critical region. A critical
region counter (OS_Regi onCnt), which is 0 by default, is decremented.

If this counter reaches 0 again, the critical region ends.

Example
Refer to section for OS_Ent er Regi on.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 111/136

15. System variables

The system variables are described here for a deeper understanding of how the
OS works and to make debugging easier.

Please, do not change the value of any system variables.

These variables are accessible and not declared constant, but they should only
be altered by functions of embOS. However, some of these variables can be
very useful, especially the time variables.

15.1. Time Variables

15.1.1. OS_Time

Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms)

Prototype
extern volatile OS5 U332 OS Tine;

Add. information

The time variable has a resolution of one time unit, which is normally 1/1000
sec and normally the time between two successive calls to the embOS inter-
rupt handler. Instead of accessing this variable directly, you should do so by us-
ing0OS _GetTime() orOS_Get Ti ne32() .

15.1.2. OS_TimeDex

Basically for internal use only. Contains the time at which the next task switch
or timer activation is due. If ((int)(OS_Tinme - OS_TineDex) >=0), the
task-list and timer list will be checked for a task or timer to activate. After activa-
tion of this timer, OS_Ti nmeDex will be assigned the time stamp of the next task
or timer to be activated.

© 1996- 2002 Segger Microcontroller Systeme GmbH

112/136 User's & reference manual for embOS real time OS

15.2. OS internal variables and data-structures

embOS internal variables are not explained here as this is in no way required
to use embOS. Your application should not rely on any of the internal vari-
ables, as only the documented API functions are guaranteed to remain un-
changed in future versions of embOS.

Important
Do not alter any system variables

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 113/136

16. STOP / HALT / IDLE Mode

Most CPUs support power saving STOP, HALT or IDLE modes. Usage of these
modes is one possibility to save power consumption during idle times. As long
as the timer interrupt will wake up the system every embQOS tick, or other inter-
rupts will activate tasks, these modes may be used to save power consumption.
If required, you may modify the OS_| dl e() routine, which is part of the hard-
ware dependant module Rt osl ni t . ¢ to switch the CPU to power saving mode
during idle times. Please check out the CPU & Compiler Specifics manual of
embOS documentation for details on your processor.

© 1996- 2002 Segger Microcontroller Systeme GmbH

114/136 User's & reference manual for embOS real time OS

17. embOSView: Profiling and analyzing

17.1. Overview

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used to communicate with the target.

The hardware dependent routines and defines to communicate with embOS-
View are located in RTOSInit.c. This file has to be configured properly. For de-
tails on how to configure this file, please refer the CPU & Compiler Specifics
manual of embOS documentation.

The embOSView utility is shipped as embosView.exe with embOS and runs
under Windows 9x / NT / 2000. The latest version is available on our website
www.segger.com

P emb0S Yiewer ¥3.06

File “iew DOptionz Trace MWindow 2

G Task list

PI’iDI Id | I amne | Statuz | Datal Timeu:uutl Stackl EF'ULDau:Il Contest... | Found... |
120 29B2 MainTask Dielay OE0544] 115/51 202102 324% 19375 02
119 23, Tazk0O[RR) Ready 40451 202042302 NTE 11963 0:2
119 24068 Tazk1[RR) Ready 40/51 200042502 NAE 11503 0s2
119 2830 Taszk2 [RR) Ready 40451 202042702 3327% 12402 042

v Gystem wariables CPU load vs. ime
MHame | Yalue
05 _WERSION 306

CPU M1ECASR
Libk ode NT

05_Time EO0502
05_MumT azgks 4
05_Statuz 0.k,
05_pactiveT azk 29dc
05_pCurrentT ask 29dc
SyzStack 70/ 25603541

IntStack. 114/1280E0:3641

TraceBuffer 500500 [0FF)

Trace | Time | Tazkld | T azkMame | APIMame

0 I6FRE 2806 Tazk1 [RR] T ask deactivated -

1 I6FAE 230C Tazk0 [RR] Tazk activated

2 IBYRY 29DC Tazkl [RR) Tazk deactivated

3 IE7RT 29BZ2 b ginT azk Tazk activated

4 IBFRT 29BZ2 MainT azk 05_Delay(3)

g JE7RT 29BZ2 b ainT ask T azk deactivated

[IBAAT 230C Tazk0 [RR] Tazk activated

7 I6AAE 230C Tazk0 [RA] T aszk deactivated

a AEFRE 2430 TazkZ? [RR) Tazk activated

9 JEFED 2430 Tazkz [RR) Tazk deactivated

10 JE7E0 29BZ2 b ainT ask Tazk, activated

11 JBFED 29BZ2 MainT azk 05_Delay(3)

12 JEFE0 23BZ2 MainT ask Tazk deactivated

13 IEFED 2A0G Tazk1 [RR) Tazk activated

14 IE7EZ2 2AlE Tazkl [RR) Tazk deactivated

15 I67EZ 230C Tazk0 [RR] Tazk activated LI
| [Eytes: 10457 / 23097 Packets: 785 / 534 |38400 baud on COM1

embOSView is a very helpful tool for analysis of the running target application.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 115/136

17.2. Task list window

embOSView shows the state of every created task of the target application in
the Task list window. The information shown depends on the library used in
your application

ltem 'Explanation Builds
Prio Actual priority of task All
Id Task Id, which is the address of task control All
block
Name Name given during creation All
Status Actual state of task (Executing, delay, waiting | All
etc)
Data Meaning depends on status All
Timeout | Time of next activation All
Stack Used stack size, max. stack size, stack location | S, SP, D, DP, DT
CPULoad |Percentage CPU load caused by task SP, DP, DT
Context- |Number of activations since reset SP, DP, DT
Switches

The task list window is very helpful in analysis of stack usage and CPU load for
every running task.

17.3. System variables

embOSView shows the actual state of major system variables in the system
variables window. The information shown also depends on the library used in
your application:

ltem Explanation Builds

OS_VERSION Actual version of embOS All

CPU Target CPU and compiler All

LibMode Library mode used for target application | All

OS Time Actual system time in timer ticks All

OS NumTasks Actual number of defined tasks All

OS_Status shows actual error code (or O.K.) All

OS pActiveTask |Active task, that should actually run SP, D, DP, DT

OS pCurrentTask | Actual running task SP, D, DP, DT

SysStack Used size, max. size and location of SP, DP, DT
system stack

IntStack Used size, max. size and location of SP, DP, DT
interrupt stack

TraceBuffer Actual count, maximum size and actual |all trace builds
state of trace buffer

17.4. Sharing the SIO for Terminal I/O

The SIO used by embOSView may also be used by the application at the same
time for both input and output. This can be very helpful. Terminal input is often
used as keyboard input, where terminal output may be used to output debug
messages. Input and output is done via the terminal window, which can be
shown by menu ‘View | Terminal’

To ensure communication via the terminal window in parallel with the viewer
functions, the application has to use the two functions OS_SendStri ng() for

© 1996- 2002 Segger Microcontroller Systeme GmbH

116/136 User's & reference manual for embOS real time OS

sending and OS_Set RxCal | back() to hook a reception routine, that receives
one byte.

OS_SendString

Description
Sends a string over SIO to the terminal window.

Prototype
void OS _SendString(const char* s);
Par anet er Meani ng
S Points to a zero terminated string that should be sent to the
terminal

Add. information
This function uses OS_COM _Send1() which is defined in RTOSInit.c.

OS_SetRxCallback

Description
Sets a callback hook to a routine for receiving one character.

Prototype

typedef void OS RX CALLBACK(OS U8 Dat a)
OS_RX_CALLBACK* OS_Set RxCal | back(OS_RX_CALLBACK* ch)

Par anet er Meani ng
cb Pointer to the application routine that should be called, when
one character is received over serial interface

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback
function that was hooked before the call.

Add. information

The user function is called from embOS. The received character is passed as
parameter. See example below.

Example
void GUI_X OnRx(0OS_U8 Data); /* Callback ... called fromRx-interrupt */

void GU _X Init(void) {
OS_Set RxCal | back(&GUI _X OnRx);
}

17.5. Using the API-trace

With embOS version 3.06 or higher, a trace feature of API call was introduced.
This requires the use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API
calls can be started and stopped from embOSView via menu ‘Trace’, or it can

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 117/136

also be started and stopped from within the application by use of the new func-
tions OS_Tr aceEnabl e() and OS_Tr aceDi asabl e().

Individual filters may be defined, to determine which API calls should be traced
for different tasks or from within interrupt or timer routines.

Once trace was started, the API calls are recorded in the trace buffer, which is
periodically read by embOSView. The result is shown in the Trace window:

ek Trace

Trace | Time | T askld | T azkMame | APIM ame -

0 I6FAE 2408 Tazk1 [RR] T azk deactivated -
1 J6AAE 2900 TazkO [RR] T azk activated

2 IBTRY 29DC Tazk0 [RR] T azk deactivated

3 IEAAY 2982 kainT azk, T azk achivated

4 J6FRY 29B2 b ainT ask 05_Delap(3)

a JE7RY 29BZ2 MainT azk, T azk. deactivated

B IETRY 29DC Tazk0[RR] T azk activated

7 IE/AE 290C TazkO[RR] T azk deactivated

a JEFAE 2430 Tazkz [RR] T azk activated

9 JEFE0 2430 Tazkz [RR] T azk deactivated

10 IEFB0 2982 b ainT azk, T azk achivated

11 JBFRD 29B2 MainT azk 05_Delap(3)

12 JEYED 29BZ MainT azk, T azk deactivated

13 J6FE0 2408 Tazk1 [RR] T ask activated

14 IETEZ 2406 Tazk1 [RR] T azk deactivated -

1] | -

Every entry in the trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID and task name (limited to 15 characters)
is also recorded. Parameters of API calls are recorded if possible and are
shown as part of the APIName column. In the example above, this is shown for
OS_Delay(3).

Once the trace buffer is full, trace is automatically stopped. The trace list and
buffer can be cleared from embOSView.

17.5.1. Setting up trace from embOSView

Three different kinds of trace filter are defined for tracing. These filters can be
set up from embOSView via menu ‘Options | Setup | Trace’:

Filter 0 is non task specific and records all specified events regardless of the
task. As the Idle loop is no task, calls from within the Idle loop are not traced.
Filter 1 is specific for interrupt service routines, s/w timer and all calls that occur
outside a running task. These calls may come from the Idle loop or during
startup, when no task is running.

Filter 2 to 4 allow trace of API calls from named tasks.

© 1996- 2002 Segger Microcontroller Systeme GmbH

118/136

User's & reference manual for embOS real time OS

Options @R

Communication I Gereral Trace | CPL g I Log I
— Filker
T ask Mame [Filter 2 to 4]
| MainTask [Fier 4 Enable
| I Filter 3 Enable
| I Filter 2 Enable
ISR o Sw-Timer [+ Filter 1 Enable
| B Task ¥ Filter 0 Enable
LTI T ask deactivated -
[I T azk activated
|1 w1 Timer callback,
w05 Delay
AL L OS_DelapUntl
LI ECIE] 05 SetPriority
[IE I 05 wakeT azk Select al
[IEECIC] 05 CreateT ask S
[IEECC 05 _Terminate Desel I
[EIC0C] 05 wWaiE vent x| Deselecta
0k, I Cancel | Apply

To enable or disable a filter, simply check or uncheck the corresponding check-
box ‘Filter 0 Enable’ to ‘Filter 4 Enable’.

For any of those five filters, individual API functions can be enabled or disabled
by checking or unchecking the corresponding checkboxes in the list.

To speed up the process, there are two buttons available:

‘Select All' enables trace of all API functions for the actual enabled (checked)
filters.

‘Deselect All' disables trace of all API functions for the actual enabled
(checked) filters.

Filter 2 to 4 allow trace of task specific API calls. Therefore a task name can be
specified for each of those filters.

In the example above, Filter 4 is configured to trace calls of OS_Delay from the
task called ‘MainTask'.

After the settings are saved (via Apply or OK button), the new settings are sent
to the target application.

17.6. Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOS-
View. Per default trace is initially disabled in an application program. It may be
very helpful to control the recording of trace events directly from the application.
This can be done by the following functions:

OS_TraceEnable

Description

Enables trace of actual filtered API calls.

Prototype

voi d OS TraceEnabl e(voi d);

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 119/136

Add. information

The trace filter conditions should have been set up before a call of this function.
This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

OS_TraceDisable

Description
Disables trace of APl and user function calls.

Prototype
voi d OS _TraceDi sabl e(voi d);

Add. information

This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

OS_TraceEnableAll

Description

Sets up the first trace filter (Filter 0: ‘Any task’), enables trace of all API calls
and then enables trace function.

Prototype
void OS TraceEnabl eAl'l (void);

Add. information

The trace filter conditions of all the other trace filters are not affected. This func-
tionality is available in trace builds only. In none trace builds this API call is re-
moved by the preprocessor.

OS_TraceDisableAll

Description

Sets up the first trace filter (Filter 0: ‘Any task’), disables trace of all API calls
and also disables trace.

Prototype
void OS _TraceDi sabl eAl | (voi d);

Add. information

The trace filter conditions of all the other trace filters are not affected, but trac-
ing is stopped. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceEnableld

Description

Sets the specified id value in the first trace filter (Filter O: ‘Any task’), thus ena-
bling trace of the specified function, but does not start trace.

© 1996- 2002 Segger Microcontroller Systeme GmbH

120/136 User's & reference manual for embOS real time OS

Prototype
void OS TraceEnableld(GS U8 |d);

Par anet er Meani ng

e Id value of API call that should be enabled for trace
0<=1Id<=127
Values from 0 to 99 are reserved for embOS

Add. information

To enable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h

This function may also be used to enable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceDisableld

Description

Resets the specified id value in the first trace filter (Filter O: ‘Any task’), thus dis-
abling trace of the specified function, but does not stop trace.

Prototype
void OS TraceDi sabl el d(0OS_ U8 1d);
Par anet er Meani ng
Id Id value of API call that should be enabled for trace
0<=Ild<=127
Values from 0 to 99 are reserved for embOS

Add. information

To disable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h

This function may also be used to disable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceEnableFilterld

Description

Sets the specified id value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS TraceEnableFilterld(OSs U3 Filterlndex, OS U8 id)

Par anet er Meani ng

Fi I terlndex |Index of the Filter, that should be affected.

0 <= FilterIndex <=4

0 affects Filter 0 (‘Any Task’) and so on

i d Id value of API call that should be enabled for trace
0<=1d<=127

Values from 0 to 99 are reserved for embOS

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 121/136

Add.

information

To enable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h

This function may also be used to enable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

OS_TraceDisableFilterld

Description

Resets the specified id value in the specified trace filter, thus disabling trace of
the specified function, but does not stop trace.

Prototype

Add.

void OS TraceDi sableFilterld(OS_ U8 Filterlndex, OS U3 id)

Par anet er Meani ng

Fil terlndex |Index of the Filter, that should be affected.
0 <= FilterIndex <=4
0 affects Filter O (‘Any Task’) and so on

id Id value of API call that should be enabled for trace
0<=Id <=127
Values from 0 to 99 are reserved for embOS

information

To disable trace of a specific embOS API function, you have to use the correct
Id value. These values are defined as symbolic constants in RTOS.h

This function may also be used to disable trace of your own functions. This
functionality is available in trace builds only. In none trace builds this API call is
removed by the preprocessor.

17.7. Trace record functions

The following functions are used to write (record) data into the trace buffer. As

long as only embOS API calls should be recorded, these functions are used in-

ternally by the trace build libraries.

If for some reason, you want to trace own functions with own parameters, you

may call one of those functions.

All those functions have the following points in common:

e To record data, trace must be enabled.

e An Id value in the range from 100 to 127 has to be used as id parameter. Id
values from 0 to 99 are internally reserved for embOS

e The specified events (id’s) have to be enabled in any of the trace filters.

e Active system time and current task are automatically recorded together with
the specified event.

OS_TraceVoid

Description

Writes an entry which is only identified by its id into the trace buffer.

Prototype

void OS TraceVoi d(0OS_U8 id);

© 1996- 2002 Segger Microcontroller Systeme GmbH

122/136 User's & reference manual for embOS real time OS

OS

0S

Par anet er Meani ng

id Id value that should be written into trace buffer
100 <=1Id <=127
Values from 0 to 99 are reserved for embOS

Add. information

This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

_TracePtr
Description
Writes an entry with id and a pointer as parameter into the trace buffer.
Prototype
void OS TracePtr(0OS_ U8 id, void* p);
Par anet er Meani ng
id Id value that should be written into trace buffer

100 <=1d <=127
Values from 0 to 99 are reserved for embOS
P any void pointer that should be recorded as parameter

Add. information

The pointer passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

TraceData
Description

Writes an entry with id and an integer as parameter into the trace buffer.
Prototype

void OS TraceData (OS U8 id, int v);

Par anet er Meani ng

id Id value that should be written into trace buffer

100 <= Id <= 127
Values from 0 to 99 are reserved for embOS
v any integer value that should be recorded as parameter

Add. information

The value passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceDataPtr

Description

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 123/136

Writes an entry with id, an integer and a pointer as parameter into the trace

buffer.
Prototype
void OS TraceDataPtr(OS U8 id, int v, void*p);
Par anmet er Meani ng
id Id value that should be written into trace buffer

100 <=Id <=127

Values from 0 to 99 are reserved for embOS

v any integer value that should be recorded as parameter
P any void pointer that should be recorded as parameter

Add. information

The values passed as parameter, will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In none trace
builds this API call is removed by the preprocessor.

OS_TraceU32Ptr

Description

Writes an entry with id, a 32 bit unsigned integer and a pointer as parameter
into the trace buffer.

Prototype
void OS TraceU32Ptr(OS U8 id, OS U32 p0, void*pl);
Par amet er Meani ng
I d Id value that should be written into trace buffer

100 <=1Id <=127
Values from 0 to 99 are reserved for embOS

po any unsigned 32 bit value that should be recorded as
parameter
pl any void pointer that should be recorded as parameter

Add. information

The values passed as parameter, will be displayed in the trace list window of
embOSView. This function may be used to record two pointer. This functionality
is available in trace builds only. In none trace builds this API call is removed by
the preprocessor.

17.8. Application controlled trace example

As described above, the user application can enable and setup the trace condi-
tions without the need of a connection or command from embOSview. Also the
trace record functions can be called from any user function to write data into the
trace buffer. Therefore id numbers from 100 to 127 may be used.

This can be very helpful to trace APl and user functions just after starting the
application at a moment, when the communication to embOSView is not avail-
able or setup from embOSView is not complete.

#i ncl ude “RTGCS. h”

#i f ndef OS_TRACE_FROM START
#def i ne OS_TRACE_FROM START 1

© 1996- 2002 Segger Microcontroller Systeme GmbH

124/136

User's & reference manual for embOS real time OS

#endi f

/* Application specific trace id nunbers */
#defi ne APP_TRACE | D_SETSTATE 100

char Mi nSt at e;

/* Sanple of application routine with trace */
voi d Set State(char* pState, char Value) {
#if OS_TRACE
OS_TraceDat aPt r (APP_TRACE | D_SETSTATE, Val ue, pState);
#endi f
* pState = Val ue;
}

/* Sanple main routine, that enables and setup APl and function call trace
fromstart */
voi d mai n(void) {
OS I nitKern();

OS I nitHW);

#if (OS_TRACE && OS_TRACE FROM START)
/* OS_TRACE is defined in trace builds of the library */
OS_TraceDbDi sabl eAl | (); /* Disable all APl trace calls */
OS_TraceEnabl el d(APP_TRACE_I D_SETSTATE) ; /* User trace */

OS_TraceEnabl eFil terl d(APP_TRACE | D SETSTATE); [/* User trace */
OS_TraceEnabl e();
#endi f
/* Application specific initilisation */
Set St at e(&Vhi nState, 1);
OS_CREATETASK(&TCBMai n, "Mai nTask", MainTask, PRI O MAIN, MinStack);
s Start(); /* Start multitasking -> MinTask() */

Note:

The example above shows, how a trace filter can be set up by application. As
described earlier, OS_TraceEnablelD() sets the trace filter 0, that affects calls
from any running task. The first call of SetState() in the example above would
not be traced, because there is no task running at that moment. Therefore the
additional filter setup routine OS_TraceEnableFilterld() is called with filter 1,
which results in trace of calls from outside running tasks.

Per default, embOSView lists all user function traces in the trace list window as
‘Routine’, followed by the specified ID and two parameter as Hex value.

The example above would result in

Routine100(0xabcd, 0x01)

Where Oxabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr().

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 125/136

17.9. embOS.ini: User defined functions

In order to be able to use the built-in trace (available in trace builds of embOS)
for functions of the application program, embOSView can be customized. This
customization is done in the Setup file ‘embOS.ini’.

This setup file is parsed at startup of embOSView. It is optional; you will not see
an error message if it can not be found.

The following shows a sample embOS.ini file:

File: enbCsS. ini

#

enbOSView Setup file

#

enbOSView |l oads this file at startup. It has to reside in the same

directory as the execuathble itself.

#

Note: The file is not required in order to run enbOSView. You will not get
an error nessage if it is not found. However, you will get an error nessage
if the contents of the file are invalid.

#

Define add. APl functions.

Syntax: API(<lndex>, <Routinenanme> [paraneters])

I ndex: |nteger, between 100 and 127

Routinenane: ldentifier for the routine. Should be no nore than 32

characters
paranmeters: Optional paranters. A nax. of 2 paraneters can be specified.
Valid paraneters are:
i nt
ptr
Every paraneter has to be proceeded by a col on.

HoHHH

APl (100, "Routinel00")
APl (101, "Routinel0O1", int)
APl (102, "Routinel02", int, ptr)

17.9.1. Defining User functions for trace

To enable trace setup for user functions, embOSView needs to know an id
number, the function name and the type of two optional parameters that can be
traced.

The format is explained in the sample file above.

© 1996- 2002 Segger Microcontroller Systeme GmbH

126/136 User's & reference manual for embOS real time OS

18. Debugging

18.1. Run-time errors

Some error-conditions can be detected during runtime. These are:

Usage of uninitialized data structures

Invalid pointers

Resource unused that has not been used by this task before

OS_LeaveRegi on called more often than OS_Ent er Regi on

stack-overflow (This feature is not available for some processors)

Which run-time errors can be detected depends on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (It is not
really significant, but there is a difference).

If embOS detects a run-time error, it calls the routine

void OS Error(int ErrCode);

This routine is shipped in source as part of the module RTCSI NI T. C. The rou-
tine simply disables further tasks switches and then after re-enabling interrupts
loops forever as follows:

/*
Run-tinme error reaction

void OS_Error(int ErrCode) {
nt er Regi on() ; /* Avoid further task switches */
| Cnt =0; /[* Allow interrupts so we can comunicate */
_E1();
OS_Status = Err Code;
while (OS_Status);

In case you are using embOSView, you can see value and meaning of
OS_Status in the system variable window.

When using an emulator you should set a breakpoint at the beginning of this
routine or simply stop the program after a failure. The error code is passed to
the function as parameter.

You can modify the routine to accommodate your own hardware; this could
mean that your target-hardware sets an error-indicating LED or shows a little
message on the display.

Important

When modifying the 0S Error () routine, the first statement needs to be
the disabling of scheduler via 0S EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the OS_Error () routine, you will see that it is more complicated
than necessary. The actual error code is assigned to the global variable
OS_St at us. The program then waits for this variable to be reset. This allows
to get back to the program-code that caused the problem easily: Simply reset
this variable to 0 using your in circuit-emulator, and you can step back to the
program sequence causing the problem. Most of the time, a look at this part of
the program will make the problem clear.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

127/136

18.2. List of error codes

Value

Symbolic name

Explanation

120

OS_ERR STACK

stack overflow or invalid stack

128

0OS_ERR | NV_TASK

task control block invalid or not initial-
ized or overwritten

129

OS_ERR | N\V_TI MER

timer control block invalid or not initial-
ized or overwritten

130

OS_ERR | \V_MAI LBOX

mailbox control block invalid or not ini-
tialized or overwritten

132

OS_ERR | NV_CSEMA

control block for counting semaphore
invalid or not initialized or overwritten

133

OS_ERR | \V_RSEMA

control block for resource semaphore
invalid or not initialized or overwritten

135

OS_ERR_MAI LBOX_NOT1

One of the following 1 byte mailbox
functions has been used on a multi
byte mailbox:

OS Put Mai | 1(),

OS_Put Mai | Condl1(),

OS GetMail 1(),

OS_Cet Mai | Cond1()

140

OS_ERR _MAI LBOX _NOT I N L
| ST

The mailbox is not in the list of mail-
boxes as expected. Possible Reasons:
a) one mailbox data structure overwrit-
ten

142

OS_ERR _TASKLI ST_CORRUPT

The OS internal tasklist is destroyed

150

OS_ERR_UNUSE_BEFORE_USE

OS _Unuse() has been called before
S Use()

151

OS_ERR _LEAVEREG ON _BEFO
RE_ENTERREG ON

OS _LeaveRegi on() has been called
before OS_Ent er Regi on()

152

OS_ERR_LEAVEI NT

Errorin OS_Leavel nterrupt ()

153

OS_ERR DI CNT

The interrupt disable counter
(Os_DICnt) is out of range (0-15).
The counter is affected by the following
API calls:

OS I ncDl ()

OS_DecRI ()

OS Enterlinterrupt()

OS Leavelnterrupt ()

154

OS_ERR I NTERRUPT_DI SABL
ED

OS Delay() or OS Delayuntil ()
called from inside a critical region with
interrupts disabled

160

OS_ERR I LLEGAL TN ISR

lllegal function call in interrupt service
routine:

A routine that may not be called from
within an ISR has been called from
within an ISR.

161

OS_ERR I LLEGAL_I N_TI MER

lllegal function call in interrupt service
routine:

A routine that may not be called from
within a software timer has been called
from within a Timer.

170

OS_ERR 2USE_TASK

Task control block has been initialized
by calling a create function twice.

171

OS_ERR 2USE_TI MER

Timer control block has been initialized

© 1996- 2002 Segger Microcontroller Systeme GmbH

128/136 User's & reference manual for embOS real time OS

Value |Symbolic name Explanation

by calling a create function twice.

172 |OS_ERR_2USE_MAI LBOX Mailbox control block has been initial-
ized by calling a create function twice.

173 |OS_ERR_2USE_BSEMA Binary semaphore has been initialized
by calling a create function twice.

174 |OS_ERR_2USE_CSEMA Counting semaphore has been initial-
ized by calling a create function twice.

175 |OS_ERR_2USE_RSEMA Resource semaphore has been initial-

ized by calling a create function twice.

The latest version of defined error table is part of the comment just before the
OS_Error () function declaration in the source file Rt osl nit. c

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 129/136

19. Supported development tools

embOS has been developed with and for a specific C-Compiler version for the
selected target processor. Please check the file RELEASE.HTML for details. It
works with the specified C-Compiler only, since other C-Compiler's may use dif-
ferent calling conventions (incompatible object file formats) and therefore might
be incompatible. However, if you prefer to use a different C-Compiler, please
contact us, we will do our best to satisfy your needs in the shortest possible
time.

19.1.Reentrance

All routines, that can be used from different tasks at the same time have to be
fully reentrant. A routine is in use, from the moment when it is being called until
it returns or the task that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If
for some reason you have to have routines that are non - reentrant in your pro-
gram that can be used from more than one task, it is recommended to use a
resource-semaphore to avoid this kind of problem.

C-Routines and reentrance
Normally, the "C"-Compiler generates code that is fully reentrant. However, the
compiler has options that force it to generate non-reentrant code (in order to
optimize the performance of the compiler). It is recommended not to use these
options; but it is possible under certain circumstances.

Assembly routines and reentrance

As long as assembly-functions access local variables and parameters only,
they are fully reentrant. Everything else has to be thought about carefully.

© 1996- 2002 Segger Microcontroller Systeme GmbH

130/136 User's & reference manual for embOS real time OS

20. Limitations

Max. no. of tasks limited by avail. RAM only
Max. no. of priorities limited by avail. RAM only
Max. no. of semaphore limited by avail. RAM only
Max. no. of mailboxes limited by avail. RAM only
Max. no. of queues limited by avail. RAM only
Max. size. of queue limited by avail. RAM only
Max. no. of timer limited by avail. RAM only
Event flags : 8 bit / task

If you miss additional functions, we appreciate your feedback and will do our
best to implement these functions if they fit into the concept.

Do not hesitate to contact us. If you need to make changes to embOS, the full
source-code is available.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 131/136

21. Source code of kernel and library

embOS is available in two versions:
1. Object version: Object code + h/w init source
2. Full source version: Full sources

Since this is the document that describes the object version, the internal data
structures are not explained in detail. The object version offers the full function-
ality of embOS including all supported memory models of the compiler, the de-
bug libraries as described and the source code for idle task and hardware init.
However, the object version does not allow source level debugging of the library
routines and the kernel.

The full source version gives you the ultimate options: embOS can be recom-
piled for different data sizes; different compile options give you full control of the
generated code, making it possible to optimize the system for versatility or
minimum memory requirements. You can debug the entire system and even
modify it for new memory models or other CPUs.

21.1. Building embOS libraries

The embOS libraries can only be built, if you have purchased a source code
version of embOS.

In the root path of embOS, you will find a DOS batch file PREP.BAT, which
needs to be modified to match the installation directory of your C compiler.
Once this work is done, you can call the batch file M.BAT to build all embOS
libraries for your CPU.

The build process should run without any error or warning message. If the build
process reports any problem please check the following:

e Are you using the same compiler version as mentioned in the file
RELEASE.HTML ?

e Can you compile a simple test file after running PREP.BAT and does it really
use the compiler version you have specified ?

e |s there anything mentioned about possible compiler warnings in the
RELEASE.HTML ?

If you still have a problem, please let us know.

© 1996- 2002 Segger Microcontroller Systeme GmbH

132/136

User's & reference manual for embOS real time OS

22. Additional modules

22.1. Keyboard-Manager: KEYMAN.C

Keyboard-driver module supplied in "C". It serves both as example and as a
module that can actually be used in your application. The module can be used
in most applications with only little changes to the hardware-specific part. It
needs to be initialized on startup and creates a task that checks the keyboard

50 times per second.

Changes req. for your hardware

void ReadKeys(void);

How to implement into your program

Example
voi d mai n(void) ({
OS I nitKern(); /* initialize OS (should be first !) */
OS I nitHW); /* initialize Hardware for OS (see Rtoslnit.c)*/

/*

You need to create at |east one task here ! */

OS_CREATETASK(&TCBO, "HP Task", Task0O, 100, Stack0); /*Create Task0*/
OS_CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl); /*Create Taskl*/
I ni t KeyMan(); /* Initialize keyboard manager */
oS _Start();

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS

133/136

22.2. Additional libraries and modules

For all embOS compatible real time operating systems, there are additional li-
braries and modules available. However, these modules can also be used with-
out embOS or with a different operating system.

Since these libraries are written in ANSI-"C", they can be used for any target
CPU that an ANSI-"C" Compiler exists for. In general, these modules are highly
optimized for both low memory consumption (especially in RAM) and high

speed.

The modules can be scaled for optimum performance at minimum memory
consumption using compile-time switches. Unused portions of the modules are
not even compiled, your program stays lean and fast.

emWin

emlLoad

The complete solution for graphical LCDs

fully scaleable graphical user interface featuring:
different fonts, (from 4*6 to 16*32)

line drawing, bitmap drawing,

advanced drawing : (e.g. Circles)

display routines for strings, decimal, hexadecimal, bi-
nary values, multiple windows

ultra-fast, yet still very compact (typical Between 8 and
20 kB ROM)

Everything you need for graphic displays !

Any LCD * Any LCD-controller * Any CPU
(monochrome and color version available, Bitmapcon-
verter, Fontconverter, PC-Simulation and Viewer ...
Check out our website !)

Boot-loader software

© 1996- 2002 Segger Microcontroller Systeme GmbH

134/136 User's & reference manual for embOS real time OS

23. FAQ (frequently asked questions)

Q: Can | implement different priority scheduling algorithms ?

A: Yes, the system is fully dynamic, which means that task-priorities can
be changed while the system is running (Using OS_Set Pri ori ty). This fea-
ture can be used to change priorities in a way that basically every desired algo-
rithm can be implemented. One way would be to have a task control task with a
priority higher than that of all other tasks that dynamically changes priorities.
Normally, the priority controlled round-robin algorithm is perfect for real-time

applications.
Q: Can | use a different interrupt source for embOS ?
A: Yes, any periodical signal can be used, i.e. any internal timer, but it

could also be an external signal.

Q: What interrupt priorities can | use for the interrupts my program uses ?
A: Any.

© 1996-2002 Segger Microcontroller Systeme GmbH

User's & reference manual for embOS real time OS 135/136

24. Glossary

Some technical terms used in this manual are explained below.

Active Task Only one task can execute at any given time. The Task cur-
rently executing is called the active task

CPU Central Processing Unit. The "brain" of a microcontroller

ISR Interrupt service routine. The routine that is called automati-
cally by the processor when an interrupt is acknowledged.
ISR have to preserve the entire context of a task, i.e. all regis-
ters.

NMI non maskable interrupt
Interrupts that can not be masked (disabled) by software. Ex-
ample Watchdog timer interrupt.

Processor Short for microprocessor. The CPU core of a controller

Priority Every task in an RTOS has a priority. Tasks with higher prior-
ity are preferred by the scheduler.

Resource anything in the computer system of limited availability :
e.g. memory, timers, computation time

RTOS Real time operating system

Scheduler The program section of an RTOS that selects the active task

Task program running on a processor. A multi-tasking system al-
lows multiple tasks to execute independently from one an-
other.

TICK The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) which a task will be executed until

a round robin task change may occur

© 1996- 2002 Segger Microcontroller Systeme GmbH

136/136

User's & reference manual for embOS real time OS

25. Index

A

additional modules........................ 133
C

Cooperative multitasking.................. 9
Critical Regions.........cccceeveeeenene. 108
D

Debugging.......ccccevevenieneeieienene. 126
debug-version.........cocevererereeeecnne 50
Development tools.........c.ccceevenee 129
E

Events........cocovveeeeiiiieiee e, 88
F

Featuresceevveeivieeeeeeeeiieeee e 7
H

Halt-mode..........cceevvriveeereenens 113
|

Idle-modeccooeevveniiiieeeieeieen, 113
internal data structures 112
INteITupts .ovveeeeeeieeie e 100
K

keyboard-driverc.ccoceeeuenee. 132
KEYMAN.C.....coveeveeveeeeeeeeens 132
L

Limitationsc.ccccceeeeeeeveeenneennen. 130
M
MailbOXES....cuveeeveeereeeieeereeereeenns 68
Multitaskingccceeeveeieviervenreenenns 9
N

NMI .o, 107
(o)

OS_ClearEvents....

OS ClearMB.........
OS_CreateCSema.........ccovevvveernnenne
OS_CREATECSEMA...........c........ 61
OS_CREATEMB
OS_CREATERSEMA.................... 53
OS CreateTasK.......cccevvevverreeeennnne 26
OS_CREATETASK.....cccovvvivene 24
OS_CreateTimer.........ccceeveeveeeennene 40
OS_CREATETIMER.................... 39
OS _DeCRI()...covevrerieriiricreieienene 104
OS Delay...cccceveevveeieiecieieeeene 28
OS DelayUntil........cceevevveirinrennne 29

OS DeleteCSema.........cccceveeeeneeene 67
OS_DeleteMB
OS DeleteTimer.........cccovereereenenens
OS_DI() e
OS_EI(ceoveveervenenen .
OS_EnterInterrupt
OS_EnterNestableInterrupt()........ 106
OS_EnterRegion.........ccccoeveeeencne
OS_GetCSemaValue............ccoc.......
OS_GetEventsOccured....
OS_GetMail.......cccoecvvvniniienene
OS_GetMaill.......cocooviininienene
OS_GetMailCond.....
OS_GetMailCond]1
OS_GetMessageCnt
OS_GetpCurrentTaskccceueeue.
OS_GetpCurrentTimer
OS_GetPriority
OS_GetResourceOwner..................
OS_GetSemaValue.........ccccoueuenene
OS_GetStackSpace...
OS_GetTaskIDcooevveeeierinnne 36
OS_ GetTime................. 111
OS_GetTimerPeriod.........cccoueueee. 46
OS_GetTimerStatus..........ccveeveeennns 48
OS_GetTimerValue
(O] 11161) [TR

OS ISTasK ..cccvevveeeveiieieieeieeeienns
OS_Leavelnterruptcccceeneee.n.
OS_LeavelnterruptNoSwitch 102
OS_LeaveNestablelnterrupt()....... 106
OS LeaveRegion........ccccveveneeenee. 110
OS _PutMail.....ccoccveiieieieeieieeiens
OS_PutMaill
OS_PutMailCond........ccocevvervrennnne
OS_PutMailCondlccceecvevrennenne
OS_Q Create...................
OS_Q GetMessageCnt....
OS_Q GetPtr.....cceeeuneens
0S_Q GetPtrCond.......ccceeverreenenns
OS Q Purge....cooevvvveieeiieieeen, 86
OS_Q Put
OS_RequestSema........c.ccecveeverenneen. 57
OS_Restorel()....cooereevreneerienennnn. 105
OS_RetriggerTimerccc.on...... 43
OS_SendString...... .
OS_SetPriority.....cccceeeevereervennnnne. 30

OS_SetRxCallbackccccevunnene 116
OS_SetTimerPeriod..
OS_SetTimeSlice.........ccccererueneene. 32
OS_SignalCSemaccccoevuennenee. 63
OS_SignalEvent

OS_StartTimer......
OS_StopTimer-......
OS_Terminate.........cccocevereenrennenne.
OS_Time...coeeeeeieeiirieerceene

OS_TimeDex .

0OS_WaitCSemaTimed....
OS_WaitEvent................
0OS_WaitEventTimed.....................
OS_WaitSingleEvent.....................
0OS_WaitSingleEventTimed...
OS WakeTasK.......ceeuerveriererennnne

P

Preemptive multitasking 9
priority
Profiling....cccoevveveeiniriiinieeeee 19
program-failureccccceeerennnne. 97

Reentrancecceeevvevveviieennnnne 129
Resource semaphores..................... 50
Round-Robinccoeevevrvevenieennenne. 10

S

Scheduler.......coceviecierieieeieienen, 10
Semaphores.......ccccveevereeieneenenen. 12
Single byte mailboxes...........c..c..... 72
Software Timercccceeevevveenennen. 38
stack-overflowcccocveevereenennen. 97
Stack-pointer
StaCKS...oeovreierieieceee e
Stop-mode.......cccverriecierieiirieienns

T

© 1996-2002 Segger Microcontroller Systeme GmbH

	Disclaimer
	Copyright notice
	Trademarks
	Contact / registration
	Contents
	About this document
	Assumptions
	How to use this manual
	Typographic Conventions for Syntax

	Introduction to embOS
	What is embOS??
	Features

	Basic concepts
	Tasks
	Multitasking: cooperative - preemptive
	Cooperative Multitasking
	Preemptive multitasking

	Scheduling
	Round-robin scheduling algorithm
	Priority controlled scheduling algorithm
	Priority inversion

	� Communication between tasks
	Global variables
	Communication mechanisms
	Mailboxes
	Semaphores
	Events

	How task-switching works
	Switching stacks
	Change of task status
	What happens after reset
	How the OS gains control
	Different builds of embOS
	Profiling
	List of libraries

	Configuration for your target system (RTOSINIT.c)
	Routines in RTOSInit.c
	Configuration defines
	How to change settings
	Setting the system frequency OS_FSYS
	Using a different timer to generate the tick-interrupts for embOS
	Using a different UART or baudrate for embOSView
	Changing the tick frequency

	OS_CONFIG

	Task routines
	OS_CREATETASK
	OS_CreateTask
	OS_Delay: Suspend for fixed time
	OS_DelayUntil: Suspend until
	OS_SetPriority: Change priority of a task
	OS_GetPriority: Retrieve priority of a task
	OS_SetTimeSlice: Change timeslice of a task
	OS_Terminate: Terminate a task
	OS_WakeTask
	OS_IsTask
	OS_GetTaskID
	OS_GetpCurrentTask

	Software Timer
	OS_CREATETIMER
	OS_CreateTimer
	OS_StartTimer
	OS_StopTimer
	OS_RetriggerTimer
	OS_SetTimerPeriod
	OS_DeleteTimer
	OS_GetTimerPeriod
	OS_GetTimerValue
	OS_GetTimerStatus
	OS_GetpCurrentTimer

	Resource semaphores
	Example for use of Resource semaphore
	OS_CREATERSEMA
	OS_Use: Using a Resource
	OS_Unuse: Release Resource
	OS_Request
	OS_GetSemaValue
	OS_GetResourceOwner

	Counting Semaphores
	Example for OS_SignalCSema and OS_WaitCSema
	OS_CREATECSEMA
	OS_CreateCSema
	OS_SignalCSema: Incrementing
	OS_WaitCSema: Decrementing
	OS_WaitCSemaTimed: Decrementing with timeout
	OS_GetCSemaValue
	OS_DeleteCSema

	Mailboxes
	Why mailboxes ?
	Basics
	Typical applications
	A keyboard buffer
	A buffer for serial I/O
	A buffer for commands sent to a task

	Number of and size of mailboxes, type of mail
	OS_CREATEMB: Creating a mailbox
	Single byte mailbox functions
	OS_PutMail / OS_PutMail1: Store message
	OS_PutMailCond / OS_PutMailCond1: Store Message if possible
	OS_GetMail / OS_GetMail1
	OS_GetMailCond / OS_GetMailCond1
	OS_ClearMB: Empty a Mailbox
	OS_GetMessageCnt
	OS_DeleteMB

	Queues
	Why Queues ?
	Basics
	Number of and size of queues, type of messages
	OS_Q_Create: Creating a message queue
	OS_Q_Put: Store message
	OS_Q_GetPtr: Retrieve message
	OS_Q_GetPtrCond: Retrieve message if available
	OS_Q_Purge: Delete message in queue
	OS_Q_GetMessageCnt: Get number of messages in queue

	Events
	OS_WaitEvent
	OS_WaitSingleEvent
	OS_WaitEventTimed
	OS_WaitSingleEventTimed
	OS_SignalEvent
	OS_GetEventsOccured
	OS_ClearEvents: Clear List of Events

	Stacks
	Some basics
	System stack
	Task stack
	Interrupt stack
	OS_GetStackSpace

	Interrupts
	Rules for interrupt handlers
	General rules
	Additional rules

	Calling embOS routines from within an ISR
	Enabling / Disabling interrupts from "C"
	OS_IncDI()
	OS_DecRI()
	OS_DI()
	OS_EI()
	OS_RestoreI()
	Definitions of interrupt control macros (in RTOS.h)

	Nesting interrupt routines
	OS_EnterNestableInterrupt()
	OS_LeaveNestableInterrupt()

	Non maskable interrupts (NMIs)

	Critical Regions
	OS_EnterRegion
	OS_LeaveRegion

	System variables
	Time Variables
	OS_Time
	OS_TimeDex

	OS internal variables and data-structures

	STOP / HALT / IDLE Mode
	embOSView: Profiling and analyzing
	Overview
	Task list window
	System variables
	Sharing the SIO for Terminal I/O
	OS_SendString
	OS_SetRxCallback

	Using the API-trace
	Setting up trace from embOSView

	Trace filter setup functions
	OS_TraceEnable
	OS_TraceDisable
	OS_TraceEnableAll
	OS_TraceDisableAll
	OS_TraceEnableId
	OS_TraceDisableId
	OS_TraceEnableFilterId
	OS_TraceDisableFilterId

	Trace record functions
	OS_TraceVoid
	OS_TracePtr
	OS_TraceData
	OS_TraceDataPtr
	OS_TraceU32Ptr

	Application controlled trace example
	embOS.ini: User defined functions
	Defining User functions for trace

	Debugging
	Run-time errors
	List of error codes

	Supported development tools
	Reentrance
	C-Routines and reentrance
	Assembly routines and reentrance

	Limitations
	Source code of kernel and library
	Building embOS libraries

	Additional modules
	Keyboard-Manager: KEYMAN.C
	Changes req. for your hardware
	How to implement into your program

	Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index

